
Investigating the Performance of Optimization Techniques on Deep
Learning Models to Identify Dota2 Game Events

Matheus Prado Prandini Faria a, Etienne Silva Julia b, Henrique Coelho Fernandes c,
Marcelo Zanchetta do Nascimento d and Rita Maria Silva Julia e

Computer Science Department, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil

Keywords: Deep Learning, Convolutional Neural Network, Genetic Algorithm, Bayesian Optimization, Video Games,
Game Events, Classification, Dota2.

Abstract: Game logs are an important part of the player experience analysis in literature. They describe the major actions
and events (related to the players or other elements) that affect the progress of a game. In most existing games
(especially popular commercial games like FIFA, Dota2 and Valorant), their access is typically restricted to the
game’s developers. Deep Learning (DL) approaches have been proposed to perform game event classification
from videos. However, retrieving relevant information about these game events (normally associated with
actions performed by players) in real-time is still a challenge. Existing approaches require high computational
power that serves as an additional issue. In this sense, the present paper investigates a set of approaches that
aim to reduce the computational cost of DL-based models - more specifically, Convolutional Neural Networks
(CNN) based on Residual Nets architectures - through Genetic Algorithm and Bayesian Optimization. This
investigation is carried out in the context of Dota2 game event classification. The comparative analysis showed
that the models obtained herein achieved a classification performance as good as the models of the state-of-
the-art considering the Dota2 dataset, but with significantly fewer parameters. Thus, this work can help in the
generation of optimized CNNs for real-time applications.

1 INTRODUCTION

Video games have become a critical part of the en-
tertainment industry, impacting the lives of billions of
people every day (Wijman, 2019). They exert wide
influence among the younger generation, whether for
the appealing side of their content or for the messages
and ideas they disseminate (Moosa et al., 2020). In
addition to being designed for fun and entertainment,
games can also be used in education, health and many
other areas. For example, to understand underlying
psychological and behavioral implications of the in-
teraction of players with this medium. This is because
video games provide extremely appropriate domains
for the occurrence of rich affective experiences mea-
surable through in-game behavior (Azadvar, 2021).

For this purpose, it is essential that developers
count on information that efficiently represents the

a https://orcid.org/0000-0003-1468-9243
b https://orcid.org/0000-0003-3750-4264
c https://orcid.org/0000-0002-7078-9620
d https://orcid.org/0000-0003-3537-0178
e https://orcid.org/0000-0001-5181-5451

players’ experiences. This is generally achieved
through game logs, which register what the players
are doing and what is happening in the scenario. Ac-
cessing these logs traditionally requires access to the
game engine, that is, to the software-development en-
vironment used to make the game. This poses a chal-
lenge because game engines are usually inaccessible
due to the companies’ privacy concerns (Luo et al.,
2019a) and, even considering game platforms which
make available the game logs, it is not possible to
count on game information in situations in which it
must be retrieved from recorded games.

State-of-art works to derive approximated game
logs from gameplay videos rely on Deep Learning
(DL) approaches - more specifically, on Convolu-
tional Neural Network (CNN). These networks are
widely applied to video action recognition because
they present an excellent level of performance in tasks
involving visual data (He et al., 2016). For exam-
ple, (Xu et al., 2019) proposes an approach based on
CNNs and Recurrent Neural Networks (RNN) capa-
ble of encapsulating a lot of relevant functionalities
for online action detection into a single framework
(Temporal Recurrent Network), which confirmed the

Faria, M., Julia, E., Fernandes, H., Zanchetta do Nascimento, M. and Julia, R.
Investigating the Performance of Optimization Techniques on Deep Learning Models to Identify Dota2 Game Events.
DOI: 10.5220/0011691800003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP, pages
881-888
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

881

success of CNNs and RNNs in the task of extracting
actions from videos.

However, CNNs require a significant amount of
computational resources considering the context of
real-time game analysis, such as online modeling the
behavior of players and identifying actions performed
in e-sport tournaments livestream (Luo et al., 2018).
In this sense, (Luo et al., 2019a) proposed some
approaches based on transfer learning and network
pruning to build accessible CNN models - in terms
of hardware - with the goal of extracting sequence of
game events from gameplay videos in real-time with
little computational resources. These models showed
a considerable reduction in training time, inference
time and memory usage of the Graphics Processing
Unit in CNNs based on the ResNet152 architecture
(He et al., 2016), while maintaining an excellent event
classification performance on the Dota2 game.

These approaches proposed by (Luo et al., 2019a)
rely on a model pre-trained on a large and high-
quality real-world dataset. Considering the domain
of games, this limits their application to the more re-
alistic ones. As highlighted in (Luo et al., 2018), real-
world datasets - as ImageNet (Deng et al., 2009) and
UCF (Soomro et al., 2012) - do not transfer their char-
acteristics well to games with a pixelated aesthetic
(that is, games with simplistic graphics) like Super
Mario and Mega man. Thus, an existing high-quality
dataset with pixelated aspects would be required to
apply such approaches to these games, which is not
always an easy task to be performed.

Motivated by such facts, in this paper the authors
extend the approaches proposed in (Luo et al., 2019a)
by investigating the design of optimized CNN archi-
tectures for game event classification without the use
of transfer learning techniques. This work explores
two distinct methods - a Genetic Algorithm (GA)
based one and Bayesian Optimization (BO) - in a DL
optimization framework with the aim to minimize the
number of parameters (size of weights vector) and the
classification error of the CNN architectures.

The next sections are structured as following: sec-
tion 2 resumes the background; section 3 describes
the CNN architecture optimization; section 4 presents
the experiments and results; finally, section 5 shows
the conclusions and the future works.

2 BACKGROUND

Among the existing approaches to derive approxi-
mated game logs from video games, those based on
deep learning stand out. In (Luo et al., 2018), the
authors proposed two possible solutions for the prob-

lem of classifying events in video games (using Su-
per Mario Bros as case study). They did so by pre-
senting two possible approaches, the first one consist-
ing on training a popular CNN detection model with
a manually labeled game dataset. This approach re-
quires a large labeled dataset, and a lot of process-
ing power in order to train the network. The second
approach utilizes a Student-Teacher technique (Wong
and Gales, 2016) to lower the amount of training data,
and processing, needed. The results obtained with it,
by training and testing a network on different games
in the same style and genre, also were not satisfactory
for the author‘s goal. However, they managed to ob-
tain solid results when applying the Student-Teacher
method with a network pre-trained on the UCF dataset
to the game Skyrim, which, in addition to having re-
alistic graphics, also was tested with the same actions
depicted in the real-world data.

In neural networks projects (covering CNNs), one
of the most important tasks is the definition of their
architectures (for example, hyperparameters such as
the number of layers and the number of neurons in
each one). Thus, due to the huge number of possible
combinations (large search space), the task of defin-
ing a good architecture manually is very costly. There
are architectures studied exhaustively for visual data
classification tasks, among them MobileNet (Howard
et al., 2017) and ResNet (He et al., 2016) stand out
(each one of them has its peculiarities). However, as
most of them are very deep in terms of the number of
layers (and consequently with a very large number of
parameters), high-performance machines are needed
to guarantee success in real-time tasks.

In this sense, there exists some approaches to re-
duce training time, execution time and memory. Prun-
ing is one of the most popular methods to reduce
network complexity (in terms of number of layers
and, consequently, number of parameters) (Han et al.,
2016). Among the main algorithms proposed in this
context, ThiNet (meaning ”Thin Net”) stands out (Luo
et al., 2017). The goal of this algorithm is to prune
the unimportant filters (without changing the original
network structure) to simultaneously accelerate and
compress CNN models in both training and test stages
with minor performance (in this case, in classification
problems) degradation. It allows transfer tasks such
as classification of game events to run much faster (in
both training and inference time), especially on small
devices (low-performance machines).

In (Luo et al., 2019a), the ThiNet framework is
used to compress the pre-trained ResNet152 (decreas-
ing the inference time and the memory requirements)
through the ThiNet30 (it keeps 30% of its filters),
ThiNet50 (it keeps 50% of its filters) and ThiNet70 (it

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

882

keeps 70% of its filters) versions of ResNet152, which
prunes 70%, 50% and 30% of the filters respectively.
The best model generated by the mentioned work was
ThiNet30. Its goal was to perform CNN optimization
for the classification of Dota2 game events. Beside
this, recent works aim to build optimized architectures
for visual task using evolutionary techniques, high-
lighting (Faria et al., 2020) for image classification in
FIFA (soccer simulation game). The mentioned work
proposes the Minimum Convolutional Neural Net-
work obtained by Genetic Algorithm (MCNN-GA)
method that evolves a population of CNN architec-
tures through genetic algorithm aiming to find the one
with the best trade-off between performance classifi-
cation and network accuracy.

As shown in Table 1, the present paper inves-
tigates new approaches to the Dota2 game event
classification/identification task (MCNN-GA and BO)
and compares with the state-of-art work (Luo et al.,
2019a), which generated ThiNet30 as the best model.
The new methods explored here do not require pre-
trained models to perform parameter optimization
(unlike ThiNet which is run on a pre-trained model).
Furthermore, the present work adds BO to the ana-
lyzed methods, which has a different nature of evolu-
tion of the MCNN-GA evaluated solutions.

3 DL OPTIMIZATION
FRAMEWORK

This section presents the framework investigated
herein to optimize DL models which identify game
events in gameplay footage. Such architecture is com-
posed of the following modules: Preprocessing Mod-
ule and Architecture Compression Methods, as shown
in Figure 1 and described in the sequence. The frame-
work receives as input a dataset of game events from
gameplay videos and aims to generate an optimized
model (in terms of classification performance and
neural network size) for such a dataset.

3.1 Capturing Frames from the
Gameplay Footage

The required training data samples for this paper are
extracted from Dota2 gameplay videos sourced from
the main related work (Luo et al., 2019b). The sam-
ples that make up the dataset consists of individual
frames containing a single active game event (that is,
frames devoid of events or otherwise containing mul-
tiple events are discarded). 10 three second gameplay
clips were collected of each event at 30 frames per

second (FPS), which lead to a total of 9000 frames.
These data are then pre-processed (subsection 3.2) in
order to generate the dataset necessary to the execu-
tion of the experiments.

3.2 Frame Pre-Processing

The individual frames are submitted to a pre-
processing that consists on the following two phases
(following (Luo et al., 2019b)): 1) every frame is
resized from its original size to 224×224 pixels,
maintaining the RGB color channels; 2) every re-
sized frame is submitted to a pixel-wise normalization
(where the values range in the interval [0,1]).

3.3 Game Events

The dataset is composed of examples related to a
set of the following 10 game events: using Black
King Bar, using Eul’s Scepter of Divinity, using
a Glyph, Ending the game, Roshan fight, using
Shiva’s Guard, activating a Shrine, team fight,
teleport, and tower destruction. They will be not
described in detail here, but the authors of (Luo et al.,
2019a) ensure ”they are a mix of important events in-
volving multiple characters and individual characters
employing powerful items or abilities”. In addition,
the visual effects difference between such selected
events is highlighted, which is an important factor in
the success of CNN images classification/recognition
approaches. It is important to note that this dataset it
completely balanced (that is, there are the same num-
ber of examples of each class/game event), which fa-
cilitates the learning process of CNN models.

3.4 Architecture Compression
Approaches

This section presents the implementation of both op-
timization approaches (MCNN-GA and BO) used in
the Architecture Compression module. Basically, it is
responsible for choosing an optimized CNN based on
the classification performance over the input dataset
evaluating a population of individuals, which corre-
spond to solutions. The individuals and their evalua-
tion (fitness) are described in the sequence. Next, the
details of MCNN-GA and BO are presented.

3.4.1 Individuals

The individuals correspond to CNN architectures. In
this work, such architectures are composed of a maxi-
mum of ten blocks (as justified in (Faria et al., 2020))
of the following types: Skip and Pooling. The Skip

Investigating the Performance of Optimization Techniques on Deep Learning Models to Identify Dota2 Game Events

883

Table 1: Parallel between the main related works and the present approach.

Approach (Luo et al., 2019a) (Faria et al., 2020) Present paper
CNN Architecture ResNet ResNet ResNet

Pre-trained Weights Yes No No
Optimization Method ThiNet MCNN-GA BO and MCNN-GA

Experiments Application Dota2 FIFA Dota2

Figure 1: General architecture of the optimization framework.

block, inspired by residual blocks, is composed of two
convolutional layers and a skip connection. This con-
nection is responsible for connecting the input X of
the first convolutional layer (referred to as conv1) to
the output of the second convolutional layer (conv2).
If the spatial sizes of the input of conv1 and the out-
put of conv2 are different, a third convolutional layer
(conv3) is applied to the input X in order to obtain the
same spatial size as the output of conv2.

Table 2 presents the configuration used in the im-
plementation of the Skip block. Note that the Filter
Size, Stride and Padding hyperparameters are repre-
sented by constant values, while Number of Filters is
the only one taken into account in the optimization
process (F1 and F2). F1 represents the number of fil-
ters of the first convolutional layer, while F2 corre-
sponds to the number of filters of the second and third
(when needed) convolutional layers. In the case of the
present work, they can assume the following values:
8, 16, 32 or 64.

Table 2: Skip block hyperparameters configuration.
Number of Filters Filter Size Stride Padding

conv1 F1 3x3 1x1 same
conv2 F2 3x3 1x1 same
conv3 F2 1x1 1x1 same

The Pooling block is composed of one pooling
layer. It has the Filter Size and Stride hyperparam-
eters values equal to 2x2. Thus, the only hyperparam-
eter taken into account in the optimization process is
the pooling operation type, which can be max pooling
or average pooling.

All the constant values of the aforementioned hy-
perparameters were retrieved from (Faria et al., 2020).

3.4.2 Fitness Function

The fitness function indicates how well an individual
(representing a solution candidate) is able to solve the
optimization problem. In the case of this work, the
evaluation of this function is based on the combina-
tion of the classification performance (in terms of the
model error) and the architecture size (in terms of the
number of parameters or vector of weights).

In this way, the CNN architecture of an individ-
ual is generated from its respective list of blocks (skip
or pooling). Throughout this generating process, the
batch normalization layer followed by the ReLu ac-
tivation function is added to the output of each con-
volutional layer in the skip blocks. After all blocks
are decoded, a fully connected - representing the out-
put layer implemented with the softmax classifier - is
added to the end of such an architecture. The number
of neurons in the output layer is determined by the
number of game events of the given dataset.

With the CNN model generated, the data is di-
vided into training and testing sets using the hold-
out method in a way that the examples from the input
dataset are distributed in the same proportion in each
of these sets. It is initialized with random parame-
ters (weight vectors), trained with the training data
for ten epochs (considering the Categorical Cross En-
tropy loss function), and evaluated with the test data.
The evaluation of an individual corresponds to a lin-
ear combination between two terms defined by Equa-
tion 1, FT1 and FT2. The former represents the fit-
ness relative to the number of parameters of the CNN
model while the latter corresponds to its classification
performance (concerning the test examples). Thus, F
(fitness function) is a minimization problem with re-
spect to the aforementioned terms.

F = min(FT1 +FT2) (1)

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

884

Fitness Term (FT1): it represents the evaluation of
the CNN architecture in terms of its size (i.e. the
number of parameters or size of the weight vec-
tor). The largest model that can be generated in
the case of this work is composed of a total of
3,474,500 parameters, since in the worst case the
architecture will have 10 skip blocks with values
of F1 and F2 equal to 64 (the largest value among
those defined for the number of filters). Thus, the
smaller the size of the model, the better the evalu-
ation of FT1. Importantly, this value is normalized
in the range [0,1].

Fitness Term (FT2): it corresponds to the perfor-
mance of the CNN architecture in terms of its
classification error. After the CNN model is
trained with the training data, its error based on
the Categorical Cross Entropy loss function over
the test data is calculated, FT2. Thus, it can be
stated that this term will have a good value when
the test error is low, that is, when the architecture
is robust in handling data from the given dataset.
The value of FT2 is also normalized in the range
[0,1] just like FT1.

3.4.3 Minimum CNN-GA (MCNN-GA)

Basically, the MCNN-GA tries to find the best CNN
architecture to classify an image classification data set
through an evolutionary process consisting of the fol-
lowing steps: 1) Initialization of an arbitrary popula-
tion; 2) Evaluation of individuals’ fitness; 3) Genera-
tion of the offspring; 4) Environmental selection.

The first two steps were previously explained in
subsections 3.4.1 and 3.4.2 respectively. The third
step is performed using binary tournament (Miller
et al., 1995) to select parent individuals and apply-
ing the one-point crossover operation (Srinivas and
Patnaik, 1994) over each pair of selected parents to
generate the offspring. Then, these children can be
mutated through the following operations: 1) Adding
a Skip block randomly; 2) Adding a Pooling block
randomly; 3) Removing a block randomly; 4) Mod-
ifying a block configuration (hyperparameters) ran-
domly. The children are also limited to the number
of ten blocks (excluding the output layer) in order
to maintain the algorithm consistency. Finally, the
fourth step is carried out by combining the binary
tournament and an elitist strategy. The best individ-
ual is automatically placed in the next population and
the others are selected through binary tournament.

3.4.4 Bayesian Optimization (BO)

BO tries to find the best CNN architecture to clas-
sify an image classification data set through a method

known as surrogate optimization, that is, it models
an approximation of the objective function (which is
usually completely unknown) based on the following
steps: 1) Sampling of random individuals; 2) Train-
ing a gaussian process; 3) Computing an acquisition
function; 4) Generating a new solution (individual).

The first step was previously explained in subsec-
tions 3.4.1 and 3.4.2. It generates 10 random individ-
uals (with arbitrary architectures) and performs their
evaluation creating some observations of the objec-
tive function (in this case, this function maps the pa-
rameter set x fitness relationship). From this, the sec-
ond step involves building and training a probabilistic
surrogate model of the objective function (typically a
Gaussian Process). The idea behind it is that the more
points (individuals) that are generated, the better the
approximation of the surrogate model with the objec-
tive function. The third step is performed computing
the acquisition function, which drives the proposition
of new potential points to test, in an exploration and
exploitation trade-off. This work used the Expected
Improvement based method, which is one of the most
widely used acquisition functions for BO (Mockus
and Mockus, 1991). Finally, the fourth step corre-
sponds to generating and evaluating the best potential
point found from the acquisition function. This entire
process is carried out until N individuals are evalu-
ated (it should be noted that at some point this method
can reach convergence, that is, it always generates the
same point/individual to be evaluated).

4 EXPERIMENTS AND RESULTS

The experiments performed here are primarily aimed
at validating the use of MCNN-GA and BO methods
(Architecture Compression Methods) in the process of
automatically building optimized CNN architectures
and comparing, in the context of Dota2 game events,
with the ThiNet technique used by (Luo et al., 2019a).

Thus, in a first step, an evaluation and comparison
is performed between the two methods explored here
(Experiment 1). Then, another comparative analysis
is performed on the method with the best results ob-
tained in the first experiment with respect to the best
state-of-the-art method, ThiNet (Experiment 2). The
parameters used to validate such comparisons are the
classification performance, memory and time. The
independent-samples t-test (t-test) (Coleman, 2009) is
used to verify if there is a superiority in terms of per-
formance between the different methods compared.

In this sense, subsection 4.1 describes all the ex-
perimental configurations used in this work, subsec-
tion 4.2 briefly comments the evaluative parameters.

Investigating the Performance of Optimization Techniques on Deep Learning Models to Identify Dota2 Game Events

885

Finally, subsections 4.3 and 4.4 present the results of
the Experiment 1 and Experiment 2 respectively.

4.1 General Experimental
Configurations

The experimental configurations used in this paper
(and also retrieved from (Luo et al., 2019b)), are de-
scribed below:

• Size of Input Images: 224x224x3.

• Input Data Normalization: pixel-wise pixel nor-
malization (that is, the pixel values are in the
range between zero and one).

• Number of Training Epochs: 10 (the best epoch
in terms of validation loss represents the final
model parameters/weights).

• Optimizer: Adam.

• Learning Rate: 0.001.

• Loss Function: Cross-Entropy.

• Output Activation: Softmax.

• Split Method: Holdout (80% of training data and
20% of test data). It is noteworthy here that the
game events are evenly distributed between the
two sets (that is, 80% of examples of each class
is related to training data and 20% to test data).

• Number of Examples - Dota2 Dataset: 9.000
(7.200 training data examples and 1.800 test data
examples).

Since the technique for splitting the data is simple
holdout, 10 runs were performed for each method to
allow evaluation of statistical tests on the results in all
experiments. In each run of each method, exactly the
same examples were used in the training and test sets
(i.e., using the same random seed value for splitting
the data), which means the performance comparison
is independent of the potential issue of data distribu-
tion, as done in (Luo et al., 2019a). Finally, the exper-
iments were executed in an architecture composed by
a machine with a Tesla K80 GPU and 16 GB RAM1.

4.2 Evaluative Parameters

The parameters used to evaluate and compare all the
methods investigated in this work are presented in the
sequence.

• Accuracy: classification performance parameter
that represents the rate of correct inferences of the

1https://github.com/matheusprandini/
dota2-cnn-optimization

model (CNN architecture) over the total number
of examples in the test set.

• Loss: classification performance parameter that
corresponds to the model error based on the value
of the loss function (in this case, Categorical
Cross Entropy) in the test set.

• Size: memory parameter that measures the size
of the model in terms of its number of parameters
(weight vector dimension).

• Inference Time: parameter that represents the
time (in seconds) it takes for the trained model to
make predictions for all examples in the test set.

• Execution Time: parameter that represents the
time (in minutes) that the method takes to gen-
erate the CNN model.

• Fitness: corresponds to the evaluation value of
the best individual (CNN model) found (used only
in the MCNN-GA and BO methods).

4.3 Experiment 1 - Comparing
MCNN-GA and BO Methods
Performance

The intention of this experiment was to validate and
compare the performance of MCNN-GA and BO on
the construction of optimized CNN models. The ex-
ecution parameters for the MCNN-GA are shown in
Table 3: population size equal to 10; number of gen-
erations equal to 10; probability of an individual per-
forming the crossover operation equal to 0.8; and,
probability of an individual performing the mutation
operation equal to 0.2. This means that a maximum
of 220 individuals will be evaluated (20 initial indi-
viduals plus 20 offspring individuals in each of 10
generations). Then, to maintain the fairness of this
comparative analysis, the BO method was also set up
to evaluate a maximum of 220 individuals.

Table 3: MCNN-GA Execution Parameters.

Population Size 10
Number of Generations 10
Individual Crossover Rate 0,8
Individual Mutation Rate 0,2

Table 4 summarizes the mean value of the eval-
uative parameters for best individuals found through
these two approaches over 10 runs. They indicate su-
perior performance of MCNN-GA over BO overall. In
terms of classification, the former obtained a mean
accuracy rate and a mean loss value, respectively,
of 0.3% higher and 0.07 lower than the latter. Re-
garding the mean CNN network size, the evolution-

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

886

ary method generated lighter architectures by approx-
imately 57%. Hence, this was reflected in the differ-
ence in the fitness value. There was no difference in
the inference time, but the MCNN-GA execution time
was, on average, 2.5 hours longer than the BO. A t-test
with a significance level (α = 0.05) was conducted to
validate the performance comparison.

Table 4: BO and MCNN-GA comparison results (mean
value).

Accuracy Loss Size Inference
Time

Execution
Time Fitness

BO 99.05 0.169 80994.0 5.4 481.0 0.01445
MCNN-GA 99.35 0.099 35026.0 5.4 637.0 0.00864

The t-test computes the following main values: t-
statistic value (t-value) and p-value. The former in-
dicates the actual t-test result and the direction of the
difference (if any). The latter represents the signifi-
cance value of the test. In this manner, the following
H0 was created: BO holds the same level of perfor-
mance as MCNN-GA.

As Table 5 states, the BO and MCNN-GA meth-
ods performed equally well only for the inference
time parameter. In terms of the classification qual-
ity parameters (accuracy and loss) and size of the
generated model, a superiority of MCNN-GA can be
noted. While BO had a significantly lower execu-
tion time. The authors believe that the faster con-
vergence of the solutions generated by BO is because
it evaluates a smaller number of individuals to find
an optimized CNN for the input dataset than MCNN-
GA. However, since BO generates a single solution
at a time, it analyzes a smaller diversity than MCNN-
GA which keeps several points scattered in the search
space. This indicates that although the MCNN-GA
method takes longer (which is its main limitation) to
return an optimized solution, it generates lighter neu-
ral networks with higher classification efficiency than
BO with a 95% confidence interval for the mean dif-
ference. Therefore, it is concluded that MCNN-GA
outperformed BO in Dota2 dataset.

4.4 Experiment 2 - Comparing
MCNN-GA and ThiNet30 Methods
Performance

The first experiment proved the performance superi-
ority of the models generated from MCNN-GA against
BO. Then, in this second experiment, the best method
investigated in the latter experiment (MCNN-GA) is
confronted with the best method (ThiNet30) obtained
in the state-of-art considering the Dota2 dataset. It is
important to highlight that ThiNet30 is implemented
an trained as described in (Luo et al., 2019a).

Table 6 shows the mean results of these methods
through 10 runs (the results of MCNN-GA were trans-
posed from Table 4). They indicate a slight classi-
fication performance superiority of MCNN-GA over
ThiNet30 (0.25% for accuracy and 0.014 for loss).
Regarding the mean CNN network size, the evolu-
tionary method generated lighter architectures by ap-
proximately 95%. In terms of inference time, MCNN-
GA also had a 1.1 seconds advantage over ThiNet30.
The execution time and fitness parameters were not
computed since the ThiNet method does not involve
generating different architectures to obtain the opti-
mal model (it only applies the reduction of the num-
ber of filters in the original convolutional layers of
ResNet152 as previously explained in section 2).

An independent-samples t-test with a significance
level (α = 0.05) was conducted to validate this com-
parative analysis as shown in Table 7. The null hy-
pothesis (H0) stated that MCNN-GA holds the same
level of performance as ThiNet30.

The positive accuracy t-value (1.983) and nega-
tive loss t-value (-1.199) suggest a slight superiority
of MCNN-GA over ThiNet30 in terms of classification
performance. However, since the p-value of accu-
racy and loss are 0.062 and 0.245, respectively (values
greater than the α = 0.05 designated for the statistical
test), the null hypothesis cannot be rejected. Thus,
both methods are considered to have the same qual-
ity in the task of classification/identification of game
events (with respect to the Dota2 dataset).

Regarding the network size and inference time,
MCNN-GA generated significantly better results than
ThiNet30 (since the p-value for both parameters are
smaller than α with a 95% confidence interval). So,
it is concluded that despite presenting the same clas-
sification performance, the former brings the advan-
tage of generating much lighter networks with faster
data inference time than the latter. These results indi-
cate that the best models generated by MCNN-GA are
more suitable considering a real-time setting. This
is because the depth of the models (number of lay-
ers) generated by this method is smaller than that
of ThiNet30 (and consequently ResNet152), which
speeds up the prediction phase.

5 CONCLUSION AND FUTURE
WORKS

This work investigated two different approaches (one
based on genetic algorithm and the other based on
bayesian optimization) in order to generate CNNs op-
timized in terms of classification performance and
network size without the need to rely on pre-trained

Investigating the Performance of Optimization Techniques on Deep Learning Models to Identify Dota2 Game Events

887

Table 5: T-test applied to the results between methods BO and MCNN-GA.

Accuracy Loss Size Inference
Time

Execution
Time Fitness

t-value p-value t-value p-value t-value p-value t-value p-value t-value p-value t-value p-value
-3.125 0.006 3.048 0.007 4.455 0.0003 0.0 1.0 -3.966 0.001 5.596 0.00003

Table 6: MCNN-GA and ThiNet30 comparison results
(mean value).

Method Accuracy Loss Size Inference Time
MCNN-GA 99.35 0.099 35026.0 5.4
ThiNet30 99.10 0.113 6700576 6.5

Table 7: T-test applied to the results between methods
MCNN-GA and ThiNet30.

Accuracy Loss Size Inference
Time

t-value p-value t-value p-value t-value p-value t-value p-value
1.983 0.062 -1.199 0.245 -9968.12 0 -5.312 0.00004

networks. The case study used to validate the analysis
was the Dota2 game event dataset. The results showed
that MCNN-GA generated CNNs which achieved a
classification performance as good as the best model
produced in (Luo et al., 2019a) (ThiNet30), but with
significantly fewer parameters (resulting in models
with less memory usage). It means that MCNN-GA
have a great potential to generate highly efficient and
suitable models for real-time applications (which can
be transferable to domains beyond games), which
helps in hardware accessibility for complex tasks.

As future works, the authors intend: to investi-
gate the performance of the approaches studied here
for different types of games (simpler 2D games like
Super Mario Bros and more realistic 3D games like
Skyrim); to publish the framework investigated here
for the community’s use; and, finally, to use such ap-
proaches to build real-time mechanisms that can help
people with cognitive difficulties.

REFERENCES

Azadvar, A. (2021). Predictive psychological player profil-
ing.

Coleman, A. M. (2009). A dictionary of psychology / An-
drew M. Colman. Oxford University Press Oxford ;
New York, 3rd ed. edition.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vi-
sion and pattern recognition, pages 248–255.

Faria, M. P. P., Julia, R. M. S., and Tomaz, L. B. P.
(2020). Improving fifa player agents decision-making
architectures based on convolutional neural networks
through evolutionary techniques. In Cerri, R. and
Prati, R. C., editors, Intelligent Systems, pages 371–
386, Cham. Springer International Publishing.

Han, S., Mao, H., and Dally, W. J. (2016). Deep compres-
sion: Compressing deep neural network with pruning,

trained quantization and huffman coding. In 4th Inter-
national Conference on Learning Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications.

Luo, J.-H., Wu, J., and Lin, W. (2017). Thinet: A filter level
pruning method for deep neural network compression.
In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 5068–5076.

Luo, Z., Guzdial, M., Liao, N., and Riedl, M. (2018). Player
experience extraction from gameplay video. CoRR,
abs/1809.06201.

Luo, Z., Guzdial, M., and Riedl, M. (2019a). Making cnns
for video parsing accessible. CoRR, abs/1906.11877.

Luo, Z., Guzdial, M., and Riedl, M. (2019b). Making
cnns for video parsing accessible: Event extraction
from dota2 gameplay video using transfer, zero-shot,
and network pruning. In Proceedings of the 14th In-
ternational Conference on the Foundations of Digital
Games, FDG ’19, New York, NY, USA. Association
for Computing Machinery.

Miller, B. L., Miller, B. L., Goldberg, D. E., and Gold-
berg, D. E. (1995). Genetic algorithms, tournament
selection, and the effects of noise. Complex Systems,
9:193–212.

Mockus, J. B. and Mockus, L. J. (1991). Bayesian ap-
proach to global optimization and application to mul-
tiobjective and constrained problems. J. Optim. The-
ory Appl., 70(1):157–172.

Moosa, A. M., Al-Maadeed, N., Saleh, M., Al-Maadeed,
S. A., and Aljaam, J. M. (2020). Designing a mobile
serious game for raising awareness of diabetic chil-
dren. IEEE Access, 8:222876–222889.

Soomro, K., Zamir, A., and Shah, M. (2012). Ucf101: A
dataset of 101 human actions classes from videos in
the wild. CoRR.

Srinivas, M. and Patnaik, L. M. (1994). Genetic algorithms:
a survey. Computer, 27:17–26.

Wijman, T. (2019). The global games market will generate
$152.1 billion in 2019 as the u.s. overtakes china as
the biggest market.

Wong, J. and Gales, M. (2016). Sequence student-teacher
training of deep neural networks. pages 2761–2765.

Xu, M., Gao, M., Chen, Y.-T., Davis, L. S., and Crandall,
D. J. (2019). Temporal recurrent networks for online
action detection.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

888

