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Abstract: Detection of polymorphic malware variants is crucial in cyber security. Searching and clustering are crucial 
tools for security analysts and SOC operators in malware analysis and hunting. Similarity hashing generates 
similarity digests based on binary files, allowing for the calculation of similarity scores, saving time and 
resources in malware triage operations. In this paper, we compare the accuracy and run time of TLSH and 
LZJD algorithms, both based on windows-based malware samples. TLSH is widely used in industry, while 
LZJD is newly developed and released in academia. TLSH hashes skip-n-grams into a histogram, providing 
distance scores based on histogram similarity, while LZJD converts byte strings into sub-strings, providing 
similarity scores between the sets. Our experiments show that TLSH performs slightly better than LZJD in 
detection rate, but vastly outperforms LZJD in index and search time.   

1 INTRODUCTION 

The Security Operations Center (SOC) is the core of 
a company, responsible for detecting, analyzing, and 
fixing security threats. As threats evolve, it's crucial 
for the SOC to keep pace. During investigations, SOC 
analysts may encounter suspicious files or 
executables. Understanding the origin and intent of 
potential malware provides valuable information to 
guide further investigation and action. Malware 
analysis techniques equip analysts with the necessary 
tools to uncover critical insights. 

Static and dynamic analysis technologies are 
effective in detecting polymorphic malware. 
However, they are vulnerable to evasions and become 
less efficient as malware evolves. Extracting features 
also consumes a lot of computing resources and time 
per sample, making it difficult to keep pace with the 
daily influx of malware. Currently, the most widely 
used in malware triage are similarity hashing (Li, 
Sundaramurthy, Bardas, & Ou, 2015) (Pagani, 
Dell'Amico, & Balzarotti, 2018) (Oliver, Ali, & 
Hagen, 2020) (Cooley, et al., 2021), import hashing 
(Fireeye, 2014) (Naik, Jenkins, Savage, & Yang, 
2020) and YARA rules (Naik, Jenkins, Savage, & 
Yang, 2019). Accuracy and response time in 
matching samples of a method are the primary 
challenges in the triaging process.   

Contributions. I This paper aims to address concerns 
about the detection efficiency and effectiveness of 
two similarity hashes, which both handle byte-stream 
data but lack cross-comparison.  

2 BACKGROUNDS: TLSH AND 
LZJD 

Cryptographic hashes like SHA1 or SHA256 are used 
for precise file or byte-stream matching. Hash-based 
filtering involves hashing two data objects and 
comparing the results. Cryptographic hashes only 
provide binary answers, while similarity hashes offer 
a probabilistic answer as a measure of similarity or 
distance. The aim of similarity hashing is to enable 
approximate matching and support similarity search 
and classification. This paper provides a high-level 
overview of the design and operation of evaluated 
tools, while the finer details can be found in 
referenced publications. 

2.1 TLSH  

TLSH (Trend Micro Locality Sensitive Hash) is a 
locality sensitive hash which produces a fixed-length 
hash digest based on the input bytes (Oliver, Cheng, 
& Chen, 2013). The standard TLSH hash (which is 
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used throughout in this paper) produces a digest 70 
characters in length. The TLSH hash digest has the 
property that two similar inputs would produce a 
similar hash digest, based on statistical features of the 
input bytes (Oliver & Hagen, 2021). The hash digest 
is a concatenation of the digest header and digest 
body. The following steps are involved in 
computation of the standard TLSH hash: 

• All 3-grams from a sliding window of 5 bytes 
are used to compute an array of bucket counts, 
which are used to form the digest body.  

• Based on the calculation of bucket counts (as 
calculated above) the three quartiles are 
calculated (referred to as q1, q2, and q3 
respectively). 

• The digest body is constructed based on the 
values of the quartiles in the array of bucket 
counts, using two bits per 128 buckets to 
construct a 32-byte digest. 

• The digest header is composed of a checksum, 
the logarithm of the byte string length and a 
compact representation of the histogram of 
bucket counts using the ratios between the 
quartile points for q1:q3 and q2:q3 

Two different TLSH hash digests are compared using 
the TLSH distance. The TLSH distance of zero 
represents that the files are likely identical, and scores 
greater than that indicate the greater degrees of 
dissimilarity (please see the original paper for more 
details on the computation of the distance). 

2.2 LZJD  

Lempel-Ziv Jaccard Distance or LZJD algorithm 
designed by Edward Raff and Charles Nicholas (Raff 
& Nicholas, 2017). The inspiration of LZJD come 
from the Normalized Compression Distance, which 
measures the ability to compress two inputs into a 
similar output using the same compression technique.  
This has a long history of use in data mining, and 
LZJD applies this approach to determine malware 
similarity. First, the Lempel-Ziv Set algorithm 
coverts a byte sequence into a set of byte sub-
sequences which is previously seen sequences in the 
set. Initially, the set is empty, and then the following 
process is repeated from the beginning of the byte 
stream until the end of the stream is reached: 
beginning with a sub-sequence of length 1, if this sub-
sequence has not been seen, then add it to the set and 
the pointer move to the end of current sub-sequence 
and next desired sub-sequence length reset to one. If 
the sub-sequence has been seen before, it increases 

next desired sub-sequence length by one to 
incorporate the next byte. 
LZJD only compares a small portion of the set to 
speed up the process even more. To approximate the 
distance by using min-hashing to create a compact 
representation of the input string. Use this 
approximation to reduce time and memory 
requirements for computing LZJD.  Moreover, there 
is around 3% approximation error by selecting 
minimum k = 1024 hashes from the set. The steps of 
procedure to compare byte sequences are following:    

• Covert byte sequence 𝐵௜ into many unique sub-
sequences using Lempel-Ziv Set Algorithm   

• Hash these unique sub-sequences into a set 𝐶௜ of 
integers via hash functions. 

• Sort integers set and keep k=1024 smallest 
values  

• Calculate the Jaccard distance between two set 
of smallest values. 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝐿𝑍𝐽𝐷൫𝐵௜,𝐵௝൯ ≈ 1 −  𝐽(𝐶௜௞,𝐶௝௞)  

 
We can interpret the LZJD score as a rough measure 
of byte similarity. For example, consider two inputs 
A and B. A score of 0.75 means that, for all sub-
strings shared between the LZSet(A) and LZSet(B), 
75% of them could be found in both files. This can be 
loosely interpreted as saying that A and B share 75% 
of their byte strings (Raff & Nicholas, 2017). 

3 EXPERIMENTS SETUPS 

Dataset. Our evaluation uses real malware files 
obtained from the MalwareBazaar website 
(MalwareBazaar, n.d.). The 5138 Windows-based 
malware samples, belonging to 20 families, come 
from this source. The training set uses April 2022 
collected files, while the testing set consists of 
samples from May 1st, 2022.   
 
Classifier. We employ the Nearest Neighbors 
classifier with KD Tree indexing. The principle is to 
identify the closest predefined number of training 
samples to the new point and predict its label. This 
paper uses radius-based neighbor learning instead of 
k-nearest neighbor learning. The number of training 
samples is based on the local density of points within 
a set radius. Any metric measure can be used for 
distance, but standard Euclidean distance is the most 
common. In this case, we use TLSH and LZJD 
distance scores as the distance metric. 
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3.1 Evaluation Procedure 

To evaluate, we first need to understand the output of 
each tool. TLSH provides a distance score of 0 to 300, 
with a lower score indicating higher skip n-gram byte 
similarity. LZJD only offers a similarity score of 0 to 
1, where a higher score means higher substring 
similarity. To make them comparable, we created a 
LZJD distance function by reversing its similarity 
score by multiplying by 100. Both tools now have 
distance scores as output, which we use in our 
experiments. The threshold value of the distance 
score in the nearest neighbors' algorithm affects the 
classification performance results.  

3.2 Evaluation Metrics  

We split the predictions into three categories: Correct, 
Incorrect, and Inconclusive:  

• Correct: The cluster is correctly labeled, and 
the prediction matches the true label. 

• Inconclusive: The sample or cluster lacks a 
label, resulting in a "I don't know" answer to a 
distance query. 

• Incorrect: The cluster labeling is inconsistent, 
and the prediction does not match the true label. 

Finally, we consider two basic measurements, 
detection rate and error rate:   
Detection Rate refers to the ratio of correct 
detections among all samples in the testing set.  
 
Detection Rate = Correct / N, where N = Correct + 

Incorrect + Inconclusive 
 
Error Rate reflects the incorrect predictions made by 
each approach in the testing set. In practical terms, 
inconclusive results cannot lead to any conclusions.  
 

Error Rate = Incorrect / (Correct + Incorrect) 

4 EXPERIMENTAL RESULTS 

We analyzed the distribution of distance scores for 
three categories: correct, incorrect, and inconclusive. 
The distance score is a crucial tunable parameter in 
nearest neighbors' classification, and we aim to 
demonstrate the distribution of distance scores under 
real-world data to assess their usefulness and efficacy.  
 
 

 
Figure 1: Experiments of TLSH distance score distribution. 

4.1 TLSH Distance Scores Distribution  

We analyzed all files with TLSH distance scores 
between 0 and 300. As shown in Figure 1, we 
observed that incorrect predictions were not present 
when the distances were less than or equal to 20, 
resulting in a zero Error Rate. However, as the 
distance parameter increased, the Error Rate 
increased as well. Conversely, the Detection Rate also 
increased with a larger distance, reflecting a trade-off 
between a higher Error Rate and increased Detection 
Rate. 

4.2 LZJD Distance Scores Distribution 

We studied all files with LZJD distance scores 
between 0 and 100. As shown in Figure 2, there were 
no incorrect predictions until the distance parameter 
was raised to 50. However, the number of incorrect 
predictions increased significantly when the distance 
score reached 85 or higher.  

 
Figure 2 : Experiments of LZJD distance score distribution. 
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4.3 Detection Rate and Error Rate 

Table 1: TLSH and LZJD detection and error rate. 

TLSH LZJD 

score Detection 
rate 

Error 
rate score Detection 

rate 
Error 
rate 

10 48.78% 0.00% 10 41.46% 0.00% 
20 53.66% 0.00% 20 48.78% 0.00% 
30 54.88% 2.17% 30 50.00% 0.00% 
40 62.20% 1.92% 40 52.44% 0.00% 
50 64.63% 5.36% 50 54.88% 2.17% 
60 63.41% 8.77% 60 59.76% 0.00% 
70 64.63% 10.17% 65 59.76% 0.00% 
80 67.07% 8.33% 70 65.85% 3.57% 
90 68.29% 11.11% 75 71.95% 4.84% 

100 74.39% 11.59% 80 74.39% 16.44% 
150 69.51% 22.97% 85 34.15% 64.10% 
200 59.76% 40.24% 90 17.07% 82.72% 
250 14.63% 85.37% 95 17.07% 82.93% 
300 10.98% 89.02% 100 10.98% 89.02% 

Observations from the table are as follows: 
• TLSH and LZJD have different score ranges, 

with TLSH up to 300 and potentially over 1000, 
while LZJD is limited to 0-100. 

• Both TLSH and LZJD have low error rates, 
gradually increasing with the increase of the 
distance parameter. 

• LZJD has a lower error rate compared to TLSH, 
but also a lower detection rate. 

• TLSH has better detection rate than LZJD at all 
reasonable thresholds but has a smaller number 
of errors. 

• LZJD has zero error rate at thresholds <= 65 
(except 50), with best detection rate at threshold 
= 65 with zero error rate. 

4.4 ROC Metric 

We took the false positive and true positive rates for 
two of We used false positive and true positive rates 
of two schemes to plot a ROC curve, including 
inconclusive as a false positive when the classifier 
fails to predict. As shown in Fig. 3, the ROC curve 
reveals that TLSH has slightly higher Area Under the 
Curve (AUC) compared to LZJD.  

4.5 Runtime Performance 

Our experiment was conducted on a commodity 4-
core machine with 64 GB memory and Intel Core i7 
6820HQ series processor (with a core turbo clock 

speed of 2.7 GHz). We tested both similarity hash 
tools and Table 1 shows the total runtime from 
indexing to prediction. LZJD is large runtime 
overhead.  

 
Figure 3: ROC Curve of TLSH and LZJD. 

Table 2: Comparison of runtime time for TLSH and LZJD. 

Index & Search Time 
(seconds) 

TLSH LZJD 

Average 0.894 167.458 
Median 0867 166.022 
Min 0.822 158.415 
Max 1.092 183.519 

5 CONCLUSIONS 

The results indicate that both methods have strong 
predictive abilities. TLSH outperforms LZJD in 
indexing and searching time for malware triage due 
to its shorter digests. TLSH compresses binary data 
effectively while retaining meaningful information, 
whereas its short digests conserve disk space, 
memory and computing resources during index 
creation and distance calculation.  
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