
Integration of Efficient Deep Q-Network Techniques Into QT-Opt
Reinforcement Learning Structure

Shudao Wei1, Chenxing Li1,2, Jan Seyler2 and Shahram Eivazi1,2
1Department of Computer Science, University of Tübingen, Tübingen, Germany

2Advanced Develop. Analytics and Control, Festo SE and Co. KG, Esslingen, Germany

Keywords: Prioritized Experience Replay, Noisy Network, Mixed Policy, Distributed Reinforcement Learning,
Q-Function Targets Via Optimization, Quantile Q Target Optimizer.

Abstract: There has been a growing interest in the development of offline reinforcement learning (RL) algorithms for
real-world applications. For example, offline algorithms like qt-opt has demonstrated an impressive perfor-
mance in grasping task. The primary motivation is to avoid the challenges associated with online data col-
lection. However, these algorithms require extremely large dataset as well as huge computational resources.
In this paper we investigate the applicability of well known improvement techniques from Deep Q-learning
(DQN) methods to the QT-Opt offline algorithm, for both on-policy and mixed-policy training. For the first
time, we show that prioritized experience replay(PER), noisy network, and distributional DQN can be used
within QT-Opt framework. As result,for example, in a reacher environment from Pybullet simulation, we
observe an obvious improvements in the learning process for the integrated techniques.

1 INTRODUCTION

For many years, reinforcement learning (RL) has re-
ceived extensive attention, designed to describe and
solve problems, in which agents learn strategies to
achieve specific goals while interacting with the en-
vironment. Recently, RL has had fair achievements
in real-world applications as such the implementa-
tion of more specific real-world applications requires,
RL’s learning efficiency become the goal to pursue.
Given the vision-based data scope, the single-step du-
ration and memory footprint required for training an
agent are much more extensive than a value-based
task. How to solve tasks in larger-scale environments
with as few data and training steps as possible has be-
come a focus of attention in RL.

A leading example for large scale real-world prob-
lem is QT-Opt (Kalashnikov et al., 2018) (Q-function
Targets via Optimization) RL algorithm which is de-
signed to provide generalization for different tasks
and adaptation for compound action space. It meets
the demand with a distributed asynchronous structure,
a derivative-free optimization, and both online and of-
fline training.

Main limitation of QT-Opt algorithms is that re-
quires extremely large dataset as well as huge com-
putational resources. To meet the demand for learn-

ing efficiency of RL in real-world in this paper we
propose to apply well-known rainbow (Hessel et al.,
2018) improvement techniques to the vanilla QT-Opt.

Hessel et al. (Hessel et al., 2018) empiri-
cally showed that prioritized experience replay(PER)
(Schaul et al., 2015), noisy network (Fortunato et al.,
2017), and distributional DQN (Bellemare et al.,
2017; Dabney et al., 2018b; Dabney et al., 2018a)
can improve overall performance of Deep Q-learning
(DQN) algorithm. Prioritized experience replay
(PER) (Schaul et al., 2015) in replay buffer sam-
ples training data non-uniformly under data potency,
which exploits the available data more effectively;
Noisy network (Fortunato et al., 2017) raises the ran-
domness from the action selection level to the net-
work level to generate new trajectory logic, which
stimulates more complex explorations; Q-value in
distributional perspective (Bellemare et al., 2017;
Dabney et al., 2018b; Dabney et al., 2018a) provides
more comprehensive information for action selection.

To our knowledge, there is no studies combin-
ing rainbow improvements in qt-opt structure. In
this paper we implement these techniques in away
to be compatible with non-distribution version of qt-
opt. We conduct separate and integrated experiments
in the vector-based robotic environments to provide
baselines in the centralized PyBullet (Coumans and

592
Wei, S., Li, C., Seyler, J. and Eivazi, S.
Integration of Efficient Deep Q-Network Techniques Into QT-Opt Reinforcement Learning Structure.
DOI: 10.5220/0011715000003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 592-599
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Bai, 2021) simulated environments. Our contribution
lists as follows:

• Benchmark of the QT-Opt performance under dif-
ferent basic robotic value-based environments.

• Attempts of PER Noisy network integration to-
gether with QT-Opt and distributional DQN (Q2-
Opt), with the purpose to pursue training effi-
ciency.

In this paper, we first introduce the current status
and related work. Then the fundamentals of learn-
ing techniques and our methods are demonstrated. Fi-
nally, the experiments are analysed and compared.

2 RELATED WORKS

Reinforcement learning (RL) from a model-free per-
spective Q-Learning (Watkins and Dayan, 1992) is an
algorithm that optimizes the action state value (Q-
value) by iterative function repeatedly. To solve the
exponential explosion of the action dimension, Deep
Q-Learning (DQN) (Li, 2017) has been proposed,
which approximates the q-value function by a deep
neural network. Double Q-learning(Hasselt, 2010)
algorithm was proposed, which utilizes two value
functions to separate action selection and state eval-
uation processes to exclude the maximization pro-
cess from the state evaluation. From this the dou-
ble DQN (Van Hasselt et al., 2016) is derived, which
maintains the separate state-action value evaluation
network with an update delay, leveraging the target
q-network from the original DQN. Clipped Double
DQN (Fujimoto et al., 2018) is an extension algo-
rithm to DQN, designed to address Q-value bias aris-
ing from the inherent estimation errors in Q-learning.

Cross-Entropy Method (CEM) (De Boer et al.,
2005; Kalashnikov et al., 2018) replace the maxi-
mization process in action selection by a stochastic
optimization over the actions. CEM is simple to im-
plement, has robust properties around local optima in
low-dimension problems, and no derivative operation,
thus it is ideal for RL algorithms. QT-Opt (Kalash-
nikov et al., 2018) employed both Clipped double
DQN and CEM to reduce the possible overestimation
of the q-value. Furthermore, it provides a distributed
asynchronous structure to achieve parallel training of
one agent network.

Based on distributional DQN technique, the same
team presented Q2-Opt(Bodnar et al., 2020), which
changes the q-value to the q-distribution and repre-
sents the action state relation more comprehensively.
Q2-Opt (Bodnar et al., 2020) is a distributional vari-
ant of QT-Opt. Two sub-versions of this enhance-

ment are provided: Q2R-Opt based on Quantile-
Regression DQN (QR-DQN) and Q2F-Opt based on
Implicit Quantile Network (IQN). In the QR-DQN
the p-Wasserstein metric (Vaserstein, 1969, 64–72.)
replacing the KL-divergence is utilized to describe
the difference between two distributions. A Wasser-
stein metric considers not merely the probability of
the outcome events. The distance between them is
also important. It is more appropriate to the q-value
distribution since we concern more about the under-
lying similarity of the two distributions than match-
ing their likelihoods exactly. To minimize the p-
Wasserstein distance, the distributional Bellman up-
date is projected onto a parameterized quantile dis-
tribution over the set of quantile midpoints. Then it
utilizes the Quantile regression method (Koenker and
Hallock, 2001) for an unbiased stochastic approxima-
tion of the distribution. Since the quantile regres-
sion loss is not derivable at zero, a quantile Huber-
Loss(Dabney et al., 2018b) operates as the loss func-
tion in QR-DQN, given τ∈ [0,1] as the selected quan-
tile. QR-DQN could regulate its range of return value
without projection support. The number of atoms in
the quantile distribution is also manually adjustable.

IQN (Dabney et al., 2018a) is similar to QR-DQN
in which IQN also return a parameterized quantile
distribution. However, instead of the fixed τ in QR-
DQN, the result in IQN is over a randomly generated
τ ∼ U([0,1]) distorted by a distortion risk measure
β : [0,1]→ [0,1]. The basic network structure of Q2-
Opt is similar to Figure 1 in the DNN Model block.
A significant improvement has been made by this ex-
tension as shown in (Bodnar et al., 2020, Results).
In this paper we do not have a preference for risk
management, thus we only use the basic risk matrix
β(τ) = τ in Q2F-Opt. The correlation between risk
distortion and other improvements could be tested in
future works. For the CEM in Q2-Opt, it maximizes
the score mapped from distribution vector q which is
the output of the network.

To help achieve higher performance various re-
search groups focus on improving the structural com-
position perspective of RL. For instance, Prioritized
experience replay (PER) presented by Schaul, Tom,
et al. (Schaul et al., 2015), and Noisy network sug-
gested by M. Fortunato et al. (Fortunato et al.,
2017). PER prioritizes the experience in the replay
buffer to increase agents’ learning efficiency based
on data efficiency enhancement and data correlations
during training provided by the original replay buffer
structure. On the other hand, the noisy network is
aimed at exploration by attaching noise to network
weights instead of action selection, which has the pur-
pose to change consistent, potentially complex, state-

Integration of Efficient Deep Q-Network Techniques Into QT-Opt Reinforcement Learning Structure

593

Figure 1: System architecture of our implementation of the extensions based on Q2-Opt. The rollouts simulated in the
environment are saved in the replay buffer after each 32-gradient update. The transitions from both data buffers are sampled
non-uniformly to the Bellman Updater, which appends the target q-distributions and is pushed to the training buffer which
could be asynchronously consumed by Training workers to compute the gradients. The parameters in the model deep neural
network are updated by gradient descent. Notice the lines in the DNN Model block, the pink line links the structure of
Q2R-Opt and the blue line links the structure of Q2F-Opt.

dependent behavior patterns. Our focus is also these
two techniques together with the distributed DQN ap-
proach, applied on Q2-Opt, which have been success-
fully applied in rainbow (Hessel et al., 2018) paper
for basic DQN algorithms.

3 METHODOLOGY

Figure 1 shows the architecture of our implementation
of the QT-Opt algorithm which has five main blocks:
replay buffer, Bellman updater, training worker, DNN
model, and CEM. Our modifications are mainly on
replay buffer and DNN Model blocks, while other
blocks merely attached several adaptions. With the
same operation process as vanilla QT-Opt described
in the preliminary section, our system run in single
computing machine compare to distributed version.
Moreover, we also implemented Q2-Opt based on the
description in (Bodnar et al., 2020).

3.1 Prioritized Replay

For an experience replay priority method extension
to QT-Opt, the data structure in the replay buffer is
replaced by a sum-segment-tree (Berg et al., 1997).
The priority value is set as the node value in the tree
structure. Considering the replay buffer structure in
QT-Opt, the PER method could be implemented in
data- or training buffer or both.

The sampling process in a prioritized replay buffer
started by uniformly sampling a batch of random val-
ues in the range [0,1). With the random batch mul-
tiplies by a sum over all priorities, we could use the
retrieve function in the sum-segment tree to get the
batch of the final sampled index. The transitions are
picked from the buffer and sent together with the in-

dex and corresponding weights calculated by corre-
sponding priority as in the ensuing Equation, where
pi is the priority of i-th transition in the buffer:

wi = (
1
N
· 1

P (i)
)β (1)

P (i) =
pα

i

∑k pα

k
(2)

In our implementation, data buffer prioritization is
a conversion from the original PER definition: using
segment trees for importance sampling, picking out
and updating the transition data by indices. For train-
ing buffer, it is more complex. The training buffer
has to save the data source and corresponding in-
dices whether prioritized or not since we need to up-
date the priority value into the original on- or offline
data buffer together with the Bellman update. Priority
values are updated after each training batch and the
IS weight should be recalculated in each mini-batch.
Therefore, the training buffer also needs to calculate
the current weight with the locally updated priority
buffer if the gradient update per Bellman-update (gpb)
is larger than 1. To simplify the process we fixed gpb
as 1 in our experiments.

Under the circumstances, in which the training
buffer is not prioritized, the sample weights are from
the data buffer importance sampling while Bellman
updating. We created a replay buffer subclass for this
kind of training buffer, which saves the corresponding
additional features and split the priority update batch
for two data buffers. If prioritized, the sample weights
are calculated from the training buffer itself. In other
words, when both types of buffers are prioritized,
our implementation is not saving the sample weights
from the data buffer, only sampling non-uniformly.
To update the priority which also adapts to distribu-
tional q-network results, considering the suggestion

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

594

in Rainbow paper (Hessel et al., 2018, ’The Integrated
Agent’), we are using the element-wise loss value as
the priority. Two hyper-parameters are needed in the
PER: α is denoted as the prioritization scale, which is
fixed as 0.5 in our training. β determines the decay of
probabilities, which is fixed as linearly growing from
0.4 to 1 as suggested.

3.2 PAL

Regarding the time penalty and RAM consumption
with importance sampling, due to the segment-sum-
tree, making PAL(Fujimoto et al., 2020) as an alterna-
tive to PER is worth considering. As a mirrored loss
function of LAP(Fujimoto et al., 2020), PAL has an
equivalent expected gradient to a non-uniformly sam-
pled replay buffer using importance sampling to avoid
its bias. In other words, PAL is a loss function alter-
native to a prioritized replay buffer implementation.

We integrated PAL to QT-Opt by adding an alter-
native loss function instead of Huber-Loss or MSE.
While adapting to the q-distribution network, we
change the loss function in the original Q2-Opt by re-
placing the Huber-loss in ρ with PAL-loss. The final
loss function for PAL attached Q2-Opt is as shown in
Equation 3.

LPAL(u) =
1
λ

1
2
|δT D−Error|2 if |δT D−Error| ≤ κ

|δT D−Error|α+1

α+1
otherwise

λ =
∑

N
j max(|δT D−Error(j)|,1)

N
ρτ(u) = |τ− IδT D−Error<0| ·LPAL(δT D−Error) (3)

Ix<0 =

{
1 x < 0
0 x≥ 0

(Dabney et al., 2018b; Fujimoto et al., 2020) The def-
inition of the One hyper-parameter is needed in this
improvement implementation: α as in PER. In our
experiments, the value is fixed at 0.5.

3.3 Noisy Nets

A noisy layer is appended after the feature network
and other extension implementations, as the final out-
put layer. In our experiments, a noisy dense layer is
defined as a subclass of standard linear dense layer,
adding µw,µb,σw,σb as trainable variables, and gen-
erating εw,εb as random variables. As shown in the
original paper (Fortunato et al., 2017), the function
realized by the fully connected noisy linear layer is:

y = (µw +σw� εw)x+(µb +σb� εb) (4)

Figure 2: Evaluation reward as a function of the training
time-step on ReacherBulletEnv-v0 environment. The data
is collected from on-policy training results. The plot on
the top shows the training efficiency difference caused by
different training batch sizes and the bottom plot shows
the training efficiency difference caused by variant training
buffer sizes. All curves in the plot are trained with the same
random seed 0.

To generate random variables, we choose factor-
ized Gaussian noise as suggested in (Fortunato et al.,
2017) to reduce compute time. If we use independent
Gaussian noise, since we are using a single-thread qt-
opt-based agent, the computational overhead for our
network structure is too large for our computing re-
source.

Besides the implementation in the DNN-model,
we have to reset its noise every training step to ac-
tivate a noisy network. Thus we need to label all
noisy layers by network creation and call their reset
functions at every gradient step. As shown in Fig-
ure 1, in our implementation, when a noisy network
is on, the last layer in the current network is changed
into a noisy layer. One hyper-parameter is needed in
the noisy network, the initial standard deviation value
used by initializing the σ variables.

4 EXPERIMENT

We tested several improvement techniques for QT-
Opt, including PER, noisy network, and distributional
DQN. Simulation environments with continuous con-
trol tasks generated by PyBulletGym engine are used
in the training process. We used ReacherBulletEnv-v0
environment from the default setting as well as few
other robotic environments limited to time and com-

Integration of Efficient Deep Q-Network Techniques Into QT-Opt Reinforcement Learning Structure

595

Figure 3: Evaluation reward as a function of the train-
ing time-step on ReacherBulletEnv-v0 environment. The
data of the top plot is collected from on-policy training
results and the data in the bottom plot is collected from
mixed-policy training results. All curves are from noisy at-
tached QT-Opt agents with different initial standard devia-
tions. The red, blue, green, and purple curves correspond to
an agent with an initial standard deviation equal to 0.005,
0.01, 0.001, and 0.05. All curves in the plot are averaged
by three separate runs with three different random seeds
(133156, 254306, 369070). The half-transparent area shows
the range between the max and min value at this time-step
in three runs.

puting power costs.
To evaluate the algorithm performance, we are us-

ing the reward value from the default tasks. One eval-
uation step is taken after each 2048 training time step.
For each evaluation, we run 10 tests with the tempo-
ral agent and collect the averaged reward value per
step. One test means a complete run until the task
is done or a maximum step (150 for ”Reacher” and
1000 for other environments) is reached. For repro-
ducibility of the results, random seeds are set for Ten-
sorFlow, NumPy, and gym environments. To ensure
the validity of the test, Three full pieces of the train-
ing run with different random seeds are taken for all
setups. The final reward values are taken from the
average among three tests and the range (max and
min value among the three tests) are also saved. The
curves in the following plots have been smoothed by
a Savitsky-Golay filter with a window size equal to 15
and an order of 4. Ranges around the curve show the
range between max and min values over three tests,
both values are smoothed with the same filter.

Compared to pure on-policy training, we are pro-
viding mixed-policy training as explained in the origi-
nal QT-Opt paper (Kalashnikov et al., 2018). A mixed

policy starts by training with offline data sets and
keeps collecting online data for one training rollout
for each 32 training steps. The online data percentage
grows linearly from 0% to 50% in the first 50% train-
ing iterations. The offline data used in mix-policy ex-
periments are generated by pure online training. All
500k transitions in the online data buffer after a full
training run (300k steps for Reacher, 1M for other en-
vironments) are saved, which are loaded afterwards
for a mixed training as offline data. No priority val-
ues are saved or passed on by creating a new offline
data buffer.

Firstly, we tuned our model with different train-
ing buffer sizes and training batch sizes, as shown
in Figure 2. For the training buffer, the closer to the
Bellman-update batch size the better result of the test
gets. The gradient update batch size is more straight-
forward: the larger it is, the better it gets, and it
reaches its limit depending on the training buffer size.
Therefore in the following experiments, we make the
training buffer size equal to the gradient update batch
size. Besides, in our case, we consider more of a
single QT-Opt rather than a distributed asynchronous
QT-Opt as our experiment target. So we set the train-
ing buffer as the same size as the Bellman-update
batch to provide a single model. Hence these three
sizes are selected equally in the following experi-
ments.

With noisy network standard variation value ini-
tialized differently, the result does not catch up to the
vanilla training with a explore probability of 0.02. But
with a specific standard deviation initial value, the
noisy network could reach a similar result. If the ini-
tial standard-deviation value is more than 0.05 or less
than 0.0001, the agent does not end up with a positive
reward. To see how this hyperparameter affects the
result and to choose the best for the rest of the train-
ing, we run a small test with 2/3 steps of full train-
ing for four different initial standard deviation values
within the range of 0.05 and 0.0001. Each value for
three times with inconsistent random seeds. The re-
sults are shown in Figure 3. The optimal initial val-
ues for on and mixed policy are different even though
they are trained with the same parameters and random
seeds. We use 0.01 for on-policy training and 0.05 in
mixed-policy training as the default initial standard
deviation value for a noisy network in the following
experiments.

From Figure 4, we can see that the PER tech-
niques have no progressive results compared to the
original QT-Opt algorithm with both policies on all
tested environments excluding ReacherBulletEnv-v0.
However, PER technique does not hurt the learn-
ing ability of the QT-Opt agents in any of the tasks.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

596

Figure 4: Evaluation reward as a function of the training time-step on AntBulletEnv-v0, HalfCheetahBulletEnv-v0,
HopperBulletEnv-v0, Walker2DBulletEnv-v0, and ReacherBulletEnv-v0 environment. The data is collected from mixed-policy
training results. The red curve is with PER attached QT-Opt agent trained in mixed-policy. The blue curve is with vanilla
QT-Opt agent trained in mixed-policy. The green curve is with PER attached QT-Opt agent trained in on-policy. The purple
curve is with the QT-Opt agent trained in on-policy. All curves in the other plots are averaged by three separate runs, while
all curves in the plot are trained with the same random seed.

Figure 5: Evaluation reward as a function of the training
time-step on ReacherBulletEnv-v0 environment. The data
in the top plot is collected from on-policy training results
and the data in the bottom plot is collected from mixed-
policy training results. The red curve is with PAL attached
QT-Opt agent. The blue curve is with PER attached QT-
Opt agent. The green curve is the vanilla QT-Opt agent. All
curves in the plot are averaged by three separate runs with
three different random seeds (133156, 254306, 369070).
The half-transparent area shows the range between the max
and min value at this time-step in three runs.

Notice that multi-pivot robot tasks have an obvi-
ous advantage in mixed-policy training in evalua-
tion rewards over on-policy training. However, in
the ReacherBulletEnv-v0 condition, it is the oppo-

Figure 6: Evaluation reward as a function of the training
time-step on ReacherBulletEnv-v0 environment. The data
is mainly collected from mixed-policy training results: The
blue curve is with PER and noisy attached Q2R-Opt agent,
the red curve is with PER and noisy attached Q2F-Opt
agent, and the purple curve is vanilla QT-Opt agent. Ex-
cept for the green curve, which is collected from on-policy
with vanilla QT-Opt agent. All curves in the plot are av-
eraged by three separate runs with three different random
seeds (133156, 254306, 369070). The half-transparent area
shows the range between the max and min value at this time-
step in three runs.

site. Additionally, in mixed-policy training, the PER-
attached QT-Opt agent has a more pronounced ef-
fect than the vanilla one. Therefore the follow-
ing experiments mostly proceed in mixed-policy.
For HopperBulletEnv-v0 and Walker2DBulletEnv-v0
tasks using humanoid robot structures, none of the
agents tend to a stabilized state.

As shown in Figure 5, PAL has almost as good
performance as PER in mixed-policy and could reach
a slightly higher final mean reward. Compared to
the vanilla QT-Opt, both PAL and PER could provide
more learning efficiency. Meanwhile, with on-policy
tests, it performs even slower than vanilla QT-Opt.

Integration of Efficient Deep Q-Network Techniques Into QT-Opt Reinforcement Learning Structure

597

Figure 7: Evaluation reward as a function of the training
time-step on ReacherBulletEnv-v0 environment. The data is
collected from mixed-policy training results. The red curve
is with noisy attached Q2F-Opt agent. The green curve is
with PER attached Q2F-Opt agent. The blue curve is with
PER and noisy attached Q2F-Opt agent. The purple curve
is with noisy attached Q2R-Opt agent. The yellow curve
is with PER attached Q2R-Opt agent. The orange curve is
with PER and noisy attached Q2R-Opt agent. All curves in
the plot are averaged by three separate runs with three dif-
ferent random seeds (133156, 254306, 369070). The half-
transparent area shows the range between the max and min
value at this time-step in three runs.

Considering its operational efficiency, PAL could be
a proper alternative to PER when no further changes
in loss function are required for an integrated agent.
Otherwise, it needs more theoretical proof for the un-
biasedness of the formula.

We begin with the final results from the fully in-
tegrated agent, comparing with the performance of
vanilla QT-Opt. As shown in Figure 6, with both
PER and noisy network switched on as the base al-
gorithm, we add Q2-Opt techniques separately. We
found that Both Q2-Opt algorithms have better results
in mixed-policy tests, while comparing with the on-
policy vanilla QT-Opt they even maintains a proper
advantage. Comparing the results based on two Q2-
Opt variants, Q2R-Opt has better collaboration with
PER and noisy network methods regarding iteration
efficiency.

Then we evaluated the two techniques separated
and integrated on Q2-Opt as in Figure 7. Compared
to pure Q2R-Opt and pure Q2F-Opt, these two al-
gorithms attached with PER make a more obvious
efficiency increase than it has made in vanilla QT-
Opt. For Q2R-Opt, PER increases more with the as-
cent speed of learning, since the curve is steeper by
increasing. Meanwhile, for Q2F-Opt, PER only in-
creases the efficiency of the training steps by starting
the rewarding climb early. Its learning curve has al-
most the same, even more, gradual slope. We could
say that PER and Q2-Opt have good compatibility.
Meanwhile, noisy exploration on Q2R- and Q2F-Opt
speeds up the training by smoothing the learning at
the start, easily avoiding the slump in the beginning
but hardly being stable at around 50% of the time
steps. Noisy has a better correlation with Q2F-Opt,

but it also adds a large scale of instability to the eval-
uation results. So both PER and Noisy Network adds
to the base and could increase the speed of learn-
ing. When both of the techniques are switched on,
the learning curve could be increased furthermore.

Lastly, we extend the experiments with other
Pybullet simulated mujoco-like environments like
AntBulletEnv-v0, all the agents have demonstrated
their ability to learn and solve the tasks (Figure 8).
In these more complex environments, without hyper-
parameter tuning, PER and Q2-Opt variations do not
harm the learning abilities of the QT-Opt agent. How-
ever, these extensions could not overcome QT-Opt’s
weakness in humanoid-like robot fields.

5 DISCUSSION

In this paper, we have re-implemented the QT-Opt
and Q2-Opt (Kalashnikov et al., 2018; Bodnar et al.,
2020) algorithm with additional extension: PER
(Schaul et al., 2015) and Noisy network (Fortunato
et al., 2017) techniques. We conducted several exper-
iments separately on each extension to validate their
optimization effect on the algorithm, and proceed on
integrated tests combination of all techniques. More-
over, we tested use of PAL (Fujimoto et al., 2020)
instead of original PER. In the Reacher environment
by Pybullet simulation, we observe an obvious im-
provement in the learning process for a QT-Opt agent
with integrated methods. Meanwhile, in other related
robotic environments we confirmed no harm in time-
step-efficiency when attaching these techniques on qt-
opt. Despite relatively considerable results, we still
observe few drawbacks with these extensions. First,
PER is not very cost-effective as an improvement to
QT-Opt, while PAL as its simplify equivalent have
lost most of the efficiency advantage. Second, the
Noisy Network extension is not suitable for the cur-
rent version of QT-Opt, and proof for the compati-
bility of this extension with QT-Opt is needed fur-
ther research. Finally, for the Q2-Opt, the perfor-
mance of its agent in a simple task is not as evident
as it has in a vision-based complex task like grasp-
ing. Moreover, due to its expansion of the computing
network, its time-consuming, and memory-occupying
problems are evident. Nevertheless, its combined ef-
fect with PER is proven worth consideration.

From our experiments and assumptions, PER with
distributional QT-Opt needs more trimming. We sug-
gest two ways to achieve this. One is to find the best
way to apply data sampling weight to training sam-
pling, while the other is to provide theoretical sup-
port to PAL on Q2-Opt. Also, future studies could in-

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

598

Figure 8: Evaluation reward as a function of the training time-step on AntBulletEnv-v0, HalfCheetahBulletEnv-v0,
HopperBulletEnv-v0, and Walker2DBulletEnv-v0 environment. The data is collected from mixed-policy training results. The
red curve is with PER attached Q2F-Opt agent. The blue curve is with the Q2F-Opt agent. The green curve is with PER
attached Q2R-Opt agent. The purple curve is with the Q2R-Opt agent. The orange curve is with PER attached QT-Opt agent.
The yellow curve is with vanilla QT-Opt agent. All curves in the plot are trained with the same random seed 254306. The
half-transparent area shows the range between the max and min value at this time-step in three runs. Notice total training time
steps in Ant is 839,680, which is slightly lower than in other environments.

vestigate the conflict between Noisy net and QT-Opt.
Though Noisy net is not stable in the current version
of QT-Opt, there still exists research significance for
this phenomenon theoretically.

REFERENCES

Bellemare, M. G., Dabney, W., and Munos, R. (2017).
A distributional perspective on reinforcement learn-
ing. In International Conference on Machine Learn-
ing, pages 449–458. PMLR.

Berg, M. d., Kreveld, M. v., Overmars, M., and
Schwarzkopf, O. (1997). Computational geometry. In
Computational geometry, pages 1–17. Springer.

Bodnar, C., Li, A., Hausman, K., Pastor, P., and Kalakrish-
nan, M. (2020). Quantile qt-opt for risk-aware vision-
based robotic grasping. In Proceedings of Robotics:
Science and Systems, Corvalis, Oregon, USA.

Coumans, E. and Bai, Y. (2016–2021). Pybullet, a python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R.
(2018a). Implicit quantile networks for distributional
reinforcement learning. In International conference
on machine learning, pages 1096–1105. PMLR.

Dabney, W., Rowland, M., Bellemare, M., and Munos, R.
(2018b). Distributional reinforcement learning with
quantile regression. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32.

De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. (2005). A tutorial on the cross-entropy method.
Annals of operations research, 134(1):19–67.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband,
I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., et al. (2017). Noisy networks for ex-
ploration. arXiv preprint arXiv:1706.10295.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Address-
ing function approximation error in actor-critic meth-
ods. In International conference on machine learning,
pages 1587–1596. PMLR.

Fujimoto, S., Meger, D., and Precup, D. (2020). An equiv-
alence between loss functions and non-uniform sam-
pling in experience replay. Advances in Neural Infor-
mation Processing Systems, 33.

Hasselt, H. (2010). Double q-learning. Advances in neural
information processing systems, 23.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar,
M., and Silver, D. (2018). Rainbow: Combining im-
provements in deep reinforcement learning. In Thirty-
second AAAI conference on artificial intelligence.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., et al. (2018). Scalable deep reinforce-
ment learning for vision-based robotic manipulation.
In Conference on Robot Learning, pages 651–673.
PMLR.

Koenker, R. and Hallock, K. F. (2001). Quantile regression.
Journal of Economic Perspectives, 15(4):143–156.

Li, Y. (2017). Deep reinforcement learning: An overview.
arXiv preprint arXiv:1701.07274.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D.
(2015). Prioritized experience replay. arXiv preprint
arXiv:1511.05952.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep re-
inforcement learning with double q-learning. In Pro-
ceedings of the AAAI conference on artificial intelli-
gence, volume 30.

Vaserstein, L. N. (1969). Markov processes over denumer-
able products of spaces, describing large systems of
automata. Problemy Peredachi Informatsii, 5(3):64–
72.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine
learning, 8(3):279–292.

Integration of Efficient Deep Q-Network Techniques Into QT-Opt Reinforcement Learning Structure

599

