
NICE: A Flexible Expression Language

Oliver Hacker1 and Thomas Buchmann2

1Chair for Applied Computer Science I, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
2Faculty for Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf, Germany

Keywords: Model-Driven Development, Domain-Specific Languages, Expressions, Reuse, Code Generation.

Abstract: Model-driven development relies on model-transformation languages to describe mappings between different
metamodels and as such facilitate a model-first workflow. These languages and accompanying tools have
matured a lot over the past years. However, the more recent developments BXtend and BXtendDSL lack some
features like an integrated expression language which would greatly improve the usability. In this paper, we
present the flexible expression language NICE, which aims to solve the aforementioned problem in a modular,
reusable, and adaptable way, while being fast and easy to use.

1 INTRODUCTION

Model-driven software engineering (MDSE)
(Frankel, 2003; Völter et al., 2006) puts strong
emphasis on the development of high-level models
rather than on source code. Models are not consid-
ered documentation or informal guidelines on how
to program the actual system. In contrast, models
have a well-defined syntax and semantics. Moreover,
model-driven software engineering aims at raising the
level of abstraction by the development of executable
models. Code generators are used in model-driven
software engineering to transform the specification of
higher-level models into source code.

Among others, domain-specific languages (DSLs)
and accompanying code generators are used to
achieve the goal of MDSE. A domain-specific lan-
guage (DSL) is a programming or specification lan-
guage which is dedicated to a particular problem do-
main. The vocabulary of the language is based on
abstractions which are closely aligned with the do-
main for which the language is built (Voelter et al.,
2013). Typically, DSLs come with a syntax which al-
lows to express these abstractions in a concise way,
either by text, symbols, graphics, tables or any com-
bination thereof.

In terms of MDSE, the central aspect of a DSL
is the underlying metamodel. Metamodels are used to
define the core concepts (abstract syntax) of modeling
languages. For object oriented modeling, the Object
Management Group (OMG) provides the Meta Object
Facility (MOF) standard (OMG, 2015). The MOF
standard has been adopted widely for defining meta-

models. A subset of MOF has been implemented in
the Eclipse Modeling Framework (EMF) (Steinberg
et al., 2009) and its meta-metamodel Ecore.

Over the years a complete ecosystem of model-
driven languages and accompanying tools has
emerged on top of EMF, including frameworks for
the specification of domain-specific languages. Xtext
(Bettini, 2016) is dedicated to the development of pro-
gramming languages and domain-specific languages.
As a language workbench, it provides support for
all aspects of a language infrastructure, ranging from
parsing, over linking to code generation or interpre-
tation. The framework is fully integrated into the
Eclipse IDE and its internal data structures are based
on Ecore.

In this paper, we present NICE (New Ideas for
Collection Expressions) – a flexible expression lan-
guage including a code generator for Java which may
be integrated into Xtext-based domain-specific lan-
guages. As a proof of concept, we demonstrate the in-
tegration of NICE into our model transformation lan-
guage BXtendDSL (Buchmann et al., 2022).

The paper is structured as follows: In section 2, re-
lated work is discussed and a background to our work
is provided. Our chosen approach is detailed in sec-
tion 3. An evaluation of our language is given in sec-
tion 4, while section 5 concludes the paper.

Hacker, O. and Buchmann, T.
NICE: A Flexible Expression Language.
DOI: 10.5220/0011712700003402
In Proceedings of the 11th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2023), pages 63-74
ISBN: 978-989-758-633-0; ISSN: 2184-4348
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

63

2 BACKGROUND AND RELATED
WORK

Over the years, many approaches and accompanying
tools for model transformations have been proposed,
which all allow for declarative specifications of the
respective model transformation problem. However,
our own observations and case studies (Anjorin et al.,
2020; Bank et al., 2020; Westfechtel and Buchmann,
2018; Buchmann and Westfechtel, 2016; Greiner and
Buchmann, 2016; Buchmann and Greiner, 2016b;
Buchmann and Greiner, 2016a) have revealed that all
of the approaches have limitations when conditional
creation of target elements is required. In this case,
imperative approaches like BXtend or BXtendDSL
are more powerful.

If we take a closer look at existing domain-specific
(model transformation) languages in the EMF ecosys-
tem, e.g. QVT-R (OMG, 2016), ATL (Jouault et al.,
2008), Acceleo1, or EVL+Strace (Samimi-Dehkordi
et al., 2018) it is obvious, that each of those languages
uses expressions to navigate along model elements
and to express constraints on model elements, like
e.g., guards (ATL and Acceleo) or pre- and postcon-
ditions of transformations (when and where clauses in
QVT-R). While the first three languages rely on OCL
(OMG, 2014), EVL+Strace makes use of the Epsilon
Object Language (EOL) (Kolovos et al., 2006), which
is also based on OCL expressions.

Since there is evidence (Hebig et al., 2018) that
functional-style languages like OCL and its deriva-
tives are harder to comprehend than their imperative
counterparts, a different approach to embedded ex-
pression languages is beneficial in that regard. This
is further supported by the fact that OCL was never
intended to describe behavior (only state and consis-
tency) which requires extensions and modifications
not compatible with the OCL standard (Cuadrado
et al., 2008; Brucker et al., 2014; Jouault and Beau-
doux, 2015; Jouault et al., 2015).

Furthermore, all of the above approaches that in-
corporate OCL or adapted variants, rely on an inter-
preter to execute the model transformations. How-
ever, since we intend to use our expression language
in BXtendDSL, code generation is required for inter-
operability. Due to the problems laid out in the previ-
ous paragraph, a code generator for OCL would also
not solve these issues.

Therefore, we set out to develop our own expres-
sion language, NICE, using the common DSL frame-
work Xtext2. While Xtext already includes an em-
beddable language fragment, called Xbase (Efftinge

1https://www.eclipse.org/acceleo/
2http://www.eclipse.org/Xtext

et al., 2012), that can in principle be added to any
Xtext-based language, we decided not to built upon
it in our use case for several reasons: First, Xbase is
heavily inspired by Java’s syntax and behavior, mak-
ing it more like a general purpose language. While it
is not impossible to add custom language constructs,
the preexisting infrastructure (provided for fast proto-
typing) has to be heavily modified, which is difficult
without knowing the intricacies of Xbase’s implemen-
tation due to a lack of documentation of many internal
components. Second, our goal is to simplify common
tasks necessary when developing model transforma-
tions using our expression language. Using Xbase as
a basis however would not be much different from the
existing approach of specifying transformation logic
in Xtend files (since Xbase is a part of Xtend). Since a
new language always requires a familiarization phase,
we can leverage this time to teach a user how to ex-
press their transformation concisely and efficiently
using the specialized features provided by the lan-
guage.

3 APPROACH

The following chapter discusses in detail the design
decisions behind our language, its implementation us-
ing the Xtext framework and the code generation en-
gine. We designed the first version of our language
with the intent to use it in our model transformation
language BXtendDSL.

3.1 Design Decisions

When taking a closer look at the usage of BXtendDSL
in several different transformation scenarios provided
with the BenchmarX (Anjorin et al., 2017b) testcases,
some common traits can be observed:

Acyclic Control Flow. The control flow leads from
the input parameters to the return value just by us-
ing conditions and function calls. Recursion and
while loops are only used in rare cases.

Imperative Nature. The transformation of input ob-
jects into output objects is specified in a purely
imperative way. Object-oriented concepts are not
employed. This is due to the fact that BXtendDSL
uses the generation gap pattern (Fowler and Par-
sons, 2010; Fowler, 2010) and hook methods,
which simply do not allow using many of the
object-oriented concepts.

Collections. Processing collections is a central as-
pect in many transformation languages, e.g., when

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

64

dealing with multivalued features or groups of ob-
jects. In this case, the Xtend language proves use-
ful due to the support for collection literals and
foreach loops. Furthermore, the developer is
provided with a fluent interface (Fowler and Par-
sons, 2010; Fowler, 2005) following the method-
chaining pattern utilizing the extension method
mechanism and a sophisticated standard library
(Mikosik, 2021).

No Side Effects. Most transformations may be real-
ized just with information obtained from the input
parameters and their respective correspondence
relations. But there are some exceptions, like
the Families2Persons-Benchmark (Anjorin et al.,
2017a), which requires additional relations be-
tween model elements to avoid information loss.

Null Safety. Especially in the case of incremental
transformations, null values may occur an thus
have to be handled easily. To this end, Xtend pro-
vides the Elvis-operator “?:”, which evaluates the
second argument if the first one is null, and also
the safe-navigation-operator “?.”, which evalu-
ates the whole expression to null if the object to
the left of the ? is null. In case a feature of an in-
put object has a null value or the input object itself
is null, this state shall be propagated to the output
object. Still, a way to check nullity is required
for assigning standard values to output objects in-
stead.
Based on these observations, similarities to exist-

ing applications are obvious. The first three items are
core properties of pipeline-based architectures, which
are designed to process a sequence of objects in many
smaller steps. The last two items may be identified
as typical properties of functional programming lan-
guages. A strictly functional language however is not
the best choice, since side effects are required in some
model transformations.

As a consequence, our expression language bor-
rows some constructs from the fields above. For in-
stance, the basic structure of our textual language is
based on a generalized pipeline model, which also al-
lows for branching in the object flow. Figure 1 depicts
a simplified diagram of this idea. The input nodes are
shown in green color at the very top, followed by three
processing layers which finally end up in the output
layer depicted in red color. Please note that nodes in
a processing layer may depend only on results of the
previous layers, leading to an acyclic graph.

While the straight-forward approach would be to
convert this diagram into graphical syntax, we opted
for a textual syntax instead. For one, because this
makes it easier to integrate the expression language
with existing textual languages. Additionally, tools

in i1 in i2 in i3

n1,1 n1,2 n1,3 n1,4 n1,5

n2,1 n2,2 n2,3

n3,1 n3,2

out o1 out o2

Figure 1: Possible object flow in our expression language.

for textual DSLs are much more mature and well
maintained.

Listing 1 shows the object flow depicted in fig-
ure 1 in the textual syntax of our expression language.
Input nodes are denoted using the keyword in. Links
between nodes are created by referencing them using
their names.

1 in -> i1, in -> i2, in -> i3

2 | fun n11: use(i1), fun n12: use(i2), fun n13: use(i2

, i3), fun n14: use(i3), fun n15: use(i3)

3 | fun n21: use(n11, n12, n13), fun n22: use(i3, n14),

fun n23: use(n15)

4 | fun n31: use(n21, n22), fun n32: use(n22, n23)

5 | out(n31) -> o1, out(n32) -> o2

Listing 1: Textual representation of figure 1.

The left hand side of the arrow -> contains an (op-
tional) argument which is bound to the input node. It
may contain all elements on which the navigation op-
erator . may be used, like e.g., variables, method calls
or classes. Since the expression language will be used
in BXtendDSL, arguments of input nodes may be fea-
tures of source or target elements (cf. listing 2, l. 5).

Output nodes are denoted using the keyword out.
Objects, which are the results of nodes listed in the
brackets are assigned to an output element. Note, that
listing multiple nodes in a single output node results
in aggregating the incoming objects into a single col-
lection. The output element itself is optional and is
valid within the surrounding scope. If there is no out-
put element, a return value will be created (cf. list-
ing 2, l. 6).

Transformation nodes are composed of a single
expression or the keyword pass. This type of node
is used to transform an incoming stream of objects
into an outgoing stream of objects. Since functions,
introduced by the keyword fun, are treated as a single

NICE: A Flexible Expression Language

65

expression, transformation nodes may become arbi-
trarily complex (cf. listing 2, l. 7).

Nodes are aggregated into pipelines which model
the object flow. Pipelines may be nested inside blocks
of statements and thus act similarly to foreach loops
known from imperative programming languages (cf.
listing 2, ll. 1 and 9).

The inner structure of the expression language is
strongly influenced by procedural and functional as-
pects. Furthermore its syntax is inspired by the pro-
gramming language Python (as it is also white-space
aware).

Statements as the most general language construct
are divided into pipelines (as mentioned above), vari-
able declarations, control flow manipulation, and ex-
pressions. Since variables are meant to always be final
to avoid problems with captures, the right hand side
of variable declarations may contain arbitrary expres-
sions and pipelines, allowing for control structures
directly in the initialization. The keywords yield
and break manipulate the control flow, which may
also return optional values for the surrounding block.
In our language, yield is a mixture between Java’s
return statement and Python’s yield statement and
thus it resembles the yield expression used in switch
statements, introduced in Java 14. The keyword pass,
also known from Python, is used to fill empty se-
quences of statements to allow for white-space aware-
ness of the language (cf. listing 2, l. 9).

Finally, arbitrary expressions are grouped into
typical control structures, binary and unary operators,
as well as navigable elements (cf. listing 2, ll. 10-22).

3.2 Implementation

In this section we give an overview of the implemen-
tation of the expression language.

3.2.1 Grammar

We use the Xtext framework to implement our ex-
pression language. Xtext allows to specify a context
free grammar enriched with information on how to
populate the AST, which is based on an Ecore model
(Steinberg et al., 2009). An ANTLR3 grammar is au-
tomatically derived from the Xtext grammar and used
for parser generation. A few modifications in Xtext’s
parser handling have been made to facilitate more
flexible white-space awareness and less rigid opera-
tor definitions.

3.2.2 Java and EMF Interoperability

A very important feature for our expression language
is interoperability with one (or more) high level pro-

1 Pipeline: Level (’|’ Level)+

2 Level: Node (’,’ Node)*

3

4 Node: InputNode | OuputNode | TransformationNode

5 InputNode: ’in’ Accessible? (’->’ ID)?

6 OuputNode: ’out’ (’(’ ID (’+’ ID)* ’)’)? (’->’

(Accessible | ’void’))?

7 TransformationNode: Expression | ’pass’

8

9 Statement: Pipeline | VariableDeclaration |

Expression | ’yield’ Expression? | ’break’

Expression? | ’pass’

10 Expression: Function | If | Switch | While |

BinaryOperatorCall

11 Function: ’fun’ ID? (’(’ Variable (’,’ Variable)*

’)’)? ’:’ (Expression | Statements+)

12 BinaryOperatorCall: PrefixOperatorCall BinaryOperator

PrefixOperatorCall

13 PrefixOperatorCall: PrefixOperator?

PostfixOperatorCall

14 PostfixOperatorCall: Accessible PostfixOperator?

15 Accessible: (Literal | ’(’ Expression ’)’) Access*

16 Access: CallOperator | ’.’ ID | ’::type’ | ’::meta’ |

’::raw’

17 CallOperator: ’(’ (Expression (’,’ Expression)*)? ’)’

18

19 Literal: Primitive | Collection | IdReference

20 Primitive: IntLiteral | FloatLiteral | StringLiteral

| BoolLiteral

21 Collection: List | Set | Map

Listing 2: Excerpts from NICE’s grammar in an Xtext-like
EBNF notation. Rules not shown are defined similarly to
Python’s syntax.

gramming languages. Since Eclipse and Xtext consti-
tute our environment, Java is the natural choice. Fur-
thermore, Xtend/Xbase are languages created with the
Xtext framework which already provide such an in-
teroperability allowing us to built upon existing sys-
tems. In particular we can reuse the provided Java
metamodel and accompanying tools like type refer-
ences.

The main goal is to support Java types and Ecore
types in our expression language by using a scope
provider which creates a model for Java packages us-
ing the classpath of the respective Eclipse project.
In the current version of our expression language,
we do not support an import mechanism for classes,
since we intend to use the expression language as a
sub-language for our model transformation language,
which already supports import mechanisms. Based on
classes, static methods and constructors may be called
resulting in complete interoperability.

Another benefit is our standard library. We
follow a modular approach by providing the an-
notations @NICEDefaultImportProvider and
@NICEDefaultImport. While the expression lan-
guage itself does not support imports on a file

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

66

level, these annotations allow for specifying project-
specific standard imports. Both annotations influence
the behavior of our scope provider.

An application of this default import mechanism
can be found in the realization of the language’s op-
erators. For this purpose, static methods with corre-
sponding names are annotated with the respective im-
port annotations and imported into the global scope.
This mechanism allows for the redeclaration of oper-
ators similar to C++ or Python, since local definitions
overwrite existing definitions in the classpath.

Furthermore, operators may be decorated with the
Xbase annotation @Inline which uses the String con-
tained in the annotation instead of a method call.

Our language does not only allow for the adap-
tion of existing operators using imports, but also for
declaring additional operators. To this end, the class
NICEDEfaultOperatorDeclarations has to be ex-
tended. An operator in the expression language con-
sists of a character sequence, a name for the imple-
menting method(s), an arity for the operator and a
precedence. In case of operator overloading, the op-
erator with matching parameter types is called.

Since operator precedences may be assigned ar-
bitrarily, they are not hard-coded into the grammar
as usual, but must be corrected explicitly by post-
processing the AST.

3.2.3 Type System and Type Inference

Xbase’s Java metamodel and its accompanying
helpers mentioned above are also used for typing our
expression language. NICE does not support explicit
typing by design, instead types of composite expres-
sions are inferred. This further helps the Python-
esque appearance and usage of our language.

Since some of the tools for Xbase’s type inference
work just within the bounds of its Java metamodel
(and are thus independent of Xbase itself), we can
build upon them. Unfortunately the type inference
mechanism per se is not implemented in a language-
independent way and thus we had to reimplement it
for NICE.

NICE’s type inference is realized by an exter-
nal visitor, which traverses language model ele-
ments. In case a method or operator which is
not yet linked is found, the possible scope for this
context is used to perform overload resolution and
preemptive linking (which is queried by the scope
provider at a later time). When visiting EMF ele-
ments, like EOperation or EStructuralFeature,
the respective type is mapped to the Java meta-
model in order to allow usage of the helper
class LightweightTypeReference, which is part of
Xbase’s type computation system and contains many

useful functionalities. The standard behavior for re-
solving EMF elements is to check the respective gen-
erator model and find the generated Java classes. If
that is not possible, e. g. because we can’t find the
generator model, a workable substitute is built on de-
mand.

3.3 Semantics and Code Generation

In order to execute NICE programs, we provide a
code generator producing readable Java code. In con-
trast to using an interpreter, native Java code provides
performance benefits and an easier integration into
existing Java projects. In the following subsections,
we will briefly describe the respective parts of the
code generator and in the process the semantics of the
expression language.

3.3.1 Mapping of Pipelines

Each NICE program starts with a top level element
consisting of exactly one pipeline which contains the
remaining elements. As described in section 3.1, the
first layer only contains input nodes whereas the last
layer only contains output nodes. Input and output
nodes, which are declared on intermediate layers are
treated for code generation purposes as if they were
part of the input or output layer respectively.

The outermost pipeline is transformed into a Java
class which contains Java code generated from its in-
ner elements. Depending on the number and type of
output nodes, the generated Java class implements the
respective functional interfaces in Java’s (java.util
.function) and Xbase’s (org.eclipse.xtext.
xbase.lib.(Functions|Procedures)) standard li-
braries.

Nested pipelines, which are declared within a par-
ent pipeline are also mapped to Java classes. Since
Java allows nesting classes, the pipeline structure may
be directly reflected.

Figure 2 depicts a root pipeline with the properties
described above and the generated components from
the respective input and output nodes, as described in
the following subsections.

Pipelines, which reflect a linear object flow with
only one input and output node, and on each interme-
diate layer only one transformation node respectively,
are mapped directly to a corresponding chain of Java
Stream methods, following the method-chaining pat-
tern.

3.3.2 Mapping of Input Nodes

Input nodes contribute three artefacts for the gener-
ated pipeline class: (1) parameters of the constructor

NICE: A Flexible Expression Language

67

1 in [42, 43, 44] -> x,
2 in [45] -> y,
3 in 46 -> z
4 | x + y + z
5 | out

1 public class PipelineClass implements Function0<List<Integer>>, Supplier<
List<Integer>> {

2 private final List<Integer> x;
3 private final List<Integer> y;
4 private final int z;
5

6 public PipelineClass() {
7 List<Integer> _list0 = new ArrayList<>();
8 _list0.add(42);
9 _list0.add(43);

10 _list0.add(44);
11 this.x = _list0;
12 List<Integer> _list1 = new ArrayList<>();
13 _list1.add(45);
14 this.y = _list1;
15 this.z = 46;
16 }
17

18 private Stream<Integer> node_1_0(Stream<Integer> x, Stream<Integer> y,
Optional<Integer> z) {

46 // ...
47 }
48

49 public List<Integer> apply() {
50 Optional<Integer> _z = Optional.ofNullable(z);
51 List<Integer> _node_1_0 = node_1_0(x.stream(), y.stream(), _z).

collect(Collectors.toList());
52 return _node_1_0;
53 }
54

55 public List<Integer> get() {
56 return apply();
57 }
58 }

Codegen.

Figure 2: Pipeline generation. The method node_1_0 is omitted due to its complexity and length.

are derived from external dependencies of the node (if
present). (2) The argument expression on the left hand
side of the -> is transformed into statements which
are placed into the body of the constructor of the gen-
erated class. (3) A field with the corresponding as-
signment in the constructor is generated, which has
the type of the argument expression. This allows for
arbitrary preprocessing steps in the argument of the
input node, or assertion of preconditions as long as
they consist of a single expression.

3.3.3 Mapping of Output Nodes

Processing the output nodes is done in the context of
the last layer, which from the code generator’s per-
spective just contains all output nodes. The code gen-
erator for this last layer creates execution methods,
which implement the interfaces of the pipeline class.
Java elements generated from output nodes are placed
within those methods. In addition, the remaining sin-
gle nodes are linked here according to the following
steps: fields of classes generated from input nodes are
transformed into null-safe objects (Stream/Optional)
and methods generated from transformation nodes are
called with respect to their dependencies. Finally,
statements generated from output nodes are inserted,
returning objects processed by the pipeline.

We have to distinguish between several cases
when generating code for output nodes: In case there

is only a single output node, which does not contain
an output element, a pipeline with return value, whose
type depends on the single output node is generated.
If the output element void is specified explicitly this
results in a pipeline without return value. For multi-
ple output nodes without explicit output elements, a
helper class for the return value is created containing
the respective fields. Output nodes with output ele-
ments, result in generated parameters for the method
to be executed, requiring their value to be settable via
side-effects.

In case the output element is a variable, an assign-
ment is generated. Since Java does not support point-
ers to variables, this case always has to be treated from
the surrounding context of the pipeline, i.e. during the
compilation of the output node this case is treated as
if no output element was specified, which results in
the creation of a return value as described above.

A feature access as an output element allows for
a local decision, since the context – the object which
is accessed – is present as a method parameter. In
case of a multi-valued feature, we check for a getter
which allows for calling the methods clear followed
by add or addAll. If this is not the case, we search
for a setter – like in case of a single-valued feature.
If a setter is also not present, the respective fields are
checked for visibility and a possible final keyword in
order to generate an assignment.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

68

3.3.4 Mapping of Transformation Nodes

As stated above, transformation nodes are mapped
onto methods. Dependencies to nodes on preceeding
layers are passed as parameters. All nodes in NICE
are either of type Optional or when multiple ele-
ments are involved of type Stream to use the capabil-
ities of both APIs and to provide null-safety as far as
possible. The methods generated from transformation
nodes are also just containers for statements which re-
sult from the contained NICE expression. We also can
distinguish three cases here:

Mapping Nodes. A mapping node is a simple trans-
formation node which only contains a single,
multi-valued dependency, i.e. it requires only one
parameter of type Stream and does not access it
in the context of the special raw-access. Conse-
quently, references to that node act in NICE just
as references to single element of the underlying
stream. Thus, the method Stream::map may be
called on the single parameter, while the remain-
ing logic is contained in the passed lambda ex-
pression.

Filtering-If Nodes. A so called filtering-if node is
present if a node fulfills all properties of a map-
ping node and in addition contains a single if-
statement or a function with an if-statement as
last statement, which has the following properties:

• the last statement is either an if or yield state-
ment.

• statements prior to the last statement can not
terminate the control flow preemptively (i.e.,
they don’t contain yield statements).

• the conditions above hold recursively for the
last statements in the body of the if statement.

The advantage when using filtering-if is that this
construct can be compiled directly to a call of the
method Stream::filter.

Aggregating Nodes. Nodes with multiple dependen-
cies of type Stream result in the generation of
an aggregating node. Since referenced nodes in
the expression language contain their component
type, the generated code must allow access to sin-
gle elements of the incoming Streams. This is
achieved by a generated implementation of the
Spliterator interface.

3.3.5 Mapping of Statements

A characteristic of NICE statements is the option to
be grouped into blocks with further statements. State-
ments subsume all language constructs in the expres-
sion language, like pipelines, variable declarations,

expressions, as well as yield, pass and break state-
ments. Pipelines used as statements have already been
discussed in section 3.3.1. Variable declarations re-
sult in the generation of a local variable declaration
in Java with the respective type. break statements
may also be mapped directly to the corresponding
Java statement, as they may only occur in while loops
and switch statements. Treating yield statements is
very similar: If they occur in a pure statement con-
text, i.e. expressions in the containment hierarchy of
the surrounding function or node are used as state-
ments, return statements are generated. Otherwise
they function like an assignment to an expression’s
result variable. Finally, the pass statement also has
a different semantics depending on the context where
it is used. If it is used in a list of statements, pass
acts like an empty statement ; in Java. The pass state-
ment may also be used instead of the implementation
of a transformation node. In this case, the result of
the node with the same index of the previous layer is
passed through.

3.3.6 Mapping of Expressions

When mapping expressions, we have to consider two
different categories: NICE expressions that may be
directly transformed into Java expressions and those
that require multiple Java statements. A compiled
NICE expression always consists of an arbitrary num-
ber of statements and a single expression which can
be consumed by further statements. This allows for an
easy recursive mapping of nested NICE expressions
which result in multiple Java statements with the abil-
ity to return a resulting expression for the outermost
element.

Operators are directly compiled into the respective
method calls of the linked operator methods.

Transforming primitive literals is also straight-
forward, since NICE only supports int, double,
String and boolean. They are mapped onto the re-
spective Java literals.

Functions may also be generated in an easy way,
since the most complex part comprises the implemen-
tation of the type inference, as stated above. If func-
tions are used as arguments of method calls, they are
compiled into the respective lambda expressions. In
case functions are used as the content of a transfor-
mation node, this is not possible. Instead, they are di-
rectly generated into the method body of the method
generated for the transformation node. This allows
nodes to consist of multiple statements.

Since Java does not support collection literals,
they must be split into multiple statements. To not
restrain users in using them, no helper methods like
List.of(...) or Map.of(...) are used, as they

NICE: A Flexible Expression Language

69

result in unmodifiable collections. We follow a very
pragmatic approach instead: Lists result in instances
of ArrayList, Sets in LinkedHashSet and dictionar-
ies in LinkedHashMap. This allows for preserving the
ordering of the declared elements. After an instance
of a collection has been created, elements are added
one after another using the respective methods.

An access expression always results in the cre-
ation of a respective access in Java, which may differ
significantly from the NICE expression depending on
the type of navigation operation and linked feature.

Generation of named references depends on the
referenced object. For elements of the expression lan-
guage and external parameters required for interoper-
ability with BXtendDSL, the surrounding scope con-
tains a Java variable which will be linked. If named
references are used to access members, we distinguish
between EMF and Java elements, the first of which
is mapped to usable Java expressions using the EMF
generator model, while the latter ones can simply be
inserted.

The control structures while, if, and switch
are mapped to their corresponding Java counterpart.
Since they may occur as right hand sides of expres-
sions, a corresponding variable holding the result of
the expression is created when necessary.

4 EVALUATION

As a proof of concept, we integrated the expression
language NICE into our model transformation lan-
guage BXtendDSL (Buchmann et al., 2022; Bank
et al., 2021) in order to express a larger part of a model
transformation on the declarative layer.

Since Xtext provides built-in mechanisms for
reuse and composition of existing grammars, using
NICE from within the BXtendDSL grammar is easy.
Please note that slight changes in the syntax of BX-
tendDSL were introduced when we integrated NICE.
Especially, the filter modifiers of BXtendDSL are no
longer referred to using the pipe (|) symbol to avoid
conflicts with NICE. Instead, BXtendDSL filters are
now specified using the ”greater” (>) symbol. Fur-
thermore, the mapping operators (<-->, -->, and
<--) have been replaced with named blocks (oneway
mapping and mapping).

4.1 Transformation Problem

In order to allow for a detailed comparison, we
discuss the benefits of NICE using the Families-
to-Persons transformation example (Anjorin et al.,
2017a). A detailed description of the transformation

problem and the solution using BXtendDSL (with-
out the expression language) is given in (Bank et al.,
2021). Due to space restrictions, the reader is kindly
referred to (Bank et al., 2021) for more details.

4.2 Solution

For solving the Families-to-Persons transformation
problem using BXtendDSL and NICE, we imple-
mented feature mappings and modifiers directly on
the DSL layer. Since NICE expressions are com-
piled into source code, this results in less speci-
fication effort required on the imperative layer of
BXtendDSL. In contrast to the BXtendDSL spec-
ification without NICE discussed in (Bank et al.,
2021), the classes Member2FemaleUserImpl and
Member2MaleUserImpl are no longer necessary,
since the corresponding filter modifiers are now di-
rectly expressed using NICE, as shown in lines 67-72
and 79-84 of listing 3.

Furthermore, the hook methods in the forward
direction in class Member2PersonUserImpl is no
longer required, since the respective behavior is now
specified with NICE, as shown in lines 27-40 and 47-
60 of listing 3.

This helps to dramatically reduce the user sup-
plied code which was required on the imperative layer
in the solution discussed in (Bank et al., 2021). How-
ever, the current solution using NICE still requires a
small portion of user supplied code on the imperative
layer: the backward mapping requires access to the
transformation options specified in lines 7 and 8 of
listing 3, which NICE doesn’t yet support. Further-
more, the create modifier can’t be compiled, since it
sets a newly created person’s birthday using a cache
in the class Member2PersonUserImpl, which is not
available in the pipeline (since a rule’s instance is not
easily accessible).

4.3 Empirical Results

In the following, we provide a quantitative analysis, a
qualitative analysis as well as a performance analysis.

4.3.1 Quantitative Analysis

In our quantitative analysis, we compare the specifica-
tion effort required to realize both solutions. Since in
both cases, a textual concrete syntax is used, a quanti-
tative impression of the size of the transformation def-
initions may be obtained by counting the number of
lines of code (excluding empty lines and comments,
as well as automatically generated lines), the number
of words (character strings separated by whitespace)

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

70

Listing 3: Solution to the Families-to-Persons transforma-
tion problem using BXtendDSL and NICE.

in these lines, and the number of characters in these
words. Table 1 depicts the values obtained for those
metrics for BXtendDSL and BXtendDSL+NICE. For
both solutions, only those lines were counted which
had to be written manually. In both cases, we counted
the code specified directly on the DSL (declarative)
layer, as well as the code required on the impera-
tive layer. The same layout conventions and program-
ming practices have been applied. As expected, mov-
ing logic from the imperative layer to the declarative
one using NICE increases the size of the latter while
shrinking the former by a similar amount. In total
however, the size of the transformation definition in-
creases slightly due to the introduction of new key-
words and restructuring of BXtendDSL’s grammar af-
ter integrating NICE, as explained above. The biggest
benefit is the significant reduction of code required
on the imperative layer, and thus, avoiding context
switches for the transformation developer, since the
transformation may now be described (almost) com-
pletely on the declarative layer.

Table 1: Amount of handwritten code of the transforma-
tion definitions of both solutions to the Families-to-Persons
case, split by declarative and imperative layers.

Metric BXtendDSL BXtendDSL+NICE

Decl. Imp. Decl. Imp.

Lines of code 24 65 83 37

#words 65 226 191 115

#characters 738 2512 1986 1728

4.3.2 Qualitative Analysis

In order to perform a qualitative analysis, test cases
for the different transformation directions have been
specified and executed for both batch and incremen-
tal mode of operation. We assume a test case to be
passed, if the resulting model matches a predefined
expected model state. The BXtendDSL solution is
able to pass all tests specified in (Anjorin et al., 2020).
The same holds for the BXtendDSL+NICE solution.
Table 2 gives an overview of the tests and the obtained
results following the criteria used in (Anjorin et al.,
2020). Please note that two unexpected passes are due
to cases that test for order-dependent update behavior
(which state-based tools cannot provide).

The qualitative analysis shows that the correctness
of the transformation is not affected by introducing
the expression language NICE into BXtendDSL rules.
Moreover, with respect to functional requirements
both BXtendDSL and BXtendDSL+NICE achieve a
perfect result: Both solutions pass all test cases. None

NICE: A Flexible Expression Language

71

Table 2: Aggregate test results, grouped into categories and
classified as expected/unexpected passes/fails.

Category Result BXtendDSL BXtendDSL

+NICE

expected pass 7 7

Batch expected fail 0 0

FWD unexpected pass 0 0

unexpected fail 0 0

expected pass 11 11

Batch expected fail 0 0

BWD unexpected pass 0 0

unexpected fail 0 0

expected pass 8 8

Incr. expected fail 0 0

FWD unexpected pass 0 0

unexpected fail 0 0

expected pass 7 7

Incr. expected fail 0 0

BWD unexpected pass 1 1

unexpected fail 0 0

Total

expected pass 33 33

expected fail 0 0

unexpected pass 1 1

unexpected fail 0 0

of the other solutions compared in (Anjorin et al.,
2020) exhibit a pass rate of 100%.

4.3.3 Performance Analysis

In order to evaluate the efficiency and scalability of
the resulting transformation with respect to increasing
model size, two experiments were conducted in both
forward and backward directions for each of the trans-
formation problems resulting in four sets of measure-
ments: (1) batch transformations in forward and back-
ward directions, and (2) incremental transformations
in forward and backward directions. The batch trans-
formations test how the solutions scale when creat-
ing corresponding opposite models of increasing size
(model size up to 1 000 000 elements). For incre-
mental transformations, the time required to locate
and propagate corresponding changes to the depen-
dent model is measured.

The tests were performed on the same machine
and in isolation for each solution and each transfor-
mation problem. A desktop PC with an AMD Ryzen 7
3700X CPU was used, running at a standard clock of
3.60 GHz, with 32 GB of DDR4 RAM and Microsoft
Windows 10 64-bit as the operating system. We used
Java 13.0.2, Eclipse 4.11.0, and EMF version 2.17.0

to compile and execute the Java code for the scalabil-
ity test suite. Each test was repeated 5 times and the
median measured time was computed.

Our experiments show, that introducing an addi-
tional language on the declarative layer and a corre-
sponding code generator introduces a slight overhead
in runtime. But the overall transformation still resides
in the same complexity class. While the times for for-
ward and backward batch transformations are nearly
the same for BXtendDSL and BXtendDSL+NICE,
the pure BXtendDSL solution is slightly faster in both
incremental cases.

The corresponding plots rendered from our exper-
iments are shown in figure 3 and figure 4, respectively.

4.4 Summary

As expected, the use of BXtendDSL+NICE reduces
the specification effort on the imperative layer sig-
nificantly, by allowing to express large parts of the
transformation now directly on the declarative layer.
Functional correctness is not affected negatively; the
full expressiveness of BXtendDSL is retained in
the combination of BXtendDSL+NICE. Finally, the
BXtendDSL+NICE solution proves scalable since it
roughly exhibits linear performance. Compared to
plain BXtendDSL, there are only small differences in
computation time.

5 CONCLUSION

In this paper, we presented NICE – a flexible ex-
pression language including a Java code generator,
which may be easily integrated into any Xtext-based
domain-specific language. As a proof of concept, we
integrated NICE into our model transformation lan-
guage BXtendDSL. In the evaluation chapter in sec-
tion 4 we show, that the language can be used to
specify expressions in a declarative way and using
the built in code generator, context switches in BX-
tendDSL between the declarative and the imperative
layer are significantly reduced.

Future work deals with further improving the in-
tegration of NICE and BXtendDSL to also allow easy
usage of BXtendDSL options, and to allow NICE
pipelines to access elements declared on the impera-
tive layer. Additionally, unnecessary repetitions in in-
put layers of pipelines can be eliminated by inferring
the available variables from the BXtendDSL context.
To further reduce redundancy, stand-alone pipelines
could be introduced to encapsulate common behav-
ior. Another avenue to investigate is the addition of a
graphical editor for NICE pipelines.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

72

model elements

tim
e

in
 s

0,00

0,25

0,50

0,75

1,00

1,25

200000 400000 600000 800000

BXtendDSL BXtendDSL+NICE

Batch Forward

model elements

tim
e

in
 s

0,0

0,5

1,0

1,5

200000 400000 600000 800000

BXtendDSL BXtendDSL+NICE

Incremental Forward

Figure 3: Forward batch (left) and incremental (right) transformation.

model elements

tim
e

in
 s

0,00

0,25

0,50

0,75

1,00

1,25

200000 400000 600000 800000

BXtendDSL BXtendDSL+NICE

Batch Backward

model elements

tim
e

in
 s

0,00

0,25

0,50

0,75

1,00

1,25

200000 400000 600000 800000

BXtendDSL BXtendDSL+NICE

Incremental Backward

Figure 4: Backward batch (left) and incremental (right) transformation.

REFERENCES

Anjorin, A., Buchmann, T., and Westfechtel, B. (2017a).
The families to persons case. In Garcı́a-Domı́nguez,
A., Hinkel, G., and Krikava, F., editors, Proceedings
of the 10th Transformation Tool Contest (TTC 2017),
co-located with the 2017 Software Technologies: Ap-
plications and Foundations (STAF 2017), Marburg,
Germany, July 21, 2017, volume 2026 of CEUR Work-
shop Proceedings, pages 27–34. CEUR-WS.org.

Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z.,
Ko, H., Eramo, R., Hinkel, G., Samimi-Dehkordi, L.,
and Zündorf, A. (2020). Benchmarking bidirectional
transformations: theory, implementation, application,
and assessment. Softw. Syst. Model., 19(3):647–691.

Anjorin, A., Diskin, Z., Jouault, F., Ko, H., Leblebici, E.,
and Westfechtel, B. (2017b). Benchmarx reloaded:
A practical benchmark framework for bidirectional
transformations. In Eramo, R. and Johnson, M., ed-
itors, Proceedings of the 6th International Workshop
on Bidirectional Transformations co-located with The
European Joint Conferences on Theory and Prac-
tice of Software, BX@ETAPS 2017, Uppsala, Sweden,
April 29, 2017, volume 1827 of CEUR Workshop Pro-
ceedings, pages 15–30. CEUR-WS.org.

Bank, M., Buchmann, T., and Westfechtel, B. (2021). Com-
bining a declarative language and an imperative lan-
guage for bidirectional incremental model transforma-
tions. In Hammoudi, S., Pires, L. F., Seidewitz, E.,
and Soley, R., editors, Proceedings of the 9th Interna-
tional Conference on Model-Driven Engineering and

Software Development, MODELSWARD 2021, On-
line Streaming, February 8-10, 2021, pages 15–27.
SCITEPRESS.

Bank, M., Kaske, S., Buchmann, T., and Westfechtel, B.
(2020). Incremental bidirectional transformations:
Evaluating declarative and imperative approaches us-
ing the ast2dag benchmark. In Ali, R., Kaindl, H.,
and Maciaszek, L. A., editors, Proceedings of the
15th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2020,
Prague, Czech Republic, May 5-6, 2020, pages 249–
260. SCITEPRESS.

Bettini, L. (2016). Implementing Domain-Specific Lan-
guages with Xtext and Xtend. Packt Publishing, Birm-
ingham, UK.

Brucker, A. D., Clark, T., Dania, C., Georg, G., Gogolla,
M., Jouault, F., Teniente, E., and Wolff, B. (2014).
Panel discussion: Proposals for improving OCL. In
Brucker, A. D., Dania, C., Georg, G., and Gogolla, M.,
editors, Proceedings of the 14th International Work-
shop on OCL and Textual Modelling co-located with
17th International Conference on Model Driven En-
gineering Languages and Systems (MODELS 2014),
Valencia, Spain, September 30, 2014, volume 1285 of
CEUR Workshop Proceedings, pages 83–99. CEUR-
WS.org.

Buchmann, T., Bank, M., and Westfechtel, B. (2022). Bx-
tenddsl: A layered framework for bidirectional model
transformations combining a declarative and an im-
perative language. J. Syst. Softw., 189:111288.

NICE: A Flexible Expression Language

73

Buchmann, T. and Greiner, S. (2016a). Bidirectional model
transformations using a handcrafted triple graph trans-
formation system. In Cabello, E., Cardoso, J., Lud-
wig, A., Maciaszek, L. A., and van Sinderen, M., ed-
itors, Software Technologies, 11th International Joint
Conference, ICSOFT 2016, Lisbon, Portugal, July 24-
26, 2016, Revised Selected Papers, volume 743 of
Communications in Computer and Information Sci-
ence, pages 201–220. Springer.

Buchmann, T. and Greiner, S. (2016b). Handcrafting a
triple graph transformation system to realize round-
trip engineering between UML class models and java
source code. In Maciaszek, L. A., Cardoso, J., Lud-
wig, A., van Sinderen, M., and Cabello, E., editors,
Proceedings of the 11th International Joint Confer-
ence on Software Technologies (ICSOFT 2016) - Vol-
ume 2: ICSOFT-PT, Lisbon, Portugal, July 24 - 26,
2016, pages 27–38. SciTePress.

Buchmann, T. and Westfechtel, B. (2016). Using triple
graph grammars to realise incremental round-trip en-
gineering. IET Softw., 10(6):173–181.

Cuadrado, J. S., Jouault, F., Molina, J. G., and Bézivin,
J. (2008). Optimization patterns for ocl-based model
transformations. In Chaudron, M. R. V., editor, Mod-
els in Software Engineering, Workshops and Symposia
at MODELS 2008, Toulouse, France, September 28 -
October 3, 2008. Reports and Revised Selected Pa-
pers, volume 5421 of Lecture Notes in Computer Sci-
ence, pages 273–284. Springer.

Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von
Massow, R., Hasselbring, W., and Hanus, M. (2012).
Xbase: implementing domain-specific languages for
java. In Ostermann, K. and Binder, W., editors,
Generative Programming and Component Engineer-
ing, GPCE’12, Dresden, Germany, September 26-28,
2012, pages 112–121. ACM.

Fowler, M. (2005). FluentInterface. https://www.
martinfowler.com/bliki/FluentInterface.html.

Fowler, M. (2010). Generation gap. https://martinfowler.
com/dslCatalog/generationGap.html.

Fowler, M. and Parsons, R. J. (2010). Domain-Specific Lan-
guages. Addison-Wesley Professional.

Frankel, D. S. (2003). Model Driven Architecture: Apply-
ing MDA to Enterprise Computing. Wiley Publishing,
Indianapolis, IN.

Greiner, S. and Buchmann, T. (2016). Round-trip engineer-
ing UML class models and java models: A real-world
use case for bidirectional transformations with QVT-
R. Int. J. Inf. Syst. Model. Des., 7(3):72–92.

Hebig, R., Seidl, C., Berger, T., Pedersen, J. K., and Wa-
sowski, A. (2018). Model transformation languages
under a magnifying glass: a controlled experiment
with xtend, ATL, and QVT. In Proceedings of the
2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering. ACM.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
ATL: A model transformation tool. Science of Com-
puter Programming, 72:31–39. Special Issue on Ex-
perimental Software and Toolkits (EST).

Jouault, F. and Beaudoux, O. (2015). On the use of active
operations for incremental bidirectional evaluation of

OCL. In Brucker, A. D., Egea, M., Gogolla, M., and
Tuong, F., editors, Proceedings of the 15th Interna-
tional Workshop on OCL and Textual Modeling co-
located with 18th International Conference on Model
Driven Engineering Languages and Systems (MoD-
ELS 2015), Ottawa, Canada, September 28, 2015,
volume 1512 of CEUR Workshop Proceedings, pages
35–45. CEUR-WS.org.

Jouault, F., Beaudoux, O., Brun, M., Clavreul, M., and Sa-
vaton, G. (2015). Towards functional model transfor-
mations with OCL. In Kolovos, D. S. and Wimmer,
M., editors, Theory and Practice of Model Transfor-
mations - 8th International Conference, ICMT@STAF
2015, L’Aquila, Italy, July 20-21, 2015. Proceedings,
volume 9152 of Lecture Notes in Computer Science,
pages 111–120. Springer.

Kolovos, D. S., Paige, R. F., and Polack, F. (2006). The
epsilon object language (EOL). In Rensink, A. and
Warmer, J., editors, Model Driven Architecture -
Foundations and Applications, 2nd European Confer-
ence, ECMDA-FA 2006, Bilbao, Spain, July 10-13,
2006, Proceedings, volume 4066 of Lecture Notes in
Computer Science, pages 128–142. Springer.

Mikosik, M. (2021). FluentIterable. https:
//guava.dev/releases/21.0/api/docs/com/google/
common/collect/FluentIterable.html.

OMG (2014). Object Constraint Language. OMG, Need-
ham, MA, formal/2014-02-03 edition.

OMG (2015). Meta Object Facility (MOF) Version 2.5.
OMG, Needham, MA, formal/2015-06-05 edition.

OMG (2016). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.3.
Needham, MA, formal/2016-06-03 edition.

Samimi-Dehkordi, L., Zamani, B., and Kolahdouz-Rahimi,
S. (2018). EVL+strace: a novel bidirectional model
transformation approach. Information and Software
Technology, 100:47–72.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Boston, MA, 2nd
edition.

Voelter, M., Benz, S., Dietrich, C., Engelmann, B., He-
lander, M., Kats, L. C. L., Visser, E., and Wachsmuth,
G. (2013). DSL Engineering - Designing, Imple-
menting and Using Domain-Specific Languages. dsl-
book.org.

Völter, M., Stahl, T., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley &
Sons.

Westfechtel, B. and Buchmann, T. (2018). Incremental bidi-
rectional transformations: Comparing declarative and
procedural approaches using the families to persons
benchmark. In Damiani, E., Spanoudakis, G., and
Maciaszek, L. A., editors, Evaluation of Novel Ap-
proaches to Software Engineering - 13th International
Conference, ENASE 2018, Funchal, Madeira, Portu-
gal, March 23-24, 2018, Revised Selected Papers, vol-
ume 1023 of Communications in Computer and Infor-
mation Science, pages 98–118. Springer.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

74

