

An Evaluation of Malware Triage Similarity Hashes

Haoping Liu1, Josiah Hagen1, Muqeet Ali1 and Jonathan Oliver2
1TrendMicro Research, U.S.A.

2The University of Queensland, Australia

Keywords: Malware Triage, Similarity Hashes, Approximate Matching.

Abstract: Detection of polymorphic malware variants is crucial in cyber security. Searching and clustering are crucial
tools for security analysts and SOC operators in malware analysis and hunting. Similarity hashing generates
similarity digests based on binary files, allowing for the calculation of similarity scores, saving time and
resources in malware triage operations. In this paper, we compare the accuracy and run time of TLSH and
LZJD algorithms, both based on windows-based malware samples. TLSH is widely used in industry, while
LZJD is newly developed and released in academia. TLSH hashes skip-n-grams into a histogram, providing
distance scores based on histogram similarity, while LZJD converts byte strings into sub-strings, providing
similarity scores between the sets. Our experiments show that TLSH performs slightly better than LZJD in
detection rate, but vastly outperforms LZJD in index and search time.

1 INTRODUCTION

The Security Operations Center (SOC) is the core of
a company, responsible for detecting, analyzing, and
fixing security threats. As threats evolve, it's crucial
for the SOC to keep pace. During investigations, SOC
analysts may encounter suspicious files or
executables. Understanding the origin and intent of
potential malware provides valuable information to
guide further investigation and action. Malware
analysis techniques equip analysts with the necessary
tools to uncover critical insights.

Static and dynamic analysis technologies are
effective in detecting polymorphic malware.
However, they are vulnerable to evasions and become
less efficient as malware evolves. Extracting features
also consumes a lot of computing resources and time
per sample, making it difficult to keep pace with the
daily influx of malware. Currently, the most widely
used in malware triage are similarity hashing (Li,
Sundaramurthy, Bardas, & Ou, 2015) (Pagani,
Dell'Amico, & Balzarotti, 2018) (Oliver, Ali, &
Hagen, 2020) (Cooley, et al., 2021), import hashing
(Fireeye, 2014) (Naik, Jenkins, Savage, & Yang,
2020) and YARA rules (Naik, Jenkins, Savage, &
Yang, 2019). Accuracy and response time in
matching samples of a method are the primary
challenges in the triaging process.

Contributions. I This paper aims to address concerns
about the detection efficiency and effectiveness of
two similarity hashes, which both handle byte-stream
data but lack cross-comparison.

2 BACKGROUNDS: TLSH AND
LZJD

Cryptographic hashes like SHA1 or SHA256 are used
for precise file or byte-stream matching. Hash-based
filtering involves hashing two data objects and
comparing the results. Cryptographic hashes only
provide binary answers, while similarity hashes offer
a probabilistic answer as a measure of similarity or
distance. The aim of similarity hashing is to enable
approximate matching and support similarity search
and classification. This paper provides a high-level
overview of the design and operation of evaluated
tools, while the finer details can be found in
referenced publications.

2.1 TLSH

TLSH (Trend Micro Locality Sensitive Hash) is a
locality sensitive hash which produces a fixed-length
hash digest based on the input bytes (Oliver, Cheng,
& Chen, 2013). The standard TLSH hash (which is

Liu, H., Hagen, J., Ali, M. and Oliver, J.
An Evaluation of Malware Triage Similarity Hashes.
DOI: 10.5220/0011728500003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 1, pages 431-435
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

431

used throughout in this paper) produces a digest 70
characters in length. The TLSH hash digest has the
property that two similar inputs would produce a
similar hash digest, based on statistical features of the
input bytes (Oliver & Hagen, 2021). The hash digest
is a concatenation of the digest header and digest
body. The following steps are involved in
computation of the standard TLSH hash:

• All 3-grams from a sliding window of 5 bytes
are used to compute an array of bucket counts,
which are used to form the digest body.

• Based on the calculation of bucket counts (as
calculated above) the three quartiles are
calculated (referred to as q1, q2, and q3
respectively).

• The digest body is constructed based on the
values of the quartiles in the array of bucket
counts, using two bits per 128 buckets to
construct a 32-byte digest.

• The digest header is composed of a checksum,
the logarithm of the byte string length and a
compact representation of the histogram of
bucket counts using the ratios between the
quartile points for q1:q3 and q2:q3

Two different TLSH hash digests are compared using
the TLSH distance. The TLSH distance of zero
represents that the files are likely identical, and scores
greater than that indicate the greater degrees of
dissimilarity (please see the original paper for more
details on the computation of the distance).

2.2 LZJD

Lempel-Ziv Jaccard Distance or LZJD algorithm
designed by Edward Raff and Charles Nicholas (Raff
& Nicholas, 2017). The inspiration of LZJD come
from the Normalized Compression Distance, which
measures the ability to compress two inputs into a
similar output using the same compression technique.
This has a long history of use in data mining, and
LZJD applies this approach to determine malware
similarity. First, the Lempel-Ziv Set algorithm
coverts a byte sequence into a set of byte sub-
sequences which is previously seen sequences in the
set. Initially, the set is empty, and then the following
process is repeated from the beginning of the byte
stream until the end of the stream is reached:
beginning with a sub-sequence of length 1, if this sub-
sequence has not been seen, then add it to the set and
the pointer move to the end of current sub-sequence
and next desired sub-sequence length reset to one. If
the sub-sequence has been seen before, it increases

next desired sub-sequence length by one to
incorporate the next byte.
LZJD only compares a small portion of the set to
speed up the process even more. To approximate the
distance by using min-hashing to create a compact
representation of the input string. Use this
approximation to reduce time and memory
requirements for computing LZJD. Moreover, there
is around 3% approximation error by selecting
minimum k = 1024 hashes from the set. The steps of
procedure to compare byte sequences are following:

• Covert byte sequence 𝐵௜ into many unique sub-
sequences using Lempel-Ziv Set Algorithm

• Hash these unique sub-sequences into a set 𝐶௜ of
integers via hash functions.

• Sort integers set and keep k=1024 smallest
values

• Calculate the Jaccard distance between two set
of smallest values. 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝐿𝑍𝐽𝐷൫𝐵௜,𝐵௝൯ ≈ 1 − 𝐽(𝐶௜௞,𝐶௝௞)

We can interpret the LZJD score as a rough measure
of byte similarity. For example, consider two inputs
A and B. A score of 0.75 means that, for all sub-
strings shared between the LZSet(A) and LZSet(B),
75% of them could be found in both files. This can be
loosely interpreted as saying that A and B share 75%
of their byte strings (Raff & Nicholas, 2017).

3 EXPERIMENTS SETUPS

Dataset. Our evaluation uses real malware files
obtained from the MalwareBazaar website
(MalwareBazaar, n.d.). The 5138 Windows-based
malware samples, belonging to 20 families, come
from this source. The training set uses April 2022
collected files, while the testing set consists of
samples from May 1st, 2022.

Classifier. We employ the Nearest Neighbors
classifier with KD Tree indexing. The principle is to
identify the closest predefined number of training
samples to the new point and predict its label. This
paper uses radius-based neighbor learning instead of
k-nearest neighbor learning. The number of training
samples is based on the local density of points within
a set radius. Any metric measure can be used for
distance, but standard Euclidean distance is the most
common. In this case, we use TLSH and LZJD
distance scores as the distance metric.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

432

3.1 Evaluation Procedure

To evaluate, we first need to understand the output of
each tool. TLSH provides a distance score of 0 to 300,
with a lower score indicating higher skip n-gram byte
similarity. LZJD only offers a similarity score of 0 to
1, where a higher score means higher substring
similarity. To make them comparable, we created a
LZJD distance function by reversing its similarity
score by multiplying by 100. Both tools now have
distance scores as output, which we use in our
experiments. The threshold value of the distance
score in the nearest neighbors' algorithm affects the
classification performance results.

3.2 Evaluation Metrics

We split the predictions into three categories: Correct,
Incorrect, and Inconclusive:

• Correct: The cluster is correctly labeled, and
the prediction matches the true label.

• Inconclusive: The sample or cluster lacks a
label, resulting in a "I don't know" answer to a
distance query.

• Incorrect: The cluster labeling is inconsistent,
and the prediction does not match the true label.

Finally, we consider two basic measurements,
detection rate and error rate:
Detection Rate refers to the ratio of correct
detections among all samples in the testing set.

Detection Rate = Correct / N, where N = Correct +

Incorrect + Inconclusive

Error Rate reflects the incorrect predictions made by
each approach in the testing set. In practical terms,
inconclusive results cannot lead to any conclusions.

Error Rate = Incorrect / (Correct + Incorrect)

4 EXPERIMENTAL RESULTS

We analyzed the distribution of distance scores for
three categories: correct, incorrect, and inconclusive.
The distance score is a crucial tunable parameter in
nearest neighbors' classification, and we aim to
demonstrate the distribution of distance scores under
real-world data to assess their usefulness and efficacy.

Figure 1: Experiments of TLSH distance score distribution.

4.1 TLSH Distance Scores Distribution

We analyzed all files with TLSH distance scores
between 0 and 300. As shown in Figure 1, we
observed that incorrect predictions were not present
when the distances were less than or equal to 20,
resulting in a zero Error Rate. However, as the
distance parameter increased, the Error Rate
increased as well. Conversely, the Detection Rate also
increased with a larger distance, reflecting a trade-off
between a higher Error Rate and increased Detection
Rate.

4.2 LZJD Distance Scores Distribution

We studied all files with LZJD distance scores
between 0 and 100. As shown in Figure 2, there were
no incorrect predictions until the distance parameter
was raised to 50. However, the number of incorrect
predictions increased significantly when the distance
score reached 85 or higher.

Figure 2 : Experiments of LZJD distance score distribution.

An Evaluation of Malware Triage Similarity Hashes

433

4.3 Detection Rate and Error Rate

Table 1: TLSH and LZJD detection and error rate.

TLSH LZJD

score Detection
rate

Error
rate score Detection

rate
Error
rate

10 48.78% 0.00% 10 41.46% 0.00%
20 53.66% 0.00% 20 48.78% 0.00%
30 54.88% 2.17% 30 50.00% 0.00%
40 62.20% 1.92% 40 52.44% 0.00%
50 64.63% 5.36% 50 54.88% 2.17%
60 63.41% 8.77% 60 59.76% 0.00%
70 64.63% 10.17% 65 59.76% 0.00%
80 67.07% 8.33% 70 65.85% 3.57%
90 68.29% 11.11% 75 71.95% 4.84%

100 74.39% 11.59% 80 74.39% 16.44%
150 69.51% 22.97% 85 34.15% 64.10%
200 59.76% 40.24% 90 17.07% 82.72%
250 14.63% 85.37% 95 17.07% 82.93%
300 10.98% 89.02% 100 10.98% 89.02%

Observations from the table are as follows:
• TLSH and LZJD have different score ranges,

with TLSH up to 300 and potentially over 1000,
while LZJD is limited to 0-100.

• Both TLSH and LZJD have low error rates,
gradually increasing with the increase of the
distance parameter.

• LZJD has a lower error rate compared to TLSH,
but also a lower detection rate.

• TLSH has better detection rate than LZJD at all
reasonable thresholds but has a smaller number
of errors.

• LZJD has zero error rate at thresholds <= 65
(except 50), with best detection rate at threshold
= 65 with zero error rate.

4.4 ROC Metric

We took the false positive and true positive rates for
two of We used false positive and true positive rates
of two schemes to plot a ROC curve, including
inconclusive as a false positive when the classifier
fails to predict. As shown in Fig. 3, the ROC curve
reveals that TLSH has slightly higher Area Under the
Curve (AUC) compared to LZJD.

4.5 Runtime Performance

Our experiment was conducted on a commodity 4-
core machine with 64 GB memory and Intel Core i7
6820HQ series processor (with a core turbo clock

speed of 2.7 GHz). We tested both similarity hash
tools and Table 1 shows the total runtime from
indexing to prediction. LZJD is large runtime
overhead.

Figure 3: ROC Curve of TLSH and LZJD.

Table 2: Comparison of runtime time for TLSH and LZJD.

Index & Search Time
(seconds)

TLSH LZJD

Average 0.894 167.458
Median 0867 166.022
Min 0.822 158.415
Max 1.092 183.519

5 CONCLUSIONS

The results indicate that both methods have strong
predictive abilities. TLSH outperforms LZJD in
indexing and searching time for malware triage due
to its shorter digests. TLSH compresses binary data
effectively while retaining meaningful information,
whereas its short digests conserve disk space,
memory and computing resources during index
creation and distance calculation.

REFERENCES

Cooley, R., Cutshaw, M., Wolf, S., Rita, F., Haile, J., &
Borowczak, M. (2021). Comparing Ransomware using
TLSH and @DisCo Analysis Frameworks. IEEE
International Conference on Big Data. Orlando, FL,
USA: IEEE International Conference on Big Data.

Fireeye. (2014). Tracking Malware with Import Hashing.
Retrieved from https://www.mandiant.com/resour
ces/tracking-malware-import-hashing

Li, Y., Sundaramurthy, S., Bardas, A., & Ou, X. (2015).
Experimental study of fuzzy hashing in malware
clustering analysis. 8th Workshop on Cyber Security
Experimentation and Test (CSET 15). Washington,

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

434

D.C.: 8th Workshop on Cyber Security
Experimentation and Test.

MalwareBazaar. (n.d.). Retrieved from https://bazaar.
abuse.ch/

Naik, N., Jenkins, P., Savage, N., & Yang, L. (2019).
Triaging Ransomware using Fuzzy Hashing, Import
Hashing and YARA Rules. IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). New
Orleans: IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE).

Naik, N., Jenkins, P., Savage, N., & Yang, L. (2020).
Fuzzy-Import Hashing: A Malware Analysis Approach.
IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). Glasgow, UK: IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE).

Oliver, J., & Hagen, J. (2021). Designing the Elements of a
Fuzzy Hashing Scheme. 19th International Conference
on Embedded and Ubiquitous Computing (EUC).
Shenyang, China: IEEE 19th International Conference
on Embedded and Ubiquitous Computing (EUC).

Oliver, J., Ali, M., & Hagen, J. (2020). HAC-T and Fast
Search for Similarity in Security. International
Conference on Omni-layer Intelligent Systems (COINS).
Barcelona, Spain.

Oliver, J., Cheng, C., & Chen, Y. (2013). Tlsh – a locality
sensitive hash. Fourth Cybercrime and Trustworthy
Computing Workshop. Sydney, Australia: Fourth
Cybercrime and Trustworthy Computing Workshop.

Pagani, F., Dell'Amico, M., & Balzarotti, D. (2018).
Beyond Precision and Recall: Understanding Uses (and
Misuses) of Similarity Hashes in Binary Analysis.
Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy. New York:
Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy.

Raff, E., & Nicholas, C. (2017). An Alternative to NCD for
Large Sequences, Lempel-Ziv Jaccard Distance. the
23rd ACM SIGKDD International Conference. Halifax,
Canada: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining.

Raff, E., & Nicholas, C. K. (2017). Lempel-Ziv Jaccard
Distance, an Effective Alternative to Ssdeep and
Sdhash. Digital Investigation. Digital Investigation.

An Evaluation of Malware Triage Similarity Hashes

435

