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Abstract: The aim of this paper is to present goals and preliminary results of our project devoted to system engineering 
approach in prediction of metastases in lung cancer. More specifically we consider existing and develop new 
methods of system modeling, machine learning, signal processing and intelligent control to find biomarkers 
enabling prediction of risk of tumor spread and colonization of distant organs in non-small-cell lung 
carcinoma basing on clinical data and medical images. The results could bring us knowledge about the 
dynamics and origin of metastatic dissemination of lung cancer. By dynamics, we understand when and where 
a tumor will disseminate, and by origin we mean dissemination path (directly from original tumor or through 
lymphatic nodes). This information is very valuable for clinicians, as it could guide the personalized treatment 
of lung cancer patients. The results will elucidate important issues concerning prediction of individual 
progress of cancer and treatment outcome in oncology. They will provide both theoretical and simulation 
tools to support decision making and diagnostics in oncology, on the basis of individual patient state. 

1 INTRODUCTION 

In this paper we describe main goals and methods 
used in a project in which we combine system 
engineering methodology with clinical data to predict 
metastases in lung cancer. The interest of proposing 
original models and methods is to support analysis of 
clinical and imaging data and aim at better prediction 
of spread and colonization of tumor cells to distant 
organs, with emphasis on the most common subtype 
of lung cancer - non-small-cell lung carcinoma 
(NSCLC). Since the metastatic tumor is mainly 
incurable, due to its resistance to treatment, our 
research is directed to answer the following urgent 
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biological and clinical question: how, when, and 
where the primary tumor will spread to distant 
locations. The proposal is focused on reducing 
probability of metastasis and evolution of cancer in 
distant sites and emergence of evolving resistance to 
therapies. To verify applicability of these methods, all 
theoretical considerations are related to clinical data 
and radiological images, to which we have access. To 
reach that goal, both experimental and system 
modeling methods are employed in order to meet the 
following intermediate objectives:  

• Analysis of available radiomic data 
incorporated in Positron Emission Tomography/ 
Computed Tomography (PET/CT) images, and 
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application of signal processing and statistical 
inference tools to develop original estimators 
supporting prognosis of tumor spread to local 
lymph nodes and distant organs. 

• Development of stochastic compartmental 
models based on branching birth-death 
processes in which the primary tumors can 
metastasize to local lymph nodes and next, 
distant metastases can emerge in liver, brain, 
and bones. Inter-patient heterogeneity is 
accounted by assuming statistical distributions 
of model parameters, using the mixed-effects 
statistical framework.  

• Modification of existing mathematical models 
based on ordinary and/or partial differential 
equations describing cancer growth and therapy 
aimed at taking into account both local and 
distant metastases. Estimation of model 
parameters is based on available clinical data.  

• Development of machine learning tools required 
for integration of radiomic and clinical data with 
mathematical models mentioned above. 

• Modification of models based on evolutionary 
game theory supporting analysis of interaction 
of different cancer cells phenotypes leading to 
emergency of metastasis and resistance to 
treatment. 

2 BIOMEDICAL BACKGROUND 
AND JUSTIFICATION OF 
TACKLING SCIENTIFIC 
PROBLEM  

Lung cancer is one of the most commonly diagnosed 
cancer and is the leading cause of cancer-related 
deaths. The most common histological subtype is 
non-small-cell lung carcinoma (NSCLC), accounting 
for 85% of all lung cancer cases (Inamura, 2017). 
Advanced NSCLC is more likely to metastasize, 
leading to severe symptoms and a decrease in overall 
survival. The presence of distant metastases is one of 
the most predictive factors of poor prognosis (Popper, 
2016). Distant metastases (distant cancer) refer to 
cancers that have spread via blood or lymphatic 
vessels from the original location (the primary tumor) 
to distant organs or lymph nodes. The main cause of 
cancer death is associated with metastases, which are 
mainly incurable. Thus, distant cancer is resistant to 
treatment intervention. Even though cancer 
researchers have made a lot of effort to understand the 
appearance of metastases, only few preclinical studies 
about metastases were translated to clinical practice.   

The proposal aims at tackling metastases in the 
most common type of lung cancer. If successful, the 
project outcome will be information about the 
dynamics of tumor metastases in lung cancer, i.e., 
when, where, and how the primary tumor will 
metastasize. Information is extracted using a non-
invasive PET/CT imaging techniques. This 
information is incorporated in different types of 
known and original models using machine learning 
tools. The results could bring us knowledge about the 
dynamics and origin of metastatic dissemination of 
lung cancer. By dynamics, we understand when and 
where a tumor will disseminate, and by origin we 
mean dissemination path (directly from original 
tumor or through lymphatic nodes). This information 
is very valuable for clinicians, as it could guide the 
personalized treatment of lung cancer patients. 

3 MODELING METASTASIS – 
METHODS AND TOOLS  

Metastasis is a complex process that involves the 
spread of a cancer to distant parts of the body from its 
original site. In order to become clinically detectable 
lesions, it must complete a series of steps at multiple 
temporal and spatial scales. The deterministic 
description of this process is based on either ODE or 
PDE modes. Saidel et al. (Saidel et al, 1976) proposed 
a compartmentalized translational ODE model of 
metastasis distribution over the time. An important 
contribution, used as a basis of many subsequent 
works, in the field of modeling metastasis was 
introduced by K. Iwata et al. (Iwata et al, 2000). Their 
model for the colony size distribution of multiple 
metastatic tumors raising from untreated tumor is 
represented by the hyperbolic PDE. Model by Iwata 
et al. was further analyzed and extended by Barbolosi 
et al.(Barbolosi et al, 2009), Devys et al. (Devys et al, 
2009), and Benzekry (Benzekry E., 2011). In (Iwata 
et al, 2000, Barbolosi et al, 2009, Devys et al, 2009) 
the primary tumor is subject to the Gompertz law, 
while in (Benzekry E., 2011) the primary tumor is 
described by model of tumor growth including 
angiogenesis (Hahnfeldt et al, 1999). This model was 
developed further by the same group (Benzekry E. et 
al, 2016) in conjunction with clinical data and the 
mathematical formulation of a metastatic 
dissemination. A different, hybrid approach to the 
problem of modeling of invasive cancer and 
metastases was introduced by Franssen et al. 
(Franssen et al, 2019). The authors presented the 
general spatial modelling framework of the metastatic 
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spread of cancer. Their model was then simulated 
using clinical data from breast cancer patients and 
data of metastatic sites (bones, lung and liver). The 
model (Franssen et al, 2019) was further used by a 
group of Benzekry in (Bilous et al, 2019, Nicolo et al, 
2000). In (Nicolo, 2000) the authors compare 
predictions of the metastatic relapse given by a 
machine   learning and mechanistic modeling 
techniques. In (Bilous et al, 2019) a model of the 
dynamics of brain metastasis in NSCLCS is 
discussed. To our knowledge, this is the only work in 
which explicit metastasis in non-small cell lung 
cancer is taken into consideration in tumor dynamics 
modeling. In (Smieja et al, 2022) we have proposed 
probably the simplest model of tumor progression 
including metastasis. At the one hand, it contains the 
minimum number of compartments and parameters. 
At the other hand, it is able to represent 
heterogeneous response   treatment in a population of 
patients and provide a good fit to clinical survival 
curves or progression including metastasis which 
enables estimation of parameters based on clinical 
data. 

Stochastic modeling has been used in 
mathematical oncology for a relatively short time, 
and includes various techniques to take into account 
randomness in the process such as tumor progression 
or metastasis. Indeed, tumor growth is a random 
process as each tumor cell have different cell cycle 
length due to internal (process of DNA repair) or 
external factors (competition for space and 
resources). Thus, stochastic mathematical models 
provide a powerful toolbox for mechanistic modeling 
of cancer. We have developed a model of NSCLC 
progression and dissemination to local lymph nodes 
and distant sites (Kozłowska and Swierniak, 2022). 
The model is in the form of stochastic 
multicompartmental birth-death branching process 
model. The branching process is powerful tool in 
modeling various processes in biology, especially in 
cancer (see e.g. (Kimmel and Axelrod, 2015)). This 
mathematical framework is also useful for 
mathematical modeling of local metastases, as shown 
in (Haeno et al, 2012) by modeling metastases in 
pancreatic cancer. The structure of the proposed 
model is presented in Figure 1. 

The model considers Gompertzian growth of 
lung cancer cells from a single cell of Type I, which 
does not have the ability to metastasize. The cell, 
however, has accumulated all necessary aberrations 
needed for proliferation and has fitness advantage 
over healthy cells. Type I cell is also treatment-naïve 
and thus sensitive to chemo- and radiotherapy. At 
each discrete time point (representing the moment of 

cell division), the cell can divide or die, and the 
population of cells grows according to Gompertzian 
growth law. In addition, a cell has small probability 
to mutate to Type II cell, which has metastatic 
potential, during division.  Type II cell is an 
aggressive type of cells, thus its growth dynamics is 
exponential. This new type of cell appears with 
probability u per cell division, as shown in Figure 1 
A. Type II lung cancer cell can undergo a process of 
dissemination with probability m per cell division, 
leading to appearance of a new lung cancer cell in one 
of metastasis sites. We assume that the cells in 
metastasis sites are resistant to standard treatment, 
which is composed of chemotherapy combined with 
radiotherapy. 

 
Figure 1: Mathematical model of NSCLC progression and 
dissemination. A. Each cell in primary tumor compartment 
(lung) can undergo one of three processes division, death, 
and dissemination to local/distant site. Each cell in 
metastasis compartment can divide or die. We do not 
consider secondary metastases. B. Two paths of metastatic 
dissemination. Blue arrows indicate dissemination through 
lymphatic vessels and red ones through blood vessels. 

The model considers two ways of metastatic 
dissemination: through blood vessels (hematogenous 
route) and through lymphatic vessels (lymphatic 
route), as shown in Figure 1 B. The lymphatic route 
is shown in blue color, whereas hematogenous route 
is depicted with red color. In the first route of 
dissemination, lung cancer cells disseminate first 
through lymph nodes (local metastases), and next to 
one of three distant sites: brain, liver or bones. Those 
three distant sites characteristic for NSCLC 
metastasis. The hematogenous route of tumor 
dissemination is modelled as a single step process 
where a Type II lung cancer cell colonizes one of 
three distant site brain, liver or bones with probability 
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m. Global sensitivity analysis of a preliminary version 
of this model was performed in (Kozłowska and 
Swierniak, 2022). We found four parameters that 
affect MFS: the growth rate of the primary tumor, the 
growth rate of distant metastases, dissemination rate 
from the primary tumor to distant metastases, and 
carrying capacity. From all four parameters, we can 
control two of them (to some extent): the growth rate 
of the primary tumor (using chemotherapy) and 
carrying capacity (using antiangiogenic therapy). 

Yet another possibility for modeling invading 
and colonization of distant organs is given by 
evolutionary games. Evolutionary game theory 
(EGT) combines mathematical tools of theory of 
games with Darwinian adaptation and species 
evolution and may be applied to analysis and 
simulation of evolutionary changes within different 
subpopulations due to interactions between them. The 
result of these interactions (and, possibly, the effect 
of environment) is a change of the degree of 
evolutionary adjustment which, in turn, may cause 
stabilization of the population structure. Using EGT, 
it is possible to foresee, whether a population tends to 
be heterogeneous or rather only one phenotype 
survives and dominates. Introducing changes of the 
replicator equations (RE) describing the behavior in 
the population in time allows to follow dynamics of 
changes. EGT has also been applied to study 
development of cellular populations since cells, like 
whole organisms, compete for space and nutrients, 
exchange signals, cooperate, and show kinds of 
“altruism” resembling animals in evolution. Starting 
from the pioneering work of Tomlinson and Bodmer 
(Tomlinson and Bodmer, 1997) this machinery was 
used to model different tumor related phenomena. 
Basanta et al. (Basanta et al, 2008) were probably the 
first to use this machinery in modeling phenomena 
leading to tumor cell invasion and migration. The 
authors assume that at initial stage cancer cells are 
specified by autonomous growth and then they can 
switch to anaerobic glycolysis or become 
increasingly motile and invasive. It allows to study 
the circumstances, under which mutations  confer 
increased motility to cells needed for invasion of 
other tissues and metastasis. In their next paper 
(Basanta et al, 2010), the authors extended their 
model by adding phenotype which could switch to 
anaerobic glycolysis and be motile. Their model is 
directed to glioblastomas.  EGT is based on the 
assumption of perfect mixing inside the population 
(mean field approach) and interaction of each pair of 
strategies.  

To overcome this simplification and enable 
analysis of local arrangement and internal 

interactions in the neighborhood, the evolutionary 
games have been transferred into spatial lattice by 
application of cellular automata techniques, leading 
to the so called spatial evolutionary game theory. In 
(Swierniak and Krzeslak, 2013) the analysis of all 
these three models is appended by RE and SEGT 
tools (if absent in original study) which allows to give 
an approximate answer on questions regarding time 
and place of the switch, leading to tumor migration. 
In the project we propose more complex EGT models 
of tumor- tumor cells interactions containing different 
strategies of dissemination of NSCLC which will take 
into account results of other tasks in the project. 
Moreover, we apply new tools of spatial evolutionary 
tools, proposed recently. These tools take into 
account heterogeneity at the cell level (the so called 
Mixed Spatial Evolutionary Games – MSEG) and 
varying in time (and possibly also in space) effects of 
environment (Evolutionary Games with Resources 
and Spatial Evolutionary Games with Resources, 
respectively). In the former case it leads to multilayer 
structure of the game (Swierniak and Krzeslak, 2016) 
and in the latter case to time varying pay-off tables 
(Swierniak et al, 2018). Moreover, we propose new 
algorithms which enable modeling of 3D structure in 
spatial games.  

4 IMAGE PROCESSING, 
FEATURE EXTRACTION AND 
SELECTION, MACHINE 
LEARNING BASED MODEL   

Positron Emission Tomography/Computed 
Tomography (PET/CT) examination is currently 
routinely used in radiation treatment planning and 
staging of patients with NSCLC. It allows for 
relatively precise assessment of primary tumor 
volume and volume of involved mediastinal lymph 
nodes. Retrospective data (including PET/CT images 
and history of the treatment) for at least 100 patients 
with stage IIIAN2-IIIB NSCLC, who had pre-
treatment PET/CT imaging and underwent curative 
radio-chemotherapy have been selected and acquired 
from the database. For all those patients all clinical 
information will be extracted. Images acquired from 
PET/CT device and stored in a standard DICOM 
format (Digital Imaging and Communications in 
Medicine) will be processed to obtain a set of 
radiomics features. Target lesions, for primary tumor, 
as well as for nodes or metastatic lesions, are prepared 
manually by an experienced specialist, using medical 
image viewer software and/or automatically extracted 
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directly from image, if needed. All regions of interest 
(ROI) are stored for subsequent analyses. With high-
throughput computing, it is now possible to rapidly 
extract a vast number of quantitative features from 
tomographic images (computed tomography (CT), 
magnetic resonance (MR), positron emission 
tomography (PET)).  

The main concept behind this process was that 
biomedical images contain information reflecting 
underlying pathophysiology and that these 
relationships can be revealed via quantitative image 
analyses. The conversion of digital medical images 
into mineable high-dimensional data is known as 
radiomics (d’Amico et al, 2020, van Griethuysen et 
al, 2017, Gillies et al, 2016, Kumar et al, 2012, 
Lambin et al, 2012). Radiomics is designed to 
develop decision support tools; therefore, it involves 
combining radiomic data with other patient 
characteristics (clinical, molecular etc.), if available, 
to increase the power of the decision support models. 
It has been proven that features not perceptible to the 
eye of the reporting physician — such as intra-tumor 
heterogeneity, distribution of signal values within the 
tumor area and more — can be indicative of certain 
biological characteristics of the tissue, such as 
proliferation, hypoxia, necrosis, angiogenesis and 
even tumoral genotype (d’Amico et al, 2020). 
Quantitative image features based on intensity, shape, 
size or volume, and texture offer information on 
tumor phenotype and microenvironment that is 
distinct from that provided by clinical reports, 
laboratory test results, and genomic or proteomic 
assays. These features, in conjunction with  other 
information, can be correlated with clinical treatment 
outcomes data and used for clinical decision support 
(Figure 2). Radiomics provides imaging biomarkers 
that could potentially aid cancer detection, diagnosis, 
assessment of prognosis, prediction of response to 
treatment, and monitoring of disease status etc. 

Acquired pre-treatment PET/CT images are 
preprocessed in order to save the data in appropriate 
format for subsequent radiomics analysis. Manually 
or automatically generated ROIs are preprocessed in 
the similar way. Radiomic features are extracted from 
the target lesions (described by ROIs) using the 
program based on PyRadiomics (https:// 
pyradiomics.readthedocs.io) package for Python (van 
Griethuysen et al, 2017), including: (i) First order 
features (energy, entropy, minimum, percentiles, 
maximum, mean, median, interquartile range, range, 
standard deviation, skewness, kurtosis, among 
others); (ii) Shape Features (volume, surface area, 
sphericity, among others); (iii) higher order statistics 
texture analysis, including: Gray-Level Co-

occurrence Matrix (GLCM), Grey-Level Dependence 
Matrix (GLDM), Grey-Level Run Length Matrix 
(GLRLM), Grey-Level Size Zone Matrix (GLSZM) 
and Neighboring-Gray Tone Difference Matrix 
(NGTDM). Using additional filters (for example 
Local Binary Patters, wavelets etc.) on the original 
image is also considered. This allows to multiply the 
resulting radiomic features, which can potentially 
highlight features invisible in ROIs. 

 
Figure 2: Illustration of a typical workflow for radiomics 
signature development: I group selection, II Data 
acquisition, III Image segmentation, IV Feature extraction, 
V model validation. Model can be build using not only 
radiomic features. 

Machine learning algorithms could be applied in two 
ways: 

a. Classical approach - as a separate algorithm / 
predictor whose output is the predicted time and place 
of cancer metastasis. 

b. Non-classical approach - as part of a larger 
model, part of which is one of the dynamic models 
developed in the project. 

In the first case, the problem is formulated in a 
typical way for supervised learning, in which we have 
a learning set in the form of PET / CT images, 
radiomic features extracted on their basis, and 
additional clinical data for a given patient cohort. This 
data is accompanied by the set outputs of the model 
in the form of information about the time and places 
of metastasis. In this situation, the classic division of 
the model structure into (i) feature selection and (ii) 
training the classifier (predictor) may apply. In 
addition, the problem of simultaneous use of radiomic 
data and clinical data whose nature is different may 
be interesting. In this context, we have tested different 
ways of integrating this data and choose the best one. 
For this purpose, we use the software, which allows 
testing various methods of data integration, while 
protecting against information leakage, which may 
result in an optimistic bias of prediction quality 
assessment. In (Fujarewicz et al, 2022) we have 
presented the attempt to use the radiomics features to 
predict the metastasis for lung cancer patients. The 
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obtained accuracy of the best classifier confirms the 
potential of such prediction of metastasis. 

The non-classical approach (b) to the application 
of machine learning algorithms and feature selection 
relies on the construction of a combined model, part 
of which is the dynamic models developed in the 
project. In the combined model, a task of the machine 
learning algorithm (instead of metastasis prediction) 
determines the values of parameters (different for 
each patient) of dynamic models. It seems that this 
approach, although more difficult than the classical 
approach, has a chance of better prediction, because 
it combines the advantages of machine learning and 
modeling of dynamic systems. The difficulty in 
building such a model lies in the fact that the 
described approach cannot build a typical supervised 
learning data set. While we have input data (radiomic 
and clinical), we do not have the set values of these 
parameters, but only the set (observed) responses of 
patients to therapy. The model learning process must 
therefore take account of this fact and requires 
development of new learning / adaptation methods. 

In the case of the classic approach to the use of 
artificial intelligence algorithms (in which the output 
of the artificial intelligence algorithm is the predicted 
time and place of metastasis) the model learning task 
can be formulated as a regression / approximation 
task, with continuous output variables, or as a 
classification task, in which the model output is the 
label of the appropriate class. It is also possible to 
create a hybrid model that has both continuous (time 
to metastasis) and discrete (place of metastasis) 
outputs. In all these cases, we test various regression 
and classification techniques such as: support vector 
machines (SVMs) with different kernels, linear and 
logistic regression, convolution neural networks, 
linear (LDA) and quadratic (QDA) discriminant 
analysis, classifier ensembles (bagging, boosting, 
random forests) and others.  

An important element of building the machine 
learning model is the selection of features 
(radiometric, clinical). In this case, we use various 
approaches, ranging from the simplest filter methods 
to more complex  wrapped methods and embedded 
methods. It is also possible to use methods for 
transforming feature spaces such as Principal 
Components Analysis (PCA) or Independent 
Components Analysis (ICA). Nevertheless SVM is 
our first choice in extraction and selection of radiomic 
features. 

In the case of a non-classical approach, in which 
the outputs of the machine learning algorithm are the 
parameters of the dynamic model, in general case, it 
is impossible to use available methods of supervised 

learning because (desired) parameters of the dynamic 
model are not known and only desired response of the 
dynamic model (i.e. patient’s response) is given. In 
this case, we present the machine learning task as a 
mathematical programming task – optimization of the 
performance index depending on the prediction error 
in the parameters space of the particular machine 
learning method. 

In the special case, when the dynamic model has 
a form enabling to build based on it the sensitivity 
model, we develop an original gradient algorithm 
based on the backpropagation of the prediction error 
(through the model adjoint to the dynamic model) 
enabling the determination of the gradient of the 
performance index with respect to the parameters of 
the machine learning algorithm. In some respects, 
such an algorithm is similar to the algorithms 
developed earlier, which involve the use of adjoint 
sensitivity analysis for complex systems (Fujarewicz 
and Galuszka, 2004, Fujarewicz et al, 2007). 

Selection of features, as in the case of the classical 
approach, is possible using filter or wrapped methods. 

5 CONCLUSIONS 

Although the first attempt to use mathematical 
modeling to study quantitatively metastases of 
untreated lung cancer had more than sixty years of 
history (see, (Colins, 1956)), there are currently no 
mechanistic models incorporating biomarkers, which 
could play a role of prognosis tools that could inform 
when and where NSCLC may metastasize. Such tools 
could be of great interest to clinicians, supporting 
treatment decisions, such as whether to use systemic 
therapy or not and with what intensity and duration. 
We hope that by extraction of radiomic features from 
PET/CT images, their selection and incorporation in 
existing and newly built mechanistic models, 
predicting NLSCLC spread and metastatic 
dissemination will become possible.  

On the other hand, there exist many studies in 
which empirical models based on statistical data are 
used to predict the risk of metastases taking into 
account different genomic or proteomic features of 
patients. Those studies are related to genotyping and 
genomic profiling (e.g. (Li et al, 2013)), expression 
of multiple mRNA markers in bronchoscopy (e.g. 
(Suwinski et al, 2012)), gene polymorphisms (e.g. 
(Butkiewicz et al, 2015)), blood serum proteins (e.g. 
(Suwinski et al, 2019)) or more general serum 
comparative analysis (e.g. (Pietrowska et al, 2014)), 
to mention only a few of them. The approach 
proposed in the paper is the first step in construction 
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of mixed  models, which combine mechanistic 
models of tumor dynamics with machine learning 
models and using data from diagnostic investigations 
(in this case biomedical images).  

Dynamical models of cancer growth based on 
ordinary differential equations (ODE), partial 
differential (PDE) and other structured or agent-based 
models (see, (Swierniak st al, 2016, Ledzewicz and 
Schaettler, 2015, Clairambaut, 2014), for survey), 
usually concentrate only at local tumor eradication, 
some additionally take into account the surrounding 
tissue. Those models do not take into account cancer 
reappearance in distant sites after treatment. 
Moreover, there is no available mathematical model 
taking into account an intermediate step of metastasis 
dissemination, which is spread of tumor cells to local 
lymph nodes. The mixed machine learning and 
mechanistic model proposed by us could be applied 
also to other types of solid cancers such as rectal, head 
and neck or breast cancer, which also have high 
metastasis potential. Thus, in the future, we plan to 
extend the method to other types of solid cancers. 

In addition, we plan to incorporate molecular 
data from liquid biopsy (see e.g. (Suwinski et al, 
2019)). Proteomics profiling of blood serum from 
about 100 non-small cell lung cancers will be 
performed, which will allow to incorporate molecular 
features into prediction of distant metastases. In 
(Jaksik and Smieja, 2022) we have presented an 
attempt to identify which -omics dataset or 
combination of them, provide the most relevant 
information for the prognosis of lung cancer survival. 
This, will enable integration of biomedical images 
with molecular data. However, this work is beyond 
the scope of this paper.  
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