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Abstract: Machine Learning systems provide different challenges for their development. However, machine learning
systems also require specific attention toward traditional aspects of software engineering. This situation often
leads developers to use different models to cover different views that need to be handled during machine
learning system development which often leads to conflicting information between models. In this research,
we developed a multi-view modeling framework for machine learning system development by utilizing a
metamodel as its backbone for consistency. We have conducted a case study and controlled experiment to
evaluate the framework. In conclusion, our framework does help manage the consistency between different
views but relies heavily on the quality of available support tools.

1 INTRODUCTION

Machine learning (ML) systems face unique chal-
lenges towards achieving reliability (Husen et al.,
2021). ML functionalities work in a probabilistic
manner, leading to an unpredictable nature (Vogel-
sang and Borg, 2019). Functionalities are based on
the characteristics of data used for training the de-
ployed ML models. Ensuring data correctness re-
quires a more analytical approach than traditional
software functionalities, which are based on the de-
veloped source code. Furthermore, constant monitor-
ing is necessary to detect whether the data become
outdated or out of sync with actual conditions. Such
a situation is known as data drift.

ML systems also encompass traditional aspects of
software engineering (National Institute of Advanced
Industrial Science and Technology, 2022). The ne-
cessity of functionalities towards achieving business
goals is important for success. Communication of the
ML models as part of a complex software architecture
is also a concern. ML systems must not only commu-
nicate with other ML models but also with traditional
software components.

This condition drives system developers to utilize
multiple models to analyze different views of the ML
system (Yoshioka et al., 2021). Due to the experimen-

tal nature of ML training, canvas-based models such
as ML Canvas are often used for rapid brainstorming
of the aspect of ML components, including data col-
lection and the expected model performance (Thiée,
2021). However, such a canvas does not cover the
relationship between the functionalities and the busi-
ness goal or more specific analyses such as the safety
of ML models when deployed in safety-critical sys-
tems.

Deploying different analysis models may lead to
issues with consistency (Husen et al., 2022). Infor-
mation may be misinterpreted between models, es-
pecially when the models are created independently.
Because inconsistencies cause problems when moni-
toring detects data drift, they must be handled but the
urgency of retraining ML models may not be captured
as information about related business goals or safety
concerns. Hence, inconsistencies may not be under-
stood.

In this paper, we propose an integrated approach
to handle consistencies of different views of ML sys-
tem analysis named Multi-View Modeling Frame-
work for ML Systems (M3S). M3S facilitates system-
atic analysis of different views of ML systems from
higher business-level goals to lower ML training con-
cerns. The analysis consists of several steps and uses
different models guided by a metamodel to identify
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related elements. To evaluate the capability of M3S
we define the following research questions:

• RQ1. Can a metamodel guide the traceability be-
tween elements from different models in the M3S
framework?

• RQ2. Can a metamodel show the traceability links
in models developed using the M3S framework?

• RQ3. How usable are the traceability links in
models developed using the M3S framework for
detecting inconsistencies?

• RQ4. How usable are the traceability links in
models developed using the M3S framework for
rationalizing inconsistencies?

We conducted a case study to answer RQ1 and
RQ2. The case study implemented M3S to evaluate
an autonomous driving vehicle. We also conducted
a controlled experiment to compare identified incon-
sistencies using M3S with natural language specifica-
tions to answer RQ3 and RQ4.

This research provides a new approach that in-
tegrates canvas-based analysis with more traditional
analysis techniques for machine learning. We also
present a more in-depth understanding of how differ-
ent views of ML systems interact.

The rest of this paper is constructed as follows.
Section 2 explains the background, including our mo-
tivation and related works. Section 3 describes the
M3S in detail from the utilized models, the metamodel
as a foundation, and the overall design process. Sec-
tion 4 presents the results of our case study and exper-
iment to answer the research questions. Finally, sec-
tion 5 concludes this paper and provides future works.

2 BACKGROUND

2.1 Motivating Example

Figure 1 shows our motivating example for this re-
search, which includes a ML Canvas (Dorard, 2015)
and safety case analysis for a ML component for ob-
ject detection. The safety case facilitates safety anal-
ysis that is not covered in ML Canvas. Although both
models represent level 3 self-driving cars on a high-
way, they were developed separately by different peo-
ple during our pilot research. Inconsistencies between
the two models may have occurred due to differences
in understanding the scenarios included in the opera-
tional domain.

As described in the impact simulation section in
ML Canvas, the operational design domain (ODD)
expectation is described generally. However, the

Figure 1: Motivating Example.

safety requirements in safety case analysis specifi-
cally describe the rainy condition as risky. Due to
the difference in information between the two related
models, the correctness of the information becomes
questionable as the risk assessment may or may not
include the rainy conditions. Such a situation may in-
duce problems because the definition of dataset qual-
ity relies on both elements. The difference between
these elements generates uncertainty in the prepared
datasets. Incorrect assumptions may result in unhan-
dled safety risks and accidents. Our framework aims
to eliminate the uncertainty caused by inconsistencies
inside the models.

2.2 Related Works

Several works have modeled a ML software system.
Chuprina et al. proposed an artefact-based approach
for modeling requirements of ML software (Chup-
rina et al., 2021). Their goal was to bridge the con-
ceptual and application layer of ML systems, which
is similar to ours. Nalchigar et al. proposed a
modeling framework for ML software requirements.
Their approach used three perspectives: business, an-
alytics design, and data preparation (Nalchigar and
Yu, 2018). Ishikawa and Matsuno also proposed an
evidence-driven approach to model goals of a ML-
based system (Ishikawa and Matsuno, 2020).

Other works have investigated safety-critical ML
systems. Pereira and Thomas explained their find-
ings on challenges in managing safety in ML systems
(Pereira and Thomas, 2020). They explained hazards,
which may arise due to inadequate definitions in re-
quirements engineering activities such as data, object
definition, and performance measures. Hawkins et al.
proposed an assurance framework for an autonomous
system named AMLAS (Hawkins et al., 2021).

In general, existing multi-view approaches for ML
systems do not emphasize safety concerns, whereas
existing safety approaches do not handle the con-
nection between safety concerns and higher-level re-

Metamodel-Based Multi-View Modeling Framework for Machine Learning Systems

195



Figure 2: Relation of models of M3S to ISO/IEC Guide 51.

quirements. M3S aims to facilitate safety analysis of
ML components while ensuring the connection be-
tween different aspects of development.

3 MULTI-VIEW MODELING FOR
MACHINE LEARNING SYSTEM
(M3S)

3.1 Views of M3S

To comprehensively understand a ML system, we de-
fine five views for analysis: value, MLOps, goal, ar-
chitecture, and safety. All views are related to each
other and together construct a comprehensive view of
a reliable ML system.

Value is the center of all views. Value covers the
description of the expected contribution of the ML
system as a whole. It contains the definition of suc-
cess and motivation of the project. Value describes the
main business goal and the environment surrounding
the ML system development project.

The second view is goal. Goals are objectives that
must be completed for the project to provide the value
and be successful. They are derived from the main
business goal to describe the expected capabilities of
the ML system and its components. Capabilities in-
clude both functional and non-functional ones.

The third view is architecture. Architecture de-
scribes how the developed ML models run their ex-
pected functionalities inside the software system. It
explains how the ML models interact with other soft-
ware components, receive the required input, and pro-
vide outputs to be processed by other components.

The fourth view is MLOps. MLOps describes how
training and testing will develop ML models. It ana-
lyzes the needs of data for training and testing, the
functionalities necessary due to the training results,
and the expected performance of the ML models.

The final view is safety. ML models require spe-
cific attention to safety due to their probabilistic na-
ture. Safety analyzes the safety risks and hazards re-
lated to the failure of ML systems and components. It
generates countermeasures to reduce risks and act as
an argumentation for the safety of the ML system.

3.2 Models of M3S

M3S is developed in compliance with ISO/IEC Guide
51. The selection for each view facilitates the view
and the necessary process of ISO/IEC Guide 51. Fig-
ure 2 summarizes how the utilized models in M3S
bridge the view and process of ISO/IEC Guide 51.
The process of ISO/IEC Guide 51 itself is defined as
follows:

• a. Identify potential users of the system, including
vulnerable users and others affected by the sys-
tem;

• b. Identify the intended use of the system;

• c. Identify potential misuse of the system;

• d. Identify hazards that arise during different
stages of usage;

• e. Estimate and evaluate risks to affected parties
caused by each hazard;

• f. Minimize each intolerable risk.

To analyze the value, M3S uses the AI Project
Canvas as its model. The AI Project Canvas ana-
lyzes the requirements specific to the AI development
project. It provides a platform to identify the main
value provided by the ML system to the customer, the
required skills of the development team to complete
the project, and the project’s revenue stream. The
stakeholder and customer elements of the AI Project
Canvas define the potential user and vulnerable par-
ties during operations of the ML system.

Goal view utilizes KAOS goal modeling to di-
vide the main value in the AI Project Canvas into
smaller goals. The top-down approach of KAOS goal
modeling derives achievable sub-goals from the busi-
ness objectives by the capabilities of the ML com-
ponents (Zickert, ). The sub-goals describe the in-
formation needed to identify the system’s intended
use in ISO/IEC Guide 51. Additionally, the KAOS
goal modeling approach is deployed into the uncertain
condition of the ML system (Ishikawa and Matsuno,
2020).

Architecture view employs an architecture dia-
gram to map the interaction between ML models and
other software components. The architecture diagram
describes how data is transformed and transferred be-
tween the different components inside the ML system.
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Figure 3: The M3S process.

Information about the architectural design identifies
potential hazards caused by a failure in the communi-
cation flow, which will be identified in STAMP/STPA
later. In M3S, the architecture is modeled in a SysML
block diagram.

The ML Canvas defines the requirements from the
MLOps view and describes the desired functionality
and performance (Dorard, 2015). It also expresses the
data source, the collection process, the scheduled re-
training, and the redeployment frequency. The defini-
tion of data quality is the basis for defining solutions
in safety case analysis. ML Canvas is used for each
ML component in the ML system.

The safety view utilizes two models with different
philosophies. STAMP/STPA conducts a safety analy-
sis from the perspective of the interaction between the
system and its components to identify possible misuse
at both the system and component levels (Leveson,
2012). Then a safety case analyzes safety concerns in
a more top-down manner to find the root cause of ML
inadequacies in the training process (Hawkins et al.,
2021). Both models understand, evaluate, and counter
potential risks in ML systems and components.

3.3 Process of M3S

M3S has two main objectives. The first facilitates con-
sistent analysis of different ML system development
views. This objective mainly works as a prescriptive
description of ML system requirements. The second
efficiently identifies the impact of drifts in ML oper-
ations. This identification is achieved by traceabil-
ity between the monitoring results and the related re-
quirements. Figure 3 summarizes the M3S process.

The objectives drive the process design. The pro-
cess consists of two main phases: the analysis phase
and the monitoring phase, which target the first and
second phases, respectively. The training phase is an-
other phase where model training is executed using a
ML training pipeline developed according to the anal-
ysis phase results. The process is iterative. The moni-
toring phase results re-trigger the analysis phase. The

analysis phase leads to the execution of the training
phase. Finally, the training phase returns to the moni-
toring phase.

The analysis phase is conducted in a top-down
manner. It begins from the value view. Then the
value is divided into smaller achievable objectives in
the goal view. Each capability is then assigned to
the components in the view of architecture. Next,
the development of ML components is defined in the
MLOps view. The safety risks and countermeasures
are specified in the safety view. For each view analy-
sis, changes due to the analysis of the preceding views
may occur to incorporate new findings such as imple-
menting countermeasures in the safety view to the ar-
chitectural design or expected ML performance.

The monitoring phase consists of four layers.
Each layer is related to different views that must be
reevaluated in case of failure. The lowest layer is the
unit test result monitoring, which is related to the ML
performance described in the MLOps view and the
ML component capabilities in the goal view. Integra-
tion result monitoring is conducted after the unit test
is passed successfully. This layer monitors successful
integration, which is related to the design decision in
the architectural view. The capabilities of successful
integration are monitored in the system testing layer.
Success in this layer is related to the capabilities in the
goal view and countermeasures in the safety view. Fi-
nally, continuous monitoring is conducted for the ML
system. Any changes in the success rate of achiev-
ing the value during the operation triggers reanalyzing
and retraining of the ML model.

3.4 Metamodel of M3S

M3S provides a metamodel to define the relation of
elements from different models utilized by each view.
The metadata modeling process generates the meta-
model. The generated metamodel provides an inte-
grated view of all M3S models. Figure 4 shows an in-
tegrated M3S model implemented in a safety-critical
system.

The metamodel is constructed and evaluated it-
eratively. The construction begins with metamodel-
ing the concept behind each utilized model. Then
the team evaluates the correctness of each metamodel.
Afterward, each metamodel integrates elements from
different models with similar concepts and either
merges them into a single concept or connects them
using four types of mapping: ”same”, ”similarity”,
”aggregation”, and ”contribution” (El Hamlaoui et al.,
2018). Construction and evaluation of the metamod-
els are conducted internally by the authors. External
parties then evaluated all results that passed the in-
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Figure 4: Integrated metamodel of M3S.

ternal evaluation. Revisions are made based on com-
ments on the external evaluation.

Table 1 shows an example of the results from con-
cept mapping. The metamodel merges elements with
the same concept such as value propositions from AI
Project Canvas and ML Canvas into a single con-
cept. The concept of goal from KAOS goal mod-
eling is the most connected to other models due to
its similarity with safety goals from the Safety Case,
value propositions from the AI Project Canvas, and
value propositions from ML Canvas. Solutions from
safety case are contributing to the countermeasures
from STAMP/STPA.

3.5 Traceability Links

The main feature of the framework is the traceabil-
ity between information contained in elements from
different models. Figure 5 summarizes this process.
Traceability information is stored in a traceability ma-
trix, which consists of data describing the type of re-
lationship for each one-to-one pairing of all elements
from all models inside the M3S model. Information
stored in the traceability matrix can be used for differ-
ent purposes such as changing the impact simulation
or consistency checking between different models.

The M3S framework is a gateway to validate
model modifications. Validation is conducted for ev-
ery modification towards models inside M3S based on
conformance with relationships defined in the meta-
model, leading to acceptance or rejection. For every
accepted modification, traceability links are updated
to ensure information on existing links is updated. In
contrast, the framework rejects invalid modifications.

Figure 5: Flow of treaceability links management.

3.6 Consistency Checking

Our framework covers which elements should be con-
nected to manage the traceability as this information
can define the consistency that must exist between
them. Some elements act as the basis to generate other
elements, while others are copied to elements in other
models. Consistency between safety and functional
requirements is essential to ensure software systems’
safety. For ML intensive systems, the need for con-
sistency arises due to highly unpredictable conditions
of the quality of utilized datasets and the operation
domains. Although changes occur to adapt to uncer-
tainty, some result in ad-hoc alterations of the ML
system capabilities, which may cause safety risks
while operating. The framework evaluates the con-
sistency after such changes and determines whether
another adaptation to the requirements is necessary.

3.7 Support Tool

We partially developed a tool to support the model-
ing process of M3S. The tool facilitates navigation
of the traceability between related elements on dif-
ferent models. As a basis, we used the astah* Sys-
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Table 1: Examples of concept mapping for metamodel construction.

Source Element Source Model Destination Element Destination Model Mapping
Result

Value Proposition AI Project Canvas Value Proposition ML Canvas Same
Value Proposition AI Project Canvas Goal KAOS Goal Model Similar
Safety Goal Safety Case Goal KAOS Goal Model Similar
Component SysML Entity STPA Similar
Solution Safety Case Countermeasure STPA Contribution

Figure 6: Overview of extended functionalities of astah*
System Safety.

Figure 7: Overview of M3S Support Tool.

tem Safety1 modeling tool. The astah* System Safety
provides modeling support for SysML, which can be
used for architectural diagrams, Goal Structuring No-
tion (GSN) for KAOS and Safety Case Analysis, and
STAMP/STPA. Links between different models are
also facilitated partially between SysML and GSN.
We extend these basic functionalities as a plugin to
transform the astah* System Safety to fit the M3S
framework. Figure 6 depicts the overall concept to
extend the functionality of the astah* System Safety,
while Fig. 7 shows our implementation.

We implemented support for the ML and AI
Project Canvas using the extended view support of the
astah* System Safety. The data is an extension of the
existing SysML requirement element to ensure that
existing features of astah* System Safety also work in
the ML and AI Project Canvas elements. We also im-
plemented simple consistency checking as a blocker
when users tried to add an incorrect connection be-
tween elements. Figure 8 shows a snapshot of consis-
tency checking between an ML model and safety case
elements. Further development and evaluation for the
tool will facilitate connection types of the links, load-

1https://astah.net/products/astah-system-safety/

ing and editing metamodel information,and recom-
mendation of possible links of an element based on
a metamodel.

4 EVALUATION

4.1 Case Study

To answer RQ1, a case study assessed whether the
framework works as intended when implemented in a
real-world case of sign detection necessary for an au-
tonomous driving vehicle (ADV). Because a reliable
source is necessary to describe ADV operation con-
ditions to design the proper case, we employed the
Japan Automobile Manufacturers Association Auto-
mated Driving Safety Evaluation Framework to gen-
erate the driving conditions for previously described
environmental conditions (Japan Automobile Manu-
facturers Association, 2021). The case is limited to a
highway setting for three environmental conditions:
day, night, and rain. Additionally, we limited the
ADV operation to lane-keeping maneuvers.

Figure 9 shows the M3S version of the motivat-
ing example generated during the case study. Com-
paring it with the metamodel shows that the impact
simulation on ML Canvas is associated with the solu-
tion for the safety case. We can deduce that the pro-
cess revises existing models based on the result of the
safety analysis because the safety case is developed
with more information. Hence, the impact analysis
can be updated to follow the solution shown in Fig.
9.

Figure 8: Example of consistency checking for ML model
elements in the tool prototype.
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Figure 9: Snippet of Case Study.

Table 2: Number of inconsistencies found by both groups.

Group Inconsistencies Found
Experiment Group 9
Control Group 12

4.2 Controlled Experiment

To answer RQ2, an experiment evaluated the frame-
work’s usability to detect inconsistencies between dif-
ferent models. In this experiment, the participants
were tasked to find inconsistencies between models
developed by our frameworks and explain the ratio-
nale for marking elements as inconsistent. This ex-
periment demonstrates whether the participants can
find inconsistencies systematically. Another team of
participants was given the same task except that they
used the model to find inconsistencies in natural lan-
guage specifications on exact requirements. The ex-
periment was conducted without the support tool to
level the capabilities of both groups in moving be-
tween models or specifications.

Six participants were divided equally into the ex-
perimental and control groups. Both groups were
briefed on the task. Then each group was assigned
a narrator, who explained the models or specifica-
tions they needed to work on. Each member of the
group wrote down all identified inconsistencies. Af-
terwards, members discussed their findings to gen-
erate a list of inconsistencies that the group agreed
upon.

Table 2 shows the number of inconsistencies
found by groups and the distribution of types of con-
sistencies. Based only on the number of consisten-
cies, the control group found significantly more in-
consistencies than the experiment group. Thus, the
control group was more successful in this task than
the experimental group.

Table 3 summarizes the distribution of the ratio-
nales behind the inconsistencies. The control group

Table 3: Distribution of rationale used per group.

Group Model Inconsis-
tencies

Experience
& Intuition

Experiment
Group

75% 25%

Control
Group

0% 100%

identified inconsistencies based solely on experience
and intuition rather than comparing different specifi-
cations. In contrast, the experiment group found in-
consistencies mostly by comparing elements between
models as only 25% of their findings were made using
intuition and experience. The difference between the
two groups is extreme.

4.3 Answers to Research Questions

For RQ1, the metamodel is an effective tool to guide
traceability. The case study showed that following
the relationship realizes a more systematic approach
to generate each element. Following the metamodel
allows the usage of existing elements to act as a basis
for deciding the content of elements on other models.

For RQ2, some support for expressing the links
based on the metamodel may be needed. Although
connections between elements can be made by com-
paring the elements with the metamodel, the process
is not intuitive and can be time consuming. Employ-
ing a tool, which represents the link in the metamodel
in an effective manner, should facilitate efficient us-
age of the framework.

For RQ3, the current state of the M3S framework
is inadequate in terms of ease of detecting incon-
sistencies. The experiment revealed that the control
group found 50% more inconsistencies than the ex-
perimental group. The experimental group had issues
navigating and processing the information. This find-
ing suggests that a support tool is necessary to facili-
tate the use of this framework.

For RQ4, the enormous difference between the ra-
tionales indicates the answer. The experiment group
paid more attention to the connection of information
inside different elements. In contrast, the control
group showed an unwanted ignorance toward the dif-
ferences between requirements. These results suggest
that the M3S framework facilitates a systematic ap-
proach to ensuring consistency.

4.4 Threat to Validity

There are several threats to the validity. First, the
study involved a small number of participants because
the experiment focused on practitioners as the frame-
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work’s users. Hence, those without prior experience
in developing ML could not be included. Second,
each participant had differing abilities as well as fa-
miliarity with models, specifications, and general ML
development. We tried to minimize this threat by se-
lecting participants with similar expertise and experi-
ence. Additionally, we randomized the groups to min-
imize the threat.

5 CONCLUSION AND FUTURE
WORKS

This paper proposes and evaluates the Multi-View
Modeling for ML System (M3S) framework. The
case study and experiment revealed several vital find-
ings. On the positive side, the framework facilitates
the traceable multi-view approach to analyze safety-
critical ML systems. However, efficient utilization of
the framework requires a support tool for decision-
making of the solutions.

In the future, we plan to explore several different
directions. We will continue developing and evaluat-
ing the support tool. We want to explore the possibil-
ity of creating a guide by extracting existing solutions
into a catalog and extend the framework’s traceability
into the ML model’s training pipeline.
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