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Abstract: Smart indoor farming promises to improve the capacity to feed people in urban centers in future production.
Non-invasive sensing and monitoring technologies play a crucial role in enabling such controlled environ-
ments. In this paper, we propose a new architecture to magnify subtle movements of plants in videos, high-
lighting non-perceptible motions that can be used for analyzing and obtaining characteristic traits of plants.
We investigate the limitations of the technique with synthetic and real data and evaluate different plant sam-
ples. Experimental results present leaf movements from short videos that could not be noticed before the
magnification.

1 INTRODUCTION

Vertical farming and modern greenhouses have
worked to make their production more efficient,
adaptable, and less harmful to the environment. They
cultivate plants using optimized control and improved
monitoring techniques, pursuing the ideal growth
conditions to exploit the resources efficiently and in-
crease production yield. The plant observations are
fundamental to provide data for precise control and
management systems for these environments. The
RGB cameras are increasingly contributing to moni-
toring key metrics and traits in a non-invasive manner
in this field. Plant movements are visible responses
in the environment to optimize their survival, growth,
and reproduction. Hence, they may reveal helpful in-
formation from the stimulus or genetic factors such
as moving toward the light, growth in search of wa-
ter and nutrients, or sensing changes in the environ-
ment (Bhatla and A. Lal, 2018). Although the plants
can move their position and behavior by sensing ex-
ternal environment changes, these movements are of-
ten prolonged and seldom detectable (Bhatla and A.
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Lal, 2018; Rasti et al., 2021).
Studies have presented tools to assist plant growth,

such as leaf area monitoring (Ngo et al., 2022), water
and nutrient content estimation (Li et al., 2020), and
health assessment (Chouhan et al., 2020). Moreover,
efforts have been shown to facilitate plant evaluations
over time using image processing techniques by ecol-
ogists, farmers, and researchers, such as leaf segmen-
tation (Ghazal et al., 2020), texture and shape selec-
tion (Shah et al., 2017; Siricharoen et al., 2016), and
leaf tracking (Gelard et al., 2018). However, these
plant assessments and measurements are limited to
their time evolution, which usually takes many days to
present relevant changes in common species (Forterre
et al., 2016; Skotheim and Mahadevan, 2005).

One way to evaluate the plant traits in a faster
manner is by amplifying small changes in image ac-
quisitions (Wu et al., 2012). Eulerian motion magnifi-
cation is a method to amplify small motions in a set of
frames and is helpful in various applications (Wadhwa
et al., 2013), including but not limited to health care
and monitoring, biology, structural analysis, and me-
chanical engineering. When amplified, the tiny mo-
tions may reveal information that seems invisible or
imperceptible in normal videos, presenting meaning-
ful temporal variations. This technique requires no
special equipment, and it can be used by regular cam-
eras at usual frame rates. The method was applied
to tiny leaf color changes to detect the photosynthesis
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process (Taj-Eddin et al., 2017), aiming to monitor
plants.

Motivated by the above, we propose a robust mo-
tion amplification method to reveal leaf movements
that are not perceptible by the naked eye. The video
magnification approach assumes that the object of in-
terest has small motions and background regions re-
main still (Le Ngo and Phan, 2020; Elgharib et al.,
2015). Thus, video stabilization is a crucial step in
this magnification process to reach accurate results.
We apply video stabilization as a preprocess to re-
move the undesirable large handshake based on a ro-
bust feature trajectories algorithm (Ken-Yi Lee et al.,
2009). Moreover, we utilize leaf extraction and mask
to segment the region of interest (ROI) and apply
magnification to only this region, achieving higher
motion magnification quality. We added a plant seg-
mentation algorithm (Riehle et al., 2020) to obtain an
appropriate segmentation for our approach.

The system proposed by this paper can visualize,
with a smartphone camera, without any additional in-
strument, the small leaf movements of the plant in
a non-destructive manner. Such movements may be
associated with the growth rate of the plant, help-
ing researchers and farmers to investigate and design
control systems based on faster metric acquisitions.
We also explore the magnification bounds and robust-
ness of our approach to provide a measurement tool
for controlled plant environments, where the different
aforementioned plant assessment systems can benefit
from our method.

In summary, the main contributions of this paper
include the proposed architecture system with special
target to magnify small motions of plants using a low-
cost setup, and its robustness and performance eval-
uation. We show that the proposed architecture at-
tenuates considerable distortions related to the back-
ground noise or shaking artifacts, and increases the
magnification quality when compared with a standard
Eulerian phase-based technique (Wu et al., 2012).
The dataset and its acquisition parameters are pro-
vided in a public repository (Pena et al., 2022).

The paper is organized as follows. In Section 2 the
traditional phase-based motion magnification is dis-
cussed. Section 3 describes the proposed system and
its architecture, presenting all steps to visualize the
amplified plant motions. Experimental results are pre-
sented in Section 4, with bound evaluation, and com-
parisons between real and artificial plants. Finally, in
Section 5, we present our final remarks.

2 EULERIAN PHASE-BASED
METHOD

The Eulerian phase-based method (Wadhwa et al.,
2013) is a technique to magnify the small changes in
short videos. The algorithm amplifies the phase dif-
ference value computed between the current and first
frames. Initially, the video is decomposed in spatial
frequencies by a complex-valued steerable pyramid.
This pyramid allows us to measure and modify local
motions since its filters have an impulsive response
with finite spatial support. Then, the local phase rep-
resented by the spatial scale and orientation of the
steerable pyramid is isolated to a specific temporal
frequency by using a temporal bandpass filter. The
frame Iω(x, t) of the complex steerable pyramid, fil-
tered for frequency ω, has a local displacement δ(t)
modeled as an intensity of complex sinusoid, given
by

Iω(x, t) = Aωe jω(x+δ(t)). (1)

The temporal filter removes the DC component
and allows the amplification of the displacement δ(t)
by a factor α for each sub-band, producing αδ(t) pix-
els of shift. The sub-band, with the increase in phase
is given by

Îω(x, t) = Aωe jω(x+(1+α)δ(t)). (2)

3 PROPOSED METHOD

The proposed method aims to amplify plant move-
ments in a shorter duration than many days of time-
lapse acquisitions. We claim that in short video ac-
quisition, we can highlight small plant movements
for analysis. The architecture is separated into three
steps, described in Figure 1, as: 1) The frames are
stabilized using point feature matching. 2) We mag-
nify the video motion using a modified phase-based
Eulerian technique. 3) We use a mask based on the
leaf segmentation technique, applying the magnifica-
tion only to the ROI during the magnification.

3.1 Stabilization Process

The stabilization process is essential to avoid artifacts
or amplification of the background shaking in the mo-
tion magnification stage. First, interest points are
identified in the frame by corner detection using the
features-from-accelerated-segment test (FAST) algo-
rithm (Rosten and Drummond, 2006). Then, we esti-
mate a transformation that corrects the distortion be-
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Figure 1: Overview of the proposed system.

tween the frames for these points. This affine trans-
form provides the correspondence points of a frame
in the next frame (Ken-Yi Lee et al., 2009). We
compute the matching using the Hamming distance
in a Fast Retina Keypoint (FREAK) descriptor cen-
tered around each point. Finally, we estimate the ge-
ometric transformation between two images using the
M-estimator SAmple Consensus (MSAC) algorithm.
The affine transform that produces the closest inliers
between two sets of points is given by

Tt =

[
stcos(θt) −stsin(θt) ∆x,t
stsin(θt) stcos(θt) ∆x,t

]
, (3)

where ∆x,t represents translation motion, st scale fac-
tor, and θt indicates the rotation angle. Thus the
cumulative transformation chain relative to the first
frame is the product of all preceding inter-frame trans-
forms. The compensated current frame Î(t) is ob-
tained by ∏

t−1
n=0 Tt containing the parameters of the

affine transform of Equation 3.

3.2 Eulerian Phase-Based Motion
Magnification

We use the Eulerian phase-based technique (Wad-
hwa et al., 2013) to magnify the small changes in
the plant. Due to the high signal-to-noise ratio of
pixel intensities reachable by controlled scenarios and
the magnitude noise efficiency of the phase-based
method (Wadhwa et al., 2013), we pay more atten-
tion to any undesirable motion that is not related to
the ROI or even error in video stabilization that can
cause large artifacts in the magnification. The current
approaches fail to exclude irrelevant motions occur-
ring at frequencies similar to the target motion fre-
quency (Le Ngo and Phan, 2020). Thus, we model
the magnified phase including motions from different
sources, η(t), related to shaking, distortions, and un-
desired movements by representing phase values in
the frames that are not from the ROI motions, given
by

Iω(x, t) = Aωe jω(x+(1+α)(δ(t)+η(t))). (4)

The distortion η(t) is magnified with the target
motion, producing the magnified image with α(δ(t)+
η(t)) displacement. Hence, the stabilization process
should ensure the removal of irrelevant motions from
the frames as much as possible. In Section 4.3, we
evaluate the influence of this noise background mo-
tion in the motion magnification of a synthetic video,
simulating the translation motion not corrected by the
stabilization process.

3.3 Plant Segmentation and Mask

The magnification is performed only in the ROI of
the frame in order to obtain higher amplification fac-
tors and avoid artifacts in the video. We use a mask
based on plant semantic segmentation (Riehle et al.,
2020) to achieve the foreground segmentation from
the frame. Such technique segments the ROI into
two steps: pre-segmentation based on index, and seg-
mentation using color space with a threshold. First,
the method computes the excess green minus excess
red index, an index-based segmentation method com-
monly used in plant applications based on the differ-
ence of another two indexes: the excess green index
(ExG) and the excess red vegetative index (ExR). The
ExG is calculated from an RGB frame by the follow-
ing equation:

ExG = 2G−R−B, (5)

where R, G, and B are normalized RGB values. The
ExR, an index that accentuates the redness of a frame,
is computed by:

ExR = 1.4R−B. (6)

The combination of both indexes, ExG minus
ExR, produces the ExGR, an approach developed to
segment plants from background in images:

ExGR = ExG−ExR. (7)

The mentioned indexes are used as detectors with
different thresholds to produce the mask. Addition-
ally, one can obtain segmentation with different sen-
sitivity and specificity by using two different color
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spaces (Riehle et al., 2020): HSV or CieLab. Depend-
ing on the dataset and the requirements, the combina-
tion of threshold and color space is chosen to reach
the most representative frames. In our studies, we find
the ExGR with a constant zero threshold and CieLab
as most adequate for our acquisitions. However, for
young leaves, we use only the ExGR index with a con-
stant zero threshold, since they were not segmented in
the HSV and CieLab color space histograms.

4 EXPERIMENTAL RESULTS

Indoor experiments were carried out using a regular
camera of a smartphone connected to a ring light tri-
pod, as presented in Figure 2. The ring light has 10
inches in diameter and provides a led power of 10
W with 6500 K of temperature. After acquisition
and video processing using our proposed approach,
we obtained a total of 20 short videos at 30 frames
per second each, as described in Table 1, originally
recorded at 12 seconds per frame, from 3 different
plant samples: Peperomia, Fern, and artificial. The
dataset and its acquisition parameters are provided in
a public repository (Pena et al., 2022).

Total acquisition:

30 min

Short video:

5 secs

Take

pictures

every 12

seconds

Figure 2: Acquisition setup.

The camera used was from a Samsung smart-
phone with 12 megapixels, 26 mm of focal length,
1.5 of aperture, and optical stabilization. The device
recorded in flight mode while the software acquired
pictures at a uniform and constant sampling frequency
with an automatic and fixed focus on the object.

Unless mentioned otherwise, the evaluations were
performed using videos that present plants with 30
min of recording. We computed the magnification us-
ing a difference of Butterworths filter with a quarter-
octave bandwidth pyramid and eight orientations. The
processing was performed in YIQ color space in the
three channels independently, using 150 frames of
640x480. The frequency of the temporal bandpass
filter was defined as the lowest component possible
since we are interested in slow movements in the video.

Table 1: Parameters used in the acquisition and the magni-
fication method.

Parameter Values
Frame rate 30 frames per second

Time duration 30 min
Time-lapse 12 seconds per frame
Resolution 640 x 480

Magnification factor 100
Filter frequencies 0.01 - 0.2 Hz

4.1 Comparisons with Eulerian Method

The small motions from the plants in the frames of-
ten produce distortions in the traditional motion mag-
nification method. Such slow motions occur at low-
frequency components in time, where also occur mo-
tions related to the background noise or shaking ar-
tifacts. Therefore, we present a comparison between
the Eulerian phase-based magnification and the pro-
posed architecture with the difference between the
first and last frames in the magnified video, illustrated
in Figure 3.

(a) (b)

(c) (d)

Figure 3: Comparisons between traditional magnification
and the proposed method, where: a) it is the first frame
of the original video; b) difference of frames for Eulerian
phase-based magnification; c) difference of frames in the
proposed method without masking; d) difference of frames
in the proposed method with mask enabled.

Figure 3 presents the Eulerian technique magnify-
ing motions that are not related to the plant. The shak-
ing motion can be perceived in the horizontal line in
the background, where even a rigid tripod could not
ensure stability for the magnification. However, the
proposed architecture attenuates such distortions due
to the stabilization process. Moreover, the masking
increases the magnification quality by enabling the
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system to magnify only the ROI.

4.2 Noise Evaluation

A simulated study of the effect of image noise was
performed to assess the robustness of the proposed
technique to different noise conditions, as presented
in Figure 4. Since the magnification is phase-based,
the noise is not magnified but phase-shifted instead.
Unlike a linear magnification method, which ampli-
fies the noise linearly, the proposed technique, based
on the phase method, presents a low error increase, as
expected (Wadhwa et al., 2013).

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

mean

100

105

110

115

120

M
S

E

Figure 4: Error evaluation as a function of noise.

4.3 Stabilization Assessment

We evaluate the stabilization process and magnifica-
tion of the proposed method using a synthetic video
containing a green circle representing the ROI, and
triangles representing the background. The ROI has
its motion modeled by δ(t) + η(t) shift, where δ(t)
is an oscillating motion, while the background has
only translational η(t) displacement, representing the
distortion. The ROI and background share the same
noise shift value integrated at time t. Figure 5 shows
the ground truth, a shaking motion, and a stabilized
version being magnified.

Figure 6 presents the mean square error (MSE)
image over noise (σ) in η(t). The evaluation shows
that the stabilization produces lower MSE for high
values of phase noise as expected.

4.4 Amplification Analysis

For non-distorted video, the quarter-octave bandwidth
steerable pyramid provides approximately 4 periods
of a sinusoid under the Gaussian envelope of the Gar-
bor filter (Wadhwa et al., 2013). Using the Gaussian
window, with width σ, to determine the bound, we ob-
tain 4σ ≈ 4

ω0
on the frequency ω0, and the maximum

displacement is given by

αδ(t)< λ, (8)

Figure 5: Synthetic frames: a) Ground truth; b) Shaking ef-
fect; c) Shaking motion after stabilization; d) Ground truth
magnified; e) Shaking video magnified; f) Stabilized video
magnified.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 6: MSE between ground truth magnified as a refer-
ence, and noise and stabilized videos magnified.

where λ is the spatial wavelength. In an acquisition
with the ROI at 20 cm of distance and a calibration
factor of approximately 0.5 mm/pixel, we can de-
termine the fastest plant movement at 10 seconds or
slower for one pixel of displacement, based on the
physical limitation of the plant speed (Forterre et al.,
2016).

The results of our method indicate fast movements
from young leaves after magnification that were not
visible in original acquisitions. We use frames col-
lected with a non-uniform background, facilitating for
the stabilization process to track any translation in the
frames. Figure 7 presents the movements from the
growth process of the leaves by computing the differ-
ence between the first and last frames. The original
video seems to be a static scene with no movements,
as demonstrated in the supplementary material (Pena
et al., 2022).

4.5 Comparisons with Artificial Plant

We tested the proposed system using videos contain-
ing simultaneously real and artificial plants. Fig-
ure 8 presents leaf growth motions from the Peper-
omia, while the artificial plant stays static. In the
traditional Eulerian method, both plants present large
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Figure 7: Motion highlighted in difference of frames.

motions magnified due to the shaking, while the pro-
posed technique highlights the magnification on the
young leaf.

Figure 8: Young leaf growth magnified.

5 CONCLUSION

This paper proposes a non-destructive and low-cost
technique to highlight the small movements of plants
in short videos. The technique uses mainly the Eu-
lerian magnification method to amplify phase differ-
ences with the stabilization process and automatic
segmentation of the ROI. The method was tested in
different samples and presented fast and magnified
movements in short videos. The proposed method can
be used for plant assessment systems in order to ex-
tract hidden metrics.

Future studies may investigate the performance of
the technique over raw data, avoiding post-processing
from the camera’s Image Signal Processor (ISP).
Moreover, the technique can be evaluated in growing
and plant disease monitoring, obtaining in advance
relevant features in such applications.
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