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Abstract: With the recent development of deep learning technique, automatic image inpainting has gained wider appli-
cations in computer vision and has also become a challenging topic in image processing. Recent methods
typically make use of texture features in the images to make the results more realistic. However this can lead
to artifacts in the processed images, one of the reasons for this is that the structural features in the image are
ignored. To address this problem, we propose an image inpainting method based on deep fusion of texture and
structure. Specifically, we design a dual-pyramid encoder-decoder network for preliminary fusion of texture
and structure. A layer-by-layer fusion network of texture and structure is applied to further strengthen the fu-
sion of texture and structure feature afterwards. In order to strengthen the consistency of texture and structure,
we construct a multi-gated feature merging network to achieve a more realistic inpainting effect. Experiments
are conducted on the CelebA and Place2 datasets. Qualitative and quantitative comparison demonstrate that
our model outperforms state-of-the-art models.

1 INTRODUCTION

Image inpainting, also known as image completion,
aims to generate reasonable content to fill in the miss-
ing areas, and the inpainted images are expected to
be both visually and semantically correct. Image in-
painting is not only able to complete missing and
damaged areas in the image, but also perform image
editing, such as object removal, image modification,
and more. In the field of image inpainting, there are
two approaches in general, one is patch-based dif-
fusion models that exploit low-level features of im-
ages, and the other is generative models of deep con-
volutional neural networks. The former traditional
non-learning method is more effective for completing
some repetitive backgrounds, but would face many
problems for images with complex scenes. The latter
based on neural network is capable of extracting high-
level semantic features to enhance the understanding
of complex scenes. For real world image inpainting
tasks, the scene is often complicated, and the shape
of the part to be completed can be rectangular or ar-
bitrary. Each layer of feature map in the inpainting
network is composed of invalid pixels inside the miss-
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ing part and valid pixels outside. Vanilla convolu-
tion is not suitable for image inpainting because the
same filter is applied to all pixels. In order to adapt
to image inpainting tasks, some customized convolu-
tion methods are applied, such as the partial convolu-
tion strategy of (Liu et al., 2018), which updates the
mask according to certain rules; Yu et al. (Yu et al.,
2019) proposed a gated convolution scheme, auto-
matically updating the masks over the network rather
than by rules. In addition to improving the update
of the mask, choice of loss function make a differ-
ent to model performance. Many works have added
gram matrix loss in image style transfer, vgg loss, etc.
Edgeconnect (Nazeri et al., 2019) pointed out that the
structural information of the image is also important
for image inpainting, and the structural information
of the first stage is used to help the inpainting of the
second stage images. In fact, the texture and structure
of image are related to each other. In order for the
structure and texture to make use of each other to fa-
cilitate learning in image inpainting. Guo et al. (Guo
et al., 2021a) adopt a dual-stream network of texture
and structure, and propose a dual-branch discrimina-
tor. However, the actual results are still unsatisfactory
for large-scale masks.

In this paper, we propose an image generation net-
work for deep fusion of image texture and structure,
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which can better fuse structural features and texture
features to the full. A dual-pyramid encoder-decoder
based on gated convolution is proposed to reconstruct
structural and texture information. At the same time, a
layer-by-layer fusion network of texture and structure
is employed to further strengthen the fusion of texture
and structure. In order to better maintain the consis-
tency of texture and structure, we construct a multi-
gated feature merging network to achieve a more re-
alistic inpainting effect. We conduct experiments on
the CelebA and Place2 datasets, and qualitative and
quantitative comparisons demonstrate that our model
outperforms state-of-the-art models.

The main contributions are as follows:

• We propose a novel encoder-decoder network
based on gated convolution that fuses texture and
structural features and reconstructs both features.

• A layer-by-layer fusion network of texture-
structure is proposed to enhance the consistency
of texture and structure.

• Proposed multi-gated feature merging network
improves the restoration of details.

2 RELATED WORK

2.1 Traditional Image Inpainting

Traditional image inpainting methods mainly use sim-
ilar backgrounds to fill in missing areas. The two
common methods in use are, diffusion-based and
patch-based. Diffusion-based methods (Bertalmio
et al., 2000; Ballester et al., 2001; Esedoglu and Shen,
2002; Shen and Chan, 2002; Chan and Shen, 2001)
mainly diffuse the valid pixels at the boundary of the
region into the interior of the region. Note that im-
ages with high frequencies would produce defective
inpainting results. The patch-based methods (Darabi
et al., 2012; Xu and Sun, 2010; Barnes et al., 2009;
Criminisi et al., 2004) select the most similar patch
from the known area to fill the damaged area and uti-
lize the long-distance information. A drawback is that
it is computationally expensive to calculate the simi-
larity between the area to be filled and the available.
Barnes et al. (Barnes et al., 2009) use the fast near-
est neighbor algorithm to match based on continuity,
which reduces the similarity calculation expense and
improves efficiency. This traditional method is based
on the fact that the area to be filled can find the same
or similar areas in the background, so it works well
on images with high repetition, but it is difficult to
perfectly fill complex scenes.

2.2 Image Inpainting Based on Deep
Learning

The deep learning methods can use not only the
shallow feature information of the image, but also
the deep semantic information of the image, which
promises a strong feature learning ability. Pathak
et al. (Pathak et al., 2016) builds an encoder-
decoder generative adversarial network based on U-
Net. Iizuka et al. (Iizuka et al., 2017) propose a
global and local discriminator network to improve
global and local consistency. Yu et al. (Yu et al.,
2018) propose a coarse-fine two-stage inpainting net-
work. To apply the network to an arbitrary mask,
Liu et al. (Liu et al., 2018) propose partial convolu-
tion to update the mask through certain rules. Yu et
al. (Yu et al., 2019) use a neural network to automati-
cally update masks. Zhao et al. (Zhao et al., 2020) use
an unsupervised method for image inpainting, adding
KL divergence loss and conditional constraint loss.
When the missing range of the image is large, the
inpainting result tends to have a large range of arti-
facts, Li et al. (Li et al., 2020) propose a progres-
sive inpainting strategy to alleviate this effect. The
internal-external learning method (Wang et al., 2021)
is applied to image inpainting, which learns semantic
from the outside through training on large datasets,
while making full use of the internal statistics of a
single test image. Zeng et al. (Zeng et al., 2020) pro-
pose a guided upsampling method, which can upsam-
ple images inpainted at low resolutions to high reso-
lution images, reducing memory usage and improving
computational efficiency. Inspired by image genera-
tion that can arbitrarily generate images from random
noise, Zhao et al. (Zhao et al., 2021) complete large
missing images by reconciling random noise and con-
ditions.

2.3 Image Inpainting with Structural
Features

Edgeconnect (Nazeri et al., 2019) first predicts the
edge information of the image, and then uses the edge
information as a prior to improve the inpainting ef-
fect. Structureflow (Ren et al., 2019) includes two
steps: structure reconstruction and texture reconstruc-
tion. Guo et al. (Guo et al., 2021b) propose a texture-
structure two-stream network and completes image
inpainting through mutual constraints of structure and
texture. Peng et al. (Peng et al., 2021) deconstruct the
structural information and texture information of the
image, and perform autoregressive modeling on the
structural information, through which the sampling
obtains a diverse structure. However, these methods
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Figure 1: Illustration of our proposed method. The incomplete image and mask are input to the texture generator, and the
incomplete grayscale image, edge map, and mask are input to the structure generator. The decoders of the two generators fuse
the features with each other and then send them to the LFN module and the MFMN module to get the inpainting result.

do not fully consider the structural information, the
utilization of the structural information is only in the
reconstruction stage, and the structural information as
well as texture information are not fully integrated.

Our research fully considers the structural infor-
mation in each stage of image inpainting. Through
the full fusion of structural information and texture in-
formation, texture and structure guide each other, and
successfully make the restored image texture consis-
tent and semantically reasonable.

3 METHODOLOGY

As shown in the Figure 1, the proposed method con-
sists of four modules: texture-structure double pyra-
mid encoder-decoder, texture-structure layer-by-layer
fusion network, multi-gated feature merging network
and texture-structure discriminator.

3.1 Texture-Structure Double Pyramid
Network

Our double pyramid network is similar to U-
Net (Ronneberger et al., 2015) network. As shown
in the Figure 1, it is divided into two parts: texture
generator and structure generator. Both generators

are composed of encoder and decoder. The input
of texture encoder is incomplete images and masks,
meanwhile that the structure encoder is the incom-
plete grayscale images, edge map and mask. In the
latent space, we fuse texture features and structure
features at the initial stage. The texture decoder fuses
the latent structural features and the features of each
layer of the texture encoder to reconstruct the image
texture. The structural decoder fuses the latent tex-
ture feature and the features of each layer of the struc-
ture encoder to reconstruct the structure of the image.
The initial fusion of texture-structure enables the re-
construction of texture-structure to guide and promote
each other and achieve a better inpainting result. Be-
cause the form of the mask may be rectangular or free-
form, our structure-texture double pyramid encoder-
decoder network adopts gated convolution.

The feature maps of each layer of the texture en-
coder are represented as T L,T L−1 . . .T 1 from deep
to shallow. For example, T L represents the feature
map of the L-th layer encoder. The feature maps of
each layer of the structure encoder are represented as
SL,SL−1 . . .S1 in same order as texture encoder. Their
counterparts of decoders are labeled in a similar man-
ner. The feature maps of each layer of the texture
decoder network are represented as ψL,ψL−1 . . .ψ1,
the feature maps of each layer of the structure de-
coder network are expressed as φL,φL−1 . . .φ1. For
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each layer of the structure decoder, the feature maps
of can be calculated as follows:

φ
L−1 = f (SL−1,T L)

φ
L−2 = f (SL−2,φL−1)

...

φ
1 = f (S1,φ2) = f (S1, f (S2, ... f (SL−1,T L)))

(1)

The feature maps for each layer of the texture decoder
are calculated as follows:

ψ
L−1 = f (T L−1,SL)

ψ
L−2 = f (T L−2,ψL−1)

...

ψ
1 = f (T 1,ψ2) = f (T 1, f (T 2, ... f (T L−1,SL)))

(2)

where f represents gated deconvolution.

3.2 Texture-Structure Layer-by-Layer
Fusion Network

In the dual-pyramid encoder-decoder network, we
found that each layer of the decoder represents the
complete information of the different dimensions of
the image. Each layer of the texture decoder repre-
sents the complete texture information of the incom-
plete image, and each layer of the structure decoder
represents the complete structural information of the
incomplete image. Further fusion of texture-structure
information can mutually promote the reconstruction
of texture and structure, resulting in a better restora-
tion effect. We propose a texture-structure layer-by-
layer fusion network.

As shown in the LFN module in Figure 1, the input
of the texture-structure layer-by-layer fusion network
is the feature maps of each layer of the texture decoder
and the structure decoder. The feature maps of each
layer from top to bottom of the LFN are represented
by τL,τL−1, . . .τ1. They are calculated as follows:

τ
L−1 = f (φL,ψL)

τ
L−2 = g(φL−1,ψL−1,τL−1)

...

τ
1 = f (φ2,ψ2,τ2)

(3)

where g denotes dilated gated convolution.

3.3 Multi-Gated Feature Merging
Network

In order to better maintain the consistency of the
structure and texture of the inpainting results, inspired

Figure 2: Illustration of the MFMN module, which im-
proves inpainting result through attention mechanism and
multi-gated feature merging.

by (Yu et al., 2018), we hope the model can exploit
the relationship between the pixels inside and outside
the missing part of the images. We enhance on the
basis of (Nazeri et al., 2019), adding shortcuts (He
et al., 2016) and multi-feature merging, and propose
a multi-gated feature merging network.

The multi-gated feature merging network struc-
ture is shown in the Figure 2. For the contextual at-
tention learning module, we are given a high-level
feature map F , extracting patches from the feature
map and calculate the cosine similarity between the
patches: Si, j =< pi

∥pi∥2
,

p j
∥p j∥2

>, where pi and p j de-

note the ith and jth patches, after which softmax is ap-
plied to obtain the attention score of each patch: θi, j =

exp(Si, j)

∑
N
j=1exp(Si, j)

. Then the feature maps are reconstructed

according to the attention score: p̃i = ∑
N
j=1 p j ×θi, j,

where p̃i represents the ith patch of the reconstructed
feature map F̃ , and multi-gated feature merging is
performed after the reconstructed feature map:

F̂ = [ασ(F̃)+βσ(F̃)+ γσ(F̃)+δσ(F̃)]⊕F (4)

Fout =Conv(F̂ ⊕Fin) (5)

where σ represents the dilated convolution operation,
and α,β,γ,δ represents the gating factor of different
dilated convolutions. The feature maps of different
scales are aggregated through gating factor, and the
computational efficiency is improved by adding short-
cut connections.

3.4 Loss Function

Inspired by (Guo et al., 2021a), our discriminator
adopts a dual-stream SN-PatchGAN (Yu et al., 2019),
which contains a texture discriminator and a structure
discriminator with structure mapping, and the output
of the dual-stream discriminator is synthesized as the
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Figure 3: Comparison of qualitative results on CelebA with existing models. From left to right: Input, PConv (Liu et al.,
2018), DeepFillv2 (Yu et al., 2019), CTSDG (Guo et al., 2021a),Crfill (Zeng et al., 2021) , LAMA (Suvorov et al., 2022),
Our, Ground Truth.

discriminator of the entire generation network. To
avoid the mode collapse problem, spectral normaliza-
tion (Miyato et al., 2018) is used in the discriminator.
The loss function of the entire network includes fea-
ture loss, reconstruction loss, VGG loss, style loss,
and adversarial loss.

Igt represents the ground truth of the image; Egt
represents the ground truth of the structural image;
Xgt represents the ground truth of the grayscale im-
age and M represents the mask of the incomplete
image, where 1 represents valid pixels and 0 repre-
sents invalid pixels. So the input of image, struc-
ture image, grayscale image of the entire network are
represented as Ĩgt = Igt ⊙ M, Ẽgt = Egt ⊙ M, X̃gt =
Xgt ⊙ M. The generator of the network is repre-
sented by G and consists of three parts: texture-
structure double pyramid encoder-decoder network,
LFN and MFMN. Denoting the discriminator by D,
the entire image inpainting model can be expressed
as Ipred ,Epred = G(Ĩgt , Ẽgt , X̃gt ,M). The final output is
therefore Icomp = Ipred ⊙ (1−M)+ Ĩgt .

Feature loss: In order to make the texture gener-
ator and structure generator focus on generating tex-
ture Ftexture and structure Fstructure respectively, tex-
ture mapping Φ and structure mapping Ψ (convolu-

tion stacking) are added to the decoder, and the l1 dis-
tance is used to calculate the feature difference:

L f eature =∥ Igt −Φ(Ftexture) ∥1 +

∥ Egt −Ψ(Fstructure) ∥1
(6)

Reconstruction loss: Calculate the reconstruction loss
of Ipred and Igt with l1 distance:

Lrec = E [∥ Ipred − Igt ∥1] (7)

VGG loss: In order to make the image have consistent
semantics, we adopt VGG-19 (Simonyan and Zisser-
man, 2014) to obtain the semantics of Ipred and Igt ,
and use the l1 distance to calculate the loss, ϕi repre-
sents pool1-pool5 of VGG-19:

Lvgg = E

[
∑

i
∥ ϕi

(
Ipred

)
−ϕi (Igt) ∥1

]
(8)

Style loss: we borrow the loss function of image style
transfer and calculate l1 distance of the gram matrix
to get the style loss:

Lstyle = E
[
∥ Gram

(
Ipred

)
−Gram(Igt) ∥1

]
(9)

Adversarial Loss: Adversarial losses are used to guar-
antee the authenticity of generated textures and struc-
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Figure 4: Comparison of qualitative results on Places2 with existing models. From left to right: Input, PConv (Liu et al.,
2018), DeepFillv2 (Yu et al., 2019),CTSDG (Guo et al., 2021a),Crfill (Zeng et al., 2021), LAMA (Suvorov et al., 2022), Our,
Ground Truth.

tures:

Ladv = min
G

max
D

EIgt ,Egt [log D(Igt ,Egt)]+

EIpred ,Epred

[
log (1−D(Ipred ,Epred))

] (10)

The loss function of the entire network is:

L = λ1L f eature +λ2Lrec +λ3Lvgg+

λ4Lstyle +λ5Ladv
(11)

By comparing the experimental results and evalua-
tion indicators, the hyperparameters are set to: λ1 =
10,λ2 = 50,λ3 = 0.3,λ4 = 200,λ5 = 0.5.

4 EXPERIMENTS

We conducted experiments in Place2 (Zhou et al.,
2017) and CelebA (Karras et al., 2017) respectively,
and divided the training set, validation set and test set
according to the corresponding requirements of the
data set. The image size is 256×256, and the masks
are divided into two types, one is rectangular mask
including 128× 128, 64× 64, the other is free-form
mask and the generation rules of free-form mask are
the same as (Yu et al., 2019). The model is trained

and tested by pytorch, with GPU NVIDIA 1080TI,
learning rate 10−4, batch-size 4.

4.1 Qualitative Comparison

Figure 3 is the result of the CelebA dataset, and Fig-
ure 4 is the result of the Places2 dataset. The images
used for Figure 3 and Figure 4 are not included in
the training set. Bad details in the results have been
marked with red boxes. Our method is compared with
the representative methods of the current state-of-the-
art models. For the face dataset, such as the inpaint-
ing results in the fourth row of Figure 3, PConv and
DeepFillv2 have serious artifacts for the face, and the
nose and eyes are obviously deformed. The effect of
CTSDG is slightly better, but from the overall style,
the expressions of the characters are unnatural and
the structure is not very harmonious. The generated
image of Crfill has inconsistent eyes and unnatural
mouths. The LAMA has artifacts at the border of
the ear.For the landscape dataset, such as the results
in the fourth row of Figure 4, texture mosaics appear
in PConv and DeepFillv2, white lines in CTSDG and
Crfill appear discontinuous, and LAMA has obvious
traces at the inpainting boundary. Because our net-
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Table 1: Quantitative results over Places2.†Lower is better. ∗Higher is better.

Mask Type Rec Mask Free Mask
Mask Size (64,64) (128,128)
Evaluation l†

1(%) SSIM∗ PSNR∗ l†
1(%) SSIM∗ PSNR∗ l†

1(%) SSIM∗ PSNR∗

DeepFillv2 (Yu et al., 2019) 0.497 0.942 33.02 2.5 0.761 24.05 1.6 0.812 26.41
PConv (Liu et al., 2018) 0.615 0.937 30.99 3.2 0.752 21.86 1.8 0.787 26.02
CTSDG (Guo et al., 2021a) 0.473 0.941 32.99 2.5 0.762 23.90 1.5 0.810 27.09
Crfill (Zeng et al., 2021) 0.966 0.948 33.11 5.2 0.773 23.38 3.1 0.800 27.05
LAMA (Suvorov et al., 2022) 0.480 0.946 33.24 2.4 0.772 24.34 1.8 0.768 26.65
Our 0.451 0.947 33.49 2.4 0.773 24.23 1.3 0.835 27.98

Table 2: Quantitative results over CelebA.†Lower is better. ∗Higher is better.

Mask Type Rec Mask Free Mask
Mask Size (64,64) (128,128)
Evaluation l†

1(%) SSIM∗ PSNR∗ l†
1(%) SSIM∗ PSNR∗ l†

1(%) SSIM∗ PSNR∗

DeepFillv2 (Yu et al., 2019) 0.389 0.959 32.96 2.5 0.813 22.88 1.19 0.837 28.61
PConv (Liu et al., 2018) 0.419 0.954 32.72 2.2 0.806 24.05 1.18 0.835 28.67
CTSDG (Guo et al., 2021a) 0.321 0.960 33.77 1.7 0.828 25.94 0.88 0.867 30.57
Crfill (Zeng et al., 2021) 0.741 0.957 33.44 4.0 0.812 24.53 2.30 0.838 28.79
LAMA (Suvorov et al., 2022) 0.370 0.954 34.12 1.8 0.817 25.63 1.40 0.785 28.05
Our 0.292 0.963 35.61 1.5 0.839 26.89 0.83 0.873 31.12

work fully integrates texture and structure features,
our results are much better than existing networks
in terms of structure consistency and texture clarity.
PConv (Liu et al., 2018) is suitable for free mask
through mask hard update, and the image inpaint-
ing effect of rectangular mask is relatively poor. The
same problem occurs with soft mask update of (Yu
et al., 2019), but it has a better inpainting results for
small rectangular masks. For large rectangular masks,
it is prone to producing artifacts. CTSDG (Guo et al.,
2021a) considers texture and structure at the same
time and it can be applied to both rectangular mask
and free-form mask. But when it comes to inpaint-
ing details, the results produced by our method is
more natural and realistic.Because the structures of
faces are relatively similar, our method deeply inte-
grates the structural features of faces, our method is
significantly better than Crfill and LAMA on the face
dataset. To sum up, our proposed texture-structure
deep fusion method significantly outperforms other
methods in both detail and structure.

4.2 Quantitative Comparison

We use the currently popular image quality evalua-
tion indicators, including l1 error, SSIM (Structural
Similarity) and PSNR (Peak Signal to Noise Ratio).
We tested two types of masks, rectangular mask and
free-form mask on the CelebA and Places2 datasets.
The generation method of free-form mask is consis-
tent with (Yu et al., 2019). Rectangular mask tested
128× 128, 64× 64 two sizes. The results of CelebA
are shown in Table 2, and the results of Places2 are
shown in Table 1. It can be concluded that our method

outperforms the existing methods whether it is a face
image or a natural image and regardless of the mask
shapes.

4.3 Ablation Study

In order to verify the effectiveness of adding struc-
tural features, LFN module and MFMN module, we
use the texture encoder-decoder and discriminator as
basenet. For basenet + structure, we directly con-
volve the texture-decoder feature and the structure-
decoder feature to get the inpainting result. For
basenet +MFMN, we remove texture mapping layer
of texture decoder, and directly send the texture de-
coder feature to MFMN to get the inpainting re-
sult. For basenet + structure+LFN, we remove the
MFMN module directly, and add a convolution layer
to the output of LFN to get result. Ablation experi-
ments are tested on the place2 dataset. The experi-
ment results are shown in Table 3.

5 CONCLUSIONS

In this paper, we use gated convolution to build
a structure-texture double-pyramid encoder-decoder
network on the basis of U-Net, which realizes the
initial fusion of texture and structure. Our proposed
layer-by-layer fusion network further fuses the two
features. A multi-feature merging network further im-
proves the consistency of texture and structure. For
future work, we hope to introduce structural features
in the inpainting of high-resolution images.
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Table 3: Ablation study on Places2 dataset.†Lower is better. ∗Higher is better.

Basenet Structure LFN MFMN l†
1(%) SSIM∗ PSNR∗

✓ ✓ 1.6 0.766 26.01
✓ ✓ 1.4 0.825 27.52
✓ ✓ ✓ 1.5 0.81 27.77
✓ ✓ ✓ ✓ 1.3 0.835 27.98
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