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Abstract: Emergency Department (ED) overcrowding, that relates to congestion due to the high number of patients, has 
a negative effect on patient waiting time. The analysis of the flow of patients through Discrete Event 
Simulation (DES), that models the operation of a system through a sequence of events, is a relevant approach 
to find a solution to such problem. This technique relies on high-quality input data which needs to be 
previously managed in a complete process known as Input Data Management (IDM). The objective of this 
research is to propose a tool to automate the IDM process required for DES models of ED. To do so, we used 
a case with real data in order to contextualize the problem, evaluate required statistical methods, and gather 
specific requirements. Based on these results, a prototype was designed and developed by using web and 
cloud application development tools.

1 INTRODUCTION 

One of the main problems in Emergency Departments 
(ED) is over-crowding, which is according to Duguay 
and Chetouane (2007), "the situation in which ED 
function is impeded primarily because of the 
excessive number of patients waiting to be seen, 
undergoing assessment and treatment, or waiting for 
departure comparing to the physical or staffing 
capacity of the ED". Overcrowding is thus recognized 
as a global problem, which has reached crisis 
proportions in some countries. It has direct 
implications for the well-being of patients and staff, 
mainly due to waiting times derived from process 
deficiencies, the inappropriate placement of physical 
and human resources, and budget restrictions. In 
addition, it can affect an institution's financial 
performance and reputation (Komashie & Mousavi, 
2005). 

One of the strategies to mitigate the adverse 
effects of overcrowding is using Discrete Event 
Simulation (DES) to provide analytical methods to 
assess and redesign processes and support data-driven 
decision-making. In the ED context, DES models aim 
to reproduce the flow of patients and their 
relationship with the different areas, personnel, and 
resources available to solve specific problems. 

The success of DES applications depends on the 
prior preparation of high-quality input data. Some of 
the event data required in DES are represented in 
probability distributions. The parameters describing 
the underlying distributions are a key input for the 
simulation. The process that involves transforming 
raw data into a quality-assured representation of all 
parameters appropriate for simulation is known as 
Input Data Management (IDM) (Skoogh & 
Johansson, 2008). 

Input data preparation is one of a DES project's 
most crucial and time-consuming tasks (Robertson & 
Perera, 2002). According to (Skoogh et al., 2012) the 
input data management process consumes about 10-
40% of the total time of a DES project. In most cases, 
practitioners manually transform raw data from 
different sources into appropriate simulation input 
(Robertson & Perera, 2002) and separately from the 
software used for the simulation. Automating the data 
preparation phase can potentially increase efficiency 
in DES projects by integrating data resources 
(Skoogh et al., 2012). The IDM required to address 
the problem of Overcrowding in ED must consider 
automating the estimation of the probability 
distributions required to simulate patient flow. These 
statistics can be grouped into three categories: Arrival 
Patterns, Routing Probabilities, and Processing Times 
(Ghanes et al., 2015).  
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While reviewing the literature, we found no 
commercial IDM automation tool. We identified only 
three open-source tools with such capabilities, 
namely, GDM-Tool (Skoogh et al., 2011), DESI 
(Rodriguez, 2015), and KE Tool (Barlas & Heavey, 
2016). Although these tools have features for fitting 
some statistical distributions, they do not fit all the 
possibilities required for ED operation simulation, 
such as Markov chains modeling. Some other gaps we 
found when reviewing them include the fact that these 
tools do not offer features for sharing data and results, 
limiting the opportunities for collaboration by 
allowing other researchers to replicate the process to 
obtain similar outputs. Moreover, the reviewed tools 
do not have features for managing projects, 
generating data quality reports, handling large 
datasets, or running intensive workloads; only 
examples with small volumes of data on personal 
computers are presented. 

To identify potential current challenges in the data 
preprocessing tasks in the case of a DES project 
studying ED crowding, we analyzed a sample of the 
patient flow data of the ED at the Hautepierre 
Hospital located in the city of Strasbourg, France. 
This analysis had two main objectives: (i) identify the 
statistical methods to generate the required inputs in 
a simulation of the patient pathway within an ED and 
(ii) determine the preparation and validation 
requirements that guarantee data quality. As a result, 
we identified limitations regarding the automation of 
the required processing. 

In this context, the research problem addressed by 
our research is: how to automate the IDM process for 
DES models to address the overcrowding problem in 
ED? To deal with this question, this article presents 
the architecture of a cloud-based web application for 
IDM, in which we provide the statistical methods 
required to estimate the parameters needed to 
describe the patient flow in ED and the management 
features to handle the IDM tasks. Our approach 
focuses on the definition and development of the IDM 
software and not on the integration of enterprise data 
or the simulation itself, as illustrated in Figure 1. 

 
Figure 1: IDM Approach. 

The article is organized as follows: section 2 presents 
related work in the domain. Section  3 presents the 

IDM requirements and evaluation of required 
statistical methods from the analysis of the real case. 
Section 4 introduces the IDM solution's architecture. 
Finally, section 5 presents conclusions and 
recommendations for future work. 

2 RELATED WORK 

Skoogh and Johanson (2008), defined Input Data 
Management (IDM) as "the entire process of 
preparing quality assured, and simulation adapted, 
representations of all relevant input data parameters 
for simulation models. This includes identifying 
relevant input parameters, collecting all information 
required to represent the parameters as appropriate 
simulation input, converting raw data to a quality 
assured representation, and documenting data for 
future reference and re-use”.  

Data collection has multiple inherent difficulties 
(Bokrantz et al., 2018). Organizations can have 
multiple data sources and systems to collect the data 
from. Second, accuracy, reliability, and validity are 
the analyst’s responsibility when extracting and 
preparing the data for the simulation; those 
procedures, in most cases, are made manually, which 
makes it prone to errors. In a survey presented in 
(Robertson & Perera, 2001), it was inquired about the 
most frequent issues in simulation projects, 
considering data collection issues: 60% of 
respondents indicated they manually input the data to 
the model; 40% reported they use connectors to an 
external system like spreadsheets, text files or 
databases.  

In summary, as described in (Furian et al., 2018), 
the main challenges in this process are, in the first 
place, manual data collection and data entry, which 
increases the likelihood of data entry errors arising 
from human manipulation of data. The inherent 
difficulties of the manual process compromise the 
quality and integrity of the data. In addition, multiple 
manual files handling to maintain and process data 
makes it difficult to track errors and reproduce 
procedures. Finally, data preparation requires specific 
knowledge of techniques and algorithms, which could 
lead to misuse of statistical packages and lead to 
unexpected outcomes. 

We identified only three of open-source 
specialized in IDM for DES, GDM-TOOL (Skoogh 
et al., 2011), DESI  (Rodriguez, 2015) and KE tool 
(Barlas & Heavey, 2016). To the extent of our 
knowledge, no survey or study compares them, or use 
them in the ED context. We analyzed such tools in the 
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following section by using criteria extracted from the 
requirements in the case of Hautepierre Hospital. 

3 IDM FOR ED 

This section focuses on analyzing the IDM tasks 
enabling to prepare statistical representations of the 
patient flow data of the ED of the Hautepierre 
Hospital in Strasbourg (France). In addition, we 
evaluate IDM tools that could be used for the 
analysis. 

3.1 Emergency Department Description 

To analyze the overcrowding problem, it is necessary 
to know in advance the configuration the ED, which 
depends on the needs, staff, capacities, and areas of 
the health institution. We sketch thus the main steps 
of the patient flow of the Hautepierre Hospital ED in 
Figure 2. In the diagram, the patient flow is 
represented linearly as patients perform each of the 
activities consecutively. However, it is worth 
mentioning   that there are iterations between the 
stages, as patients may require a procedure to be 
repeated or an exam to be performed multiple times. 
In addition, patients may undergo many different 
paths and not necessarily goes through all the steps of 

the process. The number and types of diagnosis tests 
(blood analysis, RX or CT Scan) depend on the 
consultation and are not known as the outset, that is 
why we model the pathway using routing 
probabilities.  

The data were  provided in comma-separated 
values (CSV) files extracted from the ED databases. 
The files contained anonymized records of patients 
and the events during their stay in the ED. The 
collected data contains records from June 22nd, 2020, 
to June 28th, 2020, of the ED flow of 795 patients. 
The records include information on the following 
events of the patient flow: arrival, triage, blood 
analysis (BA) (Coagulation, Hematology, 
Biochemistry), Computer tomography (CT) Scan, 
and X-rays (RX). The average throughput time is 5,52 
patients/h. We consulted the physicians to check the 
consistency of data, as we had to deal with multiple 
files from different data sources. 

The ED uses a severity index for the assignment 
of degrees of emergency to decide the priority and the 
order of procedures. It considers three levels of 
severity identified by colors: red for immediate care, 
orange for cases that can be taken care of within the 
hour, and green for not urgent care. According to each 
severity level, the patients are assigned to one of three 
zones in the ED. 

 
 

 
Figure 2: Hautepierre Hospital ED BPM. 

 
Figure 3: Estimate hourly arrival rate. 
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3.2 Statistical Analysis 

3.2.1 Analysis Description 

Different types of metrics are required to simulate an 
ED, which can be grouped into three categories: 
Arrival Patterns, Routing Probabilities, and 
Processing Times (Ghanes et al., 2015). 

Arrival patterns. The arrival patterns refer to the 
measurements made to the patients at the time of 
entering the emergency room. The metric used in this 
case is the arrival rate per hour/day. 

For the modeling we consider 𝑁ሺ𝑡ሻ the number of 
patients arriving at the emergency room at a particular 
time 𝑡. It is assumed that patients arrive randomly and 
independently. In that case, it is possible to model the 
patient count as a Poisson process of parameter 𝜆. 
However, when considering the temporal dependence 
of the counts, it can be considered as a Non-
Homogeneous Poisson process with rate 𝜆ሺ𝑡ሻ. For the 
estimation it is assumed that the rate is piecewise 
constant on a set of time independent intervals. Given 
that 𝑁ሺ𝑡ሻ  is a Poisson process with rate 𝜆ሺ𝑡ሻ  the 
distribution of the interarrival time follows an 
exponential distribution of parameter 𝜆ሺ𝑡ሻ. 

Routing probabilities. For the estimation of 
routing probabilities, we consider the sequence of 
events observed in the data as a Markov   Process 
(Baum & Petrie, 1966), in which each state represents 
one event in the process, such as triage, or blood test, 
among others. The transition probabilities associated 
with the Markov Chain are in consequence, the 
routing probabilities. For the verification of this 
model, the following hypothesis tests on thproperties 
of the chain are considered: Markov property, order, 
and stationarity of the transition probabilities, and 
sample size (Anderson & Goodman, 1957). 

Processing times. In the case, three elements can 
be distinguished in the processing times. The waiting 
times from the prescription of the exams to the 
moment they are performed, the time it takes to 
complete the exam and the additional waiting time to 
get the results. Once the data were adequately 
arranged, we iterate over a set of continuous 
distributions to identify the one with the best fit for 
each variable. To test the goodness of fit, we used the 
Kolmogorov- Smirnoff test (Massey, 1951) in which 
the null hypothesis evaluates that the data follow 
some specific distribution  

3.2.2 Results Analysis  

Arrival Patterns. Firstly, the non-homogeneous 
Poisson process was estimated and the parameter 𝜆 

was determined for all the one-hour intervals. Figure 
3 shows the behavior of the parameter for all the days 
of the week, which can be evidenced by the bands of 
greater congestion and the peaks of patient arrivals 
during the day. The x-axis indicates the hours of the 
day, and the y-axis is the number of patients. The 
curves represent the behavior of the intensity 
parameter for each day of the week. From these 
arrival patterns it is possible to construct the 
distribution of arrivals and inter-arrivals per hour, 
following the deduction mentioned above. 

Routing Probabilities. The chain states are 
represented as the nodes of the Figure 4, which 
describes the transition matrix that indicates the 
probability of moving from one state to another. We 
can see that after triage, for example, the probability 
that a patient undergoes a blood test is 0.48, while not 
going through any stage is 0.44. Patients do not 
usually go directly from Triage to RX or MRI CT 
Scan; generally, to obtain these tests, a blood test is 
performed beforehand, where 70% are referred to one 
of these two tests. For Markov property, the Q 
statistic is 4535.63 and the p-value is: 1.0. Taking 
alpha = 0.05 there is statistical evidence to not reject 
H_0, there is no evidence to reject the hypothesis that 
the process satisfies the Markov property.  

 
Figure 4: General routing probabilities. 

Processing Time. After triage, the subsequent most 
frequent examination is a blood test. The collected 
samples are used for three evaluations, Biochemistry, 
Hematology, and Coagulation. For the Biochemistry 
blood analysis, we consider the distinction by severity 
index, and plot the histogram and the fitted 
distributions as seen in Figure 5. 
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Figure 5: Biochemistry BT duration. 

3.3 Requirements 

We gathered requirements in terms of user stories 
through manual process analysis and interviews with 
an expert doctor and two DES researchers. 
Functional: 

(1)  Manage Input Data: As a user, I want to 
manage my datasets so I can analyze it on the 
platform. Acceptance criteria: Upload resource, 
encrypt and version files. 

(2) Check Data Quality: As a user, I want to check 
the quality of my dataset so I can make sure my 
dataset is appropriate for simulation. Acceptance 
criteria: Perform data quality checks, generate data 
quality reports. 

(3) Process Data: As a practitioner user, I want to 
process my input data and obtain statistical 
representations of my variables in a compatible 
format for the simulation software. Acceptance 
criteria: Display variables, fit distribution, display 
results, export results. 

(4) Reproducibility: As a user, I want to replicate 
the analysis and results of my projects so I can make 
research reproducible. Acceptance criteria: Public 
repository, share data, share results. 
Non-functional: 

(5) Availability: As a user, I want the site to be 
available 99.9 percent of the time I try to access it so 
that I can trust the application and need another and 
do not need another app. 

(6) Scalability: As a user, I want the application to 
support traffic spikes and several simultaneous 
processing requests so that no delays in the results 
should happen. 

(7) Security: As a user, I want the application to 
ensure encryption for all my data so that is no risk 
associated with the exposure of confidential 
information. 

3.3.1 Existing IDM Tools 

The analysis of existing IDM tools is made through 
criteria extracted from the requirements identified 
before. We identified only three tools: GDM-TOOL 
DESI (Skoogh et al., 2011), KE tool (Barlas & 
Heavey, 2016) and DESI (Rodriguez, 2015). The 
specific gap between the tools’ characteristics and the 
requirements are presented in Table 1. 

Table 1: Evaluation of IDM tools. 

Category Criteria GDM KE  DESI 

Manage input 
data 

Manage projects No Yes Yes 
Load data Yes No No 

Encrypt files No No No 
Version files No No No 
Data storage No No Yes 

Data collection Yes No Yes 

Check data 
quality 

Check data 
quality No Yes No 

Reports No No No 

Process data 

User interface Yes No Yes 
Visualization No Yes Yes 

Fit distributions Yes Yes Yes 
Fit Markov chain No No No 
Hypotesis testing No No No 
Display results Yes Yes Yes 
Export results Yes Yes Yes 

Reproducibility 

Public repository No Yes No 
Cloud available No No No 

Share data No No No 
Share results No No No 

Non-functional 
Availability No No No 
Scalability No No No 
Security No No No 

 
Manage Input Data: All the tools have data 

loading features, GDM-Tool (Skoogh et al., 2011), 
and DESI (Rodriguez, 2015), have features for data 
collection and use a database for storage. None of the 
tools has encryption, and versioning features. 

Check Data Quality: The comparison of the tools 
in this criterion showed that only KE Tool (Barlas & 
Heavey, 2016) has methods for evaluating the input 
data. None of the tools has features to generate reports 
on the quality of the input data. 

Process Data: it was found that all the tools have 
features for exporting data, displaying results, and 
adjusting statistical distributions. GDM-Tool 
(Skoogh et al., 2011), and DESI (Rodriguez, 2015) 
have a user interface. KE Tool (Barlas & Heavey, 
2016) and DESI (Rodriguez, 2015) show graphs of 
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the obtained distributions. Although the KE Tool 
(Barlas & Heavey, 2016) does not have a user 
interface, it is possible to generate graphs from the 
code in the development environment. None of the 
tools adjust specific distributions such as Markov 
Chain or evaluate the hypothesis of their properties. 

Reproducibility: KE Tool (Barlas & Heavey, 
2016), is available in a public repository. However, 
none of the tools is available in the cloud, and they do 
not have features for sharing data and results 
obtained. 

Non-Functional: The evaluated applications are 
desktop apps, where availability, security, and 
scalability are not concerned.  

4 ARCHITECTURE 

We present our architectural decisions through 
different diagrams (reference, context, deployment, 
application layers, deployment in AWS) to provide a 
top-level view of a software’s structure representing 
the principal design and understanding of the 
problem. We propose adopting cloud infrastructure 
instead of on-premises infrastructure by considering 
three characteristics of the former model: 
manageability, scalability, and cost. In the first place, 
there is an intrinsic responsibility for managing the 
entire hardware and software stack on the on-
premises setting, which implies the ownership and 
administration of servers, databases, networks, and 
containers, among others. The cloud services take 
away the burden of managing the required 
infrastructure, the provisioning, and maintenance of 
software (Narasayya & Chaudhuri, 2021). In a cloud 
environment, provisioning instances to meet the 
desired response time is easily configurable. In an on-
premises setup, scalable architecture is possible but is 
limited to implemented resources and budget. In 
addition, in cloud setup, there can be a reduction in 
the total cost of ownership (TCO) mainly regarding 
capital expenditure (Capex) (Qian et al., 2009).  

The software architecture described in the 
following subsections will adopt a fully decoupled 
microservice pattern to cover two main non-
functional concerns: availability and scalability. Each 
element can be scaled independently in a cost and 
time-effective manner in this architecture, which is 
essential when handling several simultaneous 
processing requests and large datasets. In addition, it 
is also more manageable to maintain due to its 
relatively smaller size. 

4.1 Software Architecture  

 
Figure 6: Software architecture. 

This section describes each area of the software 
architecture that we propose in Figure 6, namely, 
IDM, analytics, reports, projects, and information.  

Input Data Management: Data management: 
The system should provide a mean to ingest high 
volumes of data, persist it and store it securely. 
Data quality: The service must outline data quality 
issues and provide visualizations and reports to the 
user. Data processing: The platform must process 
all the data according to the user configuration and 
apply convenient transformation for analytical 
purposes. 

Analytics: Dashboards allow the user to quickly 
gain insights into the critical metrics and 
information relevant to him. It   also provides 
means for identifying potential issues that require 
imminent action. Statistical analysis: It provides 
summary statistics of variables, fits statistical 
distributions, estimates parameters, and test goodness 
of fit hypothesis. Data visualization: Visualization 
techniques provide the user with a clear representation 
of information to get quick data insights. 

Reports: Export report: It enables the user to have 
a portable version of the results of the data quality 
inspection, data processing, and the statistical analysis 
in html format. Generate data: The platform has to 
provide the user a mechanism to generate synthetic 
data that mimic the system’s original data according 
to the statistical distributions of the processes. 
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Figure 8: Deployment diagram. 

Project: Project management: Projects allow 
the user to organize and centralize the resources, 
and arrange data, analysis, and reports. Version 
control: it keeps track of versions of the projects and 
their resources in an organized manner. 
Authorization: It allows the administrator to manage 
roles and permissions over the project’s context. It 
provides a good way to secure files. Share and search: 
Provide mechanisms for indexing and cataloging data 
sources and analysis objects in order to facilitate the 
searching and sharing of files. 

Information: Users: The database dedicated to 
centralizing the user’s data, roles, and authorizations. 
Projects data: A dedicated database for project data 
management. Processing: All the data allocated in 
memory during the processing. File storage: The 
excepted contents of the system are the original data 
sources, transformed data, metadata, parameters, 
results, reports. 

4.2 Context of the Application 

 
Figure 7: Context diagram. 

The intended users are researchers and practitioners 
involved in the DES field. It considers three types of 

users: administrators, practitioners, and guest users as 
seen in Figure 7. The administrator and practitioners 
can login, create projects, manage input data, version 
resources, share resources, analyse data, generate 
reports, generate data quality reports. Practitioners 
require an invitation from an administrator for 
creating an account. Guest do not need an account but 
require an invitation from an administrator to see a 
project and generate reports.  

4.3 Deployment of the Application 

Figure 8 shows the system structure, the current 
understanding of the artifacts and how they will be 
deployed. First, the user accesses the application 
through a web client hosted in the cloud, specifically 
in a front-end component of the application. A load 
balancer act as a firewall and manage application 
loads, then a there is a back-end component based on 
three microservices: User, Projects, and Processing, 
analytics, and reports. All of them have a dedicated 
database, and the last one has also an object storage.  

4.4 Prototype 

The application prototype was built using two 
lightweight software development frameworks, 
FastAPI (backend) and React.js (frontend). These are 
appropriate for this type of application as it is a small 
application with simple logic. 

Microservices. The application has three 
microservices containerized using Docker, which 
hosts a REST-API created using the FastAPI python 
framework that exposes the service methods. Each of 
these microservices can access the storage services on 
one side to the Postgres database hosted in AWS 
RDS.  
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Elements of the User Interface (UI). It includes 
basic elements, such as input controls, navigation and 
information components and containers, to offer a 
simple interactive experience in which IDM is 
presented through a series of steps that do not require 
further configuration by the user to obtain the data 
reports (see Figure 9). 

 
Figure 9: Data processing steps. 

The first step is the creation of a project, in which the 
user must enter a name and description of the project 
and a label to reference. Then the user can load the 
files required to be processed following the template 
provided for this purpose. Once the file is loaded, if it 
corresponds to the structure required, the 
corresponding validations on the data will be 
executed. The next step is the data processing where 
the statistics are estimated. The last step corresponds 
to the menu where the user can share private links to 
the resources or download the reports. Regarding the 
data processing functionality, estimated parameters 
of the arrival process, the inter-arrival, the routing 
probabilities, waiting and processing times 
distributions are generated online under demand. The 
results are presented in a dashboard containing three 
pages, one for each analysis category.  

Figure 10 shows an example of the dashboard 
with the properties of the Markov chain. It shows the 
results of evaluating the properties of the Markov 
chain and the transition matrix associated with the 
process. Two buttons allow the user to go to the other 
sections for navigation within the dashboard. 
Clicking on the routing probabilities option displays 
the dashboard with three main elements. First, some 
information cards are shown with the results of the 

hypothesis tests that verify the properties of the 
Markov chain, as are the Markov property, order, and 
stationarity. The processing microservices perform 
the calculations, and the results are presented to the 
user in cards as seen in Figure 10. The third page of 
the dashboard presents a drop-down list from which 
it is possible to choose the activities that are used as 
the starting point of an activity, process or waiting 
time. Then a graph is displayed with the histogram of 
the data, the kernel density, and the fitted density. 

4.5 Deployment in AWS 

The web application proposed in this article uses 
some of the tools available in Amazon Web Services, 
which follow the usual deployment patterns for the 
proposed architecture. Route53 is used to register the 
website domain and to redirect traffic. In addition, we 
use Elastic Load Balancing (ELB), the service 
managed by Amazon, for load balancing between 
applications, in order to distribute the application 
traffic, determine the scaling of resources on demand, 
and keep hidden the IPs of the microservices where 
the user information is hosted. To manage the 
containers where the microservices of the application 
are hosted, Elastic Container Registry is used to 
register and store the images of the containers, which 
facilitates the deployment using Fargate. The 
processing microservice has access to the data hosted 
in a RDS database instance, which can scale 
horizontally under demand. For Front-End content 
delivery we use CloudFront, the low-latency, highly 
available and secure content delivery network service 
that does not depend on a particular region. The 
Simple Storage Service (S3) is used to store the files 
that users import into the application, as well as the 
reports that are generated on data quality and statistics 
processed by the application.  

 
Figure 10: Dashboard elements: Markov chain properties and routing probabilities. 
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Figure 11: Deployment diagram in AWS. 

Several security measures were considered to secure 
and protect user data. First of all, the application uses 
Virtual Private Cloud (VPC) to group the computing 
resources and database of the project securely. The 
output to the Internet of the VPC resources is through 
internet Gateway only. Also, the object storage S3 
encrypts all original user data. On the other hand, the 
load balancer acts as a firewall so that the APIs that 
expose the microservices cannot be accessed directly. 
In addition, the proposed architecture considers the 
use of public and private subnets so that the response 
data of the microservices does not go directly to the 
Internet but through a Nat-Gateway that routes the 
response. Last but not least, the credentials, API keys, 
and database access data were stored encrypted in 
AWS Secrets Manager. Furthermore, to promote 
service availability, it was planned to deploy the 
application in two availability zones: us-east-1a and 
us-west-2b. Moreover, to ensure that the application 
responds to intensive workloads, an autoscaling 
group was defined to increase the number of 
processing instances if needed.  

Regarding the client-side design, all requests 
made from the client side are handled by FastAPI. 
Within the application, design React handles two 
types of users: administrators who are in charge of 
creating projects and guests. For the verification and 
authorization of administrators, both client-side and 
server-side, an access token creation system, JWT, 
was used. React is responsible for the user interface 
and for making the corresponding HTTP requests to 
the application server. 

For the server-side design, the model presented in 
Figure 11 shows all the elements involved on the 
server-side. The boxes group together: the AWS 
cloud represented by the AWS cloud logo, the Virtual 
Private Cloud (VPC), the availability regions 
identified by the texts "us-east-1a", "us-east-1b". The 
green background distinguishes the private subnets 
by the blue background, and finally, the Elastic 
Container Service (ECS) cluster is distinguished by 
the ECS logo.  

Users access the application via internet through 
the website whose domain is registered with Route53. 
Once accessed, the site content is delivered by Cloud 
Front, which queries the static Front- End files stored 
in S3. In AWS, the application has a VPC to isolate 
the compute resources, storage, and subnets securely. 
The point of contact of the VPC with the Internet is 
the Internet Gateway. Requests received through this 
point are directed to the load balancer responsible for 
redirecting the request to the containers hosted in 
Fargate. The containers host the application’s 
microservices and access the RDS database, S3 object 
storage, and SES mail delivery services. 

The microservices are hosted on a private subnet, 
which means they cannot be accessed directly and 
cannot deliver request responses directly to the 
Internet. It is necessary to use the Nat gateway 
available on the public subnet. The proposed 
architecture complies with several elements to secure 
servers and user data, such as using a VPC, private 
and public subnets, a load balancer that serves as a 
firewall and encrypting the data in S3 in the RDS. 
Likewise, the multi-region deployment favors the 
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availability of the application. In terms of scalability, 
the ECS cluster configuration has an auto-scaling 
policy to increase the number of instances required 
for processing in case of traffic spikes.       

4.6 Validation  

The application’s validation consisted of verifying 
requirements with end-users. Table 2 shows the result 
of reviewing the requirements, the microservices, and 
the AWS components used to satisfy each 
requirement. Validation involved expert input from 
two simulation specialists and hands-on involvement 
from two students working with real data. End-user 
feedback was gathered through periodic validation 
sessions during prototype development. As we can 
see in Table 2, all requirements were satisfied through 
the application. In addition, the end-users transferred 
knowledge about ED processes and data, proposed 
and evaluated data analysis strategies, and requested 
features for visual components, navigation, and data 
results.  

Table 2: Mapping of requirements and architecture’s areas 
and components.  

Feature Container AWS Service 

Registry Users Fargate 

Login Users Cognito, SES 

Delete account Users Fargate 

Create project Projects Fargate 

Invite User Projects Fargate 

Search project Projects Fargate, RDS 

Delete project Projects Fargate 

Manage data Processing Fargate 

Download Data Processing Fargate, S3 

 Data quality Processing Fargate 

 Dashboard Processing Fargate. CloudFront 

Process Data Processing Fargate, RDS, S3 

Security   
Subnets, Load 

Balancer, Autoscaling 
Group 

Scalability   Load Balancer 
Autoscaling  

Availability   Multi AZ 

 

Functional Test. Benchmark against KE-Tool. 
One of the tests performed to validate the reliability 
of the results was to process and obtain the probability 
distributions using another IDM tool. The test 
consisted only of estimating the probability 
distributions of the data, as the other characteristics of 
the applications are not directly comparable. We 
compared the results of the statistical distributions 
generated by the application against those generated 
using the KE tool, the only tool we found in a public 
repository. The comparison was performed in terms 
of the KL divergence, the observed values were close 
to zero so we can affirm that there is no divergence, 
which means that the information distributions found 
in both programs are similar. 

Non-Functional Requirements: As mentioned 
earlier, we considered non-functional scalability, 
availability, and security requirements. The proposed 
architecture facilitates storing and processing files 
and scaling on-demand. The application achieves this 
through the use and configuration of amazon’s 
processing and storage services appropriate for this 
application, such as the object storage service and the 
configuration of the auto-scaling groups. On the other 
hand, optimized libraries were used for distributed 
data processing, thus reducing processing times. The 
availability and security of the application is achieved 
by implementing AWS services, such as RDS multi-
AZ, availability zones, VPC, subnets, and load 
balancer. The availability is assured using two 
availability zones, and the security requirements are 
covered with object storage encryption. 

Load Test. To assess the non-functional 
scalability requirement, we tested the processing 
microservice's ability to handle a certain number of 
HTTP requests per minute. We assume the system is 
completely degraded when a failure rate greater than 
99% occurs. The web service https://loader.io/ was 
used to send the requests to the necessary endpoints. 
The auto-scaling configuration enabled up to 5 ECS 
tasks. We observed the system completely degrade 
when receiving 1500 requests in 15 seconds. And also 
if more than 6000 requests are received in two 
seconds. We found evidence of using the maximum 
number of enabled instances, thus satisfying the 
requirement.  

5 DISCUSSION 

This section discusses the advances that the proposed 
application brings concerning the previous 
propositions in the literature as well as our 
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contributions to meet the needs identified from data 
analyzed. 

Qualitative features comparison. The proposed 
solution has storage services such as databases for 
microservices. It uses s3 object storage to store all 
user information. The results obtained can be 
reproduced on-demand and facilitate the sharing of 
the original files, unlike DESI (Rodriguez, 2015), 
which has a temporary storage of the processed 
records. Additionally, the prototype integrates a 
feature for checking data quality that performs unit 
tests on the input data, unlike the KE Tool (Barlas & 
Heavey, 2016) that performs unit tests only on the 
methods of the classes that perform the processing. 

Unlike KE Tool (Barlas & Heavey, 2016) and 
DESI (Rodriguez, 2015), the prototype has a more 
robust user interface with navigation, information, 
and visualization elements, that facilitates 
visualization of distributions, particularly the 
Markov Chain analysis results. Decisions are 
presented using the usual agile architecture diagrams 
such as context, deployment, components, classes, 
and soon unlike KE Tool (Barlas & Heavey, 2016), 
which illustrates a single high-level diagram of the 
system elements 

The way in which the components fulfill the 
requirements is described below. 

Manage Projects: The project microservice has 
methods for creating projects. Once a project has 
been created, the user can invite other users to view 
the content of the dashboards through a private link, 
which is generated in the project microservice. When 
a user wants to invite another user to the application, 
a record of the guest’s email address is saved in the 
database, then an email invitation to the project is 
sent to the user.  

Fit Distribution: In the dashboard, in the section 
of the adjustment of probability distributions, once 
the user selects a particular activity, the microservice 
is responsible for identifying the best distribution. 

Check Data Quality: Rules were generated to 
validate the data at a stage before processing. It is 
worth mentioning that these rules do not limit the 
user to continue with the statistics generation process 
but serve to alert the user to avoid compromising the 
results of the estimations due to errors in the data. 

User Interface: The processing microservice has 
a dashboard developed in Dash and Plotly that has 
three pages where all the statistics generated are 
displayed. This microservice is a python module in 
which each page of the dashboard is an independent 
module, which facilitates the maintenance and 
editing of the visual components. The data is 

presented in graphs and tables, making it easy for the 
user to quickly learn about the data distributions.  

Markov Chains Validation: We implemented 
features for fitting Markov Chains and performing 
hypothesis testing to verify Markov chain properties.  

6 CONCLUSION 

By reviewing the literature and examining the real 
data, we defined the basic requirements that an IDM 
solution for DES should fulfil such as: managing the 
input data, verifying the quality of the data, 
processing and presenting process statistics in 
dashboards. We also analyzed probability 
distributions to be implemented in such application by 
using a real case. The proposed solution introduces 
therefore a cloud architecture that satisfies the 
requirements based on a microservices pattern that 
will enable high performance, availability, scalability, 
and security. 

The novelty of this paper is the integration of 
Markov chain modeling to IDM, the proposed cloud 
architecture, the design, development and testing of 
the software, and the implementation with real data in 
the context of ED. The built application has elements 
that had not been previously used in similar tools, 
such as cloud computing services, containers, unit 
testing on data and interactive visualization. 
Additionally, the application implements 
straightforward and intuitive navigation tools in order 
to benefit user experience. 

As future work, the results obtained in the 
evaluation of the properties of Markov chains rise to 
the question on how to approach the preparation of 
data for simulation models that consider routing 
probabilities for the problem of overcrowding in ED. 
Last, it would be desirable to adjust the code so that 
the processing is generic for data of similar data 
sources where IDM is required, such as 
manufacturing. 
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