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Abstract: This paper presents a shape-aware finger region segmentation method from hand images for user authenti-
cation. The recent development of encoder-decoder network-based deep learning technologies dramatically
improved image segmentation accuracy. Although those methods predict the probability of belonging to each
object pixel by pixel, it is impossible to consider whether the estimated region has a finger-like shape. We
adopted a deep learning-based Bezier curve estimation method to realize shape-aware model training. We
improved the accuracy with the case of warm color, complex background, and finger touching that would be
difficult to estimate target regions using color-based heuristics or traditional pixel-by-pixel methods. We pre-
pared ground truth data for each finger region (index finger, middle finger, ring finger, little finger), then trained
both the conventional pixel-by-pixel estimation method and our Bezier curve estimation methods. Quantitative
results showed that the proposed models outperform traditional methods (pixel-wise IOU 0.935) and practical
speed.

1 INTRODUCTION

As the COVID-19 pandemic is occurring globally,
the need for contactless user authentication is rising
for applications such as entrance management, sys-
tem login, and contactless payment at stores. In re-
sponse, we have developed finger vein authentica-
tion technology that uses visible-light cameras typi-
cally built into mobile devices. This technology can
perform biometric identification using finger images
taken with a general-purpose camera. Given that var-
ious objects could appear in the background of fin-
ger images, eliminating background elements and ac-
curately detecting fingers are critical technical chal-
lenges. Background removal and finger detection can
be considered the finger region segmentation from an
image. The accuracy of image segmentation meth-
ods has been dramatically improved with the recent
development of deep learning technologies. Among
them, encoder-decoder networks have successfully
performed an image segmentation task (Ronneberger
et al., 2015; Chen et al., 2018; Howard et al., 2017;
Sandler et al., 2018; Howard et al., 2019; Zhang
et al., 2017; Ma et al., 2018; Minaee et al., 2020).
U-Net (Ronneberger et al., 2015) is a standard and
well-known encoder-decoder network for image seg-
mentation. DeepLab v3 (Chen et al., 2018) intro-

duced the atrous convolution into the encoder and
PPM(Pyramid Pooling Module) to control the fea-
tures’ resolution and modified the decoder’s structure.

In the context of finger region extraction from
the scene image, those encoder-decoder-based im-
age segmentation methods estimate the probability
of belonging to each finger pixel by pixel. Then
the multiple finger regions are extracted according to
the estimated probability. However, the pixel-wise
image segmentation approach is challenging to con-
sider whether the estimated region has a finger-like
shape. It is vulnerable to warm color backgrounds
or complex backgrounds. When the fingers are thick
or closed, the estimation of the finger-valley position
becomes inaccurate by attaching the adjacent fingers.
Finger regions are generally bell-shaped and can be
represented by combinations of curves. Then com-
pared to normal semantic segmentation, the target ge-
ometry is restricted. Suppose we can reflect the shape
model in the training process more directory. In that
case, we can expect to acquire more robust finger re-
gion extraction models with complex backgrounds or
finger-touching cases.

This paper proposes a finger region estimation
method using the deep-learning-based finger bound-
ary curve regression. As an efficient and robust curve
representation tool, we used the Bezier curve in vector
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graphics to draw smooth curves. We can reconstruct
finger boundary curves and the finger regions by esti-
mating Bezier control points. Developing lightweight
finger region extraction models for practical finger
vein authentication on edge devices is also vital. The
contributions of our paper are as follows:

• We propose to model finger boundaries by Bezier
curves and train its control points by using a deep
learning regression for fingers region extraction.

• We defined boundary curve loss and experimen-
tally showed the advantage of adding this loss
function.

• We showed that the proposed method outperforms
pixel-wise IOU (0.935) in the scenario of using
edge devices such as smartphones and keeps the
finger’s shape despite the case with warm color,
complex background and finger-touching cases.

2 RELATED WORKS

In the literature, there are several approaches and re-
lated works that claim finger/hand segmentation for
cluttered/complex background images (Mohan et al.,
2015)(Bapat and Kanhangad, 2017)(Ungureanu et al.,
2018) (Al-Nima et al., 2017)(Priesnitz et al., 2021).
S. Zhao (Zhao et al., 2018) used a fully convolutional
network for hand region segmentation and fine-tuned
the version of VGG16 model in ILSVRC-2014 com-
petition to their collected hand segmentation datasets.
However, they say that when the background is brown
wood, results are unsatisfactory for some parts of the
background or woods are identified as hands. P. Mo-
han (Mohan et al., 2015) uses sequential frame sub-
traction and post-processing for hand gesture recog-
nition by assuming that the background should be
static and the hand should not be stationary. How-
ever, flickering light and some objects are moving
behind. In addition to that, the hand should not
be moved while authenticating to improve accuracy.
Bapat (Bapat and Kanhangad, 2017) combines skin
color detection and shape filtering for hand segmen-
tation. They define skin color values for HSV and
RGB and then remove false positives using shape
characteristics. They use the change of the number
of skin pixels per row to judge whether that area is
a hand region. Their method depends on whether
the contour of the segment by the skin color detec-
tion is sufficiently correct, which may not be justi-
fied skin-colored background or illumination change
in hand area such as a shade. Ungureanu (Ungure-
anu et al., 2018) used SegNet and original encoder-
decoder dcnn for hand segmentation with complex

backgrounds. They used standard palmprint image
databases CASIA and HKPU with a monotone color
background for the training. Then they augmented
the image dataset by replacing the simple background
with complex images with various texture proper-
ties. The evaluation of (Ungureanu et al., 2018) needs
to be revised because they used only synthetic data,
which does not include actual complex data. Further-
more, the evaluated models’ size or inference speed
is not apparent. Al-Nima et al. (Al-Nima et al.,
2017) use IIT Delhi, PolyU3D2D, and spectral 460
from the CASIA Multi-Spectral Palmprint. That DB
has a monotone color background. Priesnitz(Priesnitz
et al., 2021) uses DeepLabV3+ for hand segmenta-
tion. However, their parameter sizes and FLOPs is not
practical for edge devices such as smartphone without
GPUs. Practical inference speed is one of our con-
cerns in this paper.

Besides, there are researches on lightweight back-
bone networks, such as MobileNet (Howard et al.,
2017), ShuffleNet (Zhang et al., 2017), MobileNet-v2
(Sandler et al., 2018), ShuffleNetv2 (Ma et al., 2018)
and MobileNet-v3 (Howard et al., 2019). These mod-
els decompose normal convolution into depth-wise
convolution and point-wise convolution to reduce pa-
rameters and FLOPs. For practical finger vein au-
thentication that uses visible-light cameras on edge
devices, it is crucial to develop lightweight and accu-
rate finger region extraction from the camera images.

3 PROPOSED METHOD

3.1 Finger Region Segmentation by
Bezier Curve Learning

Recently, the image segmentation approach by deep
learning models has exhibited many successes. How-
ever, pixel-wise image segmentation can not directly
incorporate the segmented regions’ shape. In the lit-
erature, some studies estimate the parameters of the
spline curve by regression-based deep learning [14,
15]. Finger regions are generally bell-shaped and
can be represented by combinations of simple curves.
Thus, it is straightforward to detect spline curves rep-
resenting fingers’ boundaries. As an efficient and
robust curve representation tool, we used the Bezier
curve in vector graphics to draw smooth curves.
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Figure 1: Examples of cubic Bezier curves (with four con-
trol points). The diagram on the left shows a drawing pro-
cess of a Bezier curve from its parameters (control points,
P0 ∼ P3).

3.2 Finger Region Representation by
Bezier Curves

A Bezier curve is based on n control points and is
defined by the following equation:

B(t) =
n

∑
i=0

bi,n(t)Pi, 0 ≤ t ≤ 1 (1)

where the polynomials

bi,n(t) =
(

n
i

)
t i(1− t)n−i, i = 0, ...,n (2)

are known as Bernstein basis polynomials of degree
n.

(n
i

)
are the binomial coefficients.

(n
i

)
= n!

i!(n−i)! The
points Pi are called control points for the Bezier curve.
In this study, each point Pi is an XY coordinate.

By changing the value of t from 0 to 1, we can get
the sequence of the coordinates of the Bezier curve.
In other words, once you get the parameter value
(XY coordinates) of Pi ∼ Pn, you can draw the Bezier
curve. The left diagram in Figure 1 illustrates this pro-
cess. The control points P0 ∼ P3 are the parameters
of the Bezier Curve. Additional points, P4 ∼ P9, are
calculated iteratively from the starting control points
P0 ∼ P3. At the first iteration, we calculate P4 ∼ P6.
P4 is the t : 1− t division point of a straight line P0P1.
P5 is the t : 1− t division point of a straight line P1P2.
P6 is the t : 1− t division point of a straight line P2P3.
At the second iteration, we calculate P7 ∼P8. P7 is the
t : 1− t division point of a straight line between P4P5.
P8 is the t : 1− t division point of a straight line be-
tween P5P6. At the last iteration, we calculate P9. P9
is the t : 1− t division point of a straight line between
P7P8. This recursive calculation is repeated n times.
The n is the dimension of the Bezier Curve. Exam-
ples of Figure 1 are n=3 (cubic Bezier curve). B(t)
in (1) corresponds to the XY coordinate of the calcu-
lated point P9. Because the additional points P4 ∼ P9
are expressed by the control points P0 ∼ P3 formulas,
we can calculate B(t) as equation (1).

We investigated for the number of control points
required for representing finger boundaries by Bezier

Figure 2: Overview of the ground truth data conversion
process. We convert binary mask-represented finger region
ground truth data into the Bezier curve control points.

curves. As a result of trial and error, we confirmed
that the finger shape could be adequately reproduced
by dividing each finger into two regions, left and right,
and using six control points for each divided curve. It
was difficult to estimate control points from a whole
finger boundary curve by least square estimation of
Pi (equation (3); Large discrepancy between an esti-
mated curve and original curve). The contour of a
finger is not a simple bell shape but often has a com-
plicated curve, which requires many control points.
By estimating XY coordinates of the control points
of each piece of curves (a total of twenty-four control
points), we can reproduce the original curves, then
extract finger regions.

We convert finger region ground truth data (e.g.,
binary mask represented) into the Bezier curve con-
trol points. Figure 2 shows the conversion process
step by step.

In step (1), we extract four contours from binary
images using (Suzuki and be, 1985). The resulting
contours are represented by sequence of coordinates
(polygons). Each polygon represents one of four fin-
gers. In step (2), we search finger valleys points
based on the coordinates of each polygon. In step (3),
we divide each piece of the polygon into two parts
(left half and right half) at the point with the small-
est y-coordinate of the polygon. Each piece consists
of a curve from a finger valley to a fingertip. Fi-
nally, in step (4), we obtain the optimal parameters for
Bezier curves (XY coordinate Pi in equation (1)) from
the sampling points (coordinates in the divided poly-
gon). Given the m sampling points {pi}m

i=1 from the
curved boundary, where pi represents the ith sampling
point, we can use the standard least square method
to achieve this, as shown in equation (3) (Liu et al.,
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2020). t1 ∼ tm are the m sample values of t in equa-
tion (1).


b0,5(t0) . . . b5,5(t0)
b0,5(t1) . . . b5,5(t1)

...
. . .

...
b0,5(tm) . . . b5,5(tm)




Px0 Py0

Px1 Py1

...
...

Px5 Py5

=


px0 py0

px1 py1

...
...

pxm pym


(3)

These four steps can convert mask annotation to a
parameterized Bezier curve. In this study, we directly
use the endpoint of the divided polygons in the above
step (4) as the first (P0 and P6) and the last (P5 and P11)
control points, respectively. Then, we train the model
to estimate those control points for four fingers (a total
of twelve control points).

3.3 Bezier Curve Parameter Estimation
by Regression Based Deep Learning

Once the trained model estimates the control points
for eight curves of four fingers (3.1), we can recon-
struct the regions of four fingers. In this subsection,
we briefly explain the model used to regress the XY
coordinates of the control points.

3.3.1 Model Structure

Figure 5 shows the overall model structure used for
the Bezier control points regression. This study used
FCOS (Fully Convolutional One-Stage Object Detec-
tion) Net (Tian et al., 2019) as a regression estimation
model for control points. FCOS Net constructs multi-
scale semantic feature maps through Feature Pyramid
Network (FPN) (Lin et al., 2016). On top of each
scale feature map, the attached Head layer has a clas-
sification branch, regression branch, and center-ness
branch. The classification branch predicts the class of
target objects. The bounding box branch predicts base
pixel coordinates and four relative distances (left, top,
right, and bottom from the base pixel coordinates).
The center-ness branch predicts a pixel’s deviation to
the center of its corresponding bounding box.

To achieve sufficient inference speed in the edge
devices such as smartphones, we used Mobilenet-v2
as the backbone network of FCOS Net. In addition,
the channel size of the backbone network and feature
maps are half the original (Tian et al., 2019). It also re-
duced the number of feature map layers from F3∼F7
into F3 and F5. The bounding box regression mecha-
nism of FCOS Net is used to estimate the control point
coordinates of the Bezier curve (Liu et al., 2020).

3.3.2 Bezier Control Points Regression

In our study, we define four class labels, index fin-
ger, middle finger, ring finger, and little finger. We
define the ground-truth bounding box from the end-
points of the divided polygons (P0, P5, P6, P11) in step
(4) in Figure 2. Note that our definition of a bounding
box is not necessarily equal to the bounding box of the
finger region. Figure 3 illustrates the resulting ground-
truth bounding box for an index finger. The regression
branch in our model predicts the base coordinate and
four relative distances, ∆l = basex− le f t,∆t = basey−
top,∆r = basex − right,∆b = basey−bottom. In addi-
tion, the Regression branch also predicts twenty-four
(12 points for each finger) relative distances from the
same base coordinate for each control point P0 ∼ P11,
∆x = Pxi −basex,∆y = Pyi −basey. Figure 4 illustrates
the resulting Bezier control points for an index finger.

The detected bounding boxes are scored by multi-
plying the predicted center-ness with the correspond-
ing classification score to filter out bounding boxes
and Bezier control points far from the center. This
filter out is done by the bounding box non-maximum
suppression (NMS) process.

3.3.3 Loss Function

In a text spotting method ABCNet (which is based on
FCOS Net) (Liu et al., 2020), they define three types
of loss functions, classification loss (Lcls), bounding
boxes regression loss (Lloc), and Bezier control points
regression loss (Lcpt) for text spotting. In this paper,
we define boundary curve loss by sampling contour
points from the estimated/target Bezier control points
by using equation (1).

Lbcl =
1
m

m

∑
i=0

|Bestimate(ti)−Btarget(ti)| 0 ≤ ti ≤ 1

(4)
We take the value of ti equally spaced sampling with
values from 0 to 1. Our model minimizes the follow-
ing total loss function (Ltotal).

Ltotal = Lcls +Lloc +Lcpt +λ1Lbcl (5)

λ1 is the hyperparameter for the boundary curve
loss Lbcl . We set this value to 0.1.

4 EVALUATION

We performed deep learning model training for fin-
ger region estimation using the models proposed in
the previous section and evaluated finger region es-
timation accuracy and inference speeds. First of all,
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Figure 3: (Left) We define the ground-truth bounding box
from the endpoints of the divided polygons in step (4) in
Figure 2 (P0, P5, P6, P11). P0, P6 corresponds to the fin-
gertips (smallest y-coordinate of the polygon), and P5, P11
corresponds to the finger bases; (right) Bounding box re-
gression examples. The regression branch in our model pre-
dicts the base coordinate and four relative distances, ∆l =
basex − le f t,∆t = basey − top,∆r = basex − right,∆b =
basey −bottom.

Figure 4: The regression branch also predicts twenty-four
(12 points for each finger) relative distances for each control
point P0 ∼ P11 (∆xi = Pxi −basex,∆yi = Pyi −basey); (green
circle) Control points for the left split curve in Figure 2;
(blue circle) Control points for the right split curve in Figure
2.

Figure 5: Examples of FCOS net. C3, C4, and C5 denote
the feature maps of the backbone network, and F3, F4, and
F5 are the feature levels used for the final prediction. The
original (Tian et al., 2019) used five feature maps (F3 ∼
F7).

we explain the data preparation procedure for model
training.

DB: Two public hand image databases (PolyU-IITD
ver.3 (Kumar, 2019), NTU-CP-v1 (Matkowski
et al., 2020)) and one in-house databases. We
collected smartphone rear camera captured hand
images mainly in work-from-home environments

(total of 418 hands (left and right), 16,603 im-
ages) (We call collected in-house database “ARC.”
Four thousand images were held-out for valida-
tion). The images are resized into 240x320. That
dataset has no ground-truth hand masks. Then we
need to prepare ground-truth masks.

Ground-Truth Data: Binary mask image for each fin-
ger (index finger, middle finger, ring finger, lit-
tle finger). The target finger region is defined
from the fingertip to the finger valleys. The con-
ventional method extracted the ground truth data
(color and shape-based heuristics).

Data Cleansing: The image’s ground-truth labeling
of correct finger regions was done using a rule-
based finger region segmentation algorithm based
on color and shape. However, since some images
fail to be authenticated if the extracted finger re-
gion’s size is less than a certain threshold, they are
excluded from the labeled images. In addition, we
adopt the following criteria for the ground truth
data cleansing: (1) Successful extraction of 4 fin-
gers. (2) The height of the finger valleys along
with the finger’s long axis is less than one-fifth of
the height of the middle finger. (3) Finger area is
more than half of the bounding box size. (4) As-
pect ratio threshold (exclude objects with a large
pitch or objects that may be in the middle of the
finger.)

Data Augmentation: To expand the variation of the
training data, we conducted the following image
data augmentation. (1) RandomColorJitter, (2)
RandomPerspective, (3) RandomCrop, (4) Image
synthesis from hand images and background im-
ages. In step (4), we used Place365 1 database for
the various background scene.
The model can predict various background envi-
ronments that the conventional heuristics method
can not predict correctory by adopting data aug-
mentation.

4.1 Region Estimation Accuracy

We used the dataset (Table 1) for model training and
evaluation. From the dataset, about 4,000 images are
held out for evaluation. We used Intersection Over
Union (IOU) for the pixel-wise classification accuracy
metrics for region estimation accuracies. The evalua-
tion of authentication accuracies is out of the scope
of this study. Still, improving the region estimation
improves the finger biometrics authentication accura-
cies.

Table 3 shows the prediction accuracy (mIoU) for
each model. The first column shows the model name

1http://places2.csail.mit.edu/download.html
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Table 1: Hand image dataset used for this study.

DB Name DB Type Hand IDs Images
PolyU-IITD ver.3 (Kumar, 2019) Public 1,220 12,200
NTU-CP-v1 (Matkowski et al., 2020) Public 655 2,478
ARC In house 936 25,603

Table 2: Hand image dataset used for model robustness
comparison. ICF: Indoor Closed Finger, IWB: Indoor
Warm Background.

DB Name DB Type Images
ICF In house 1,841
IWB In house 110

(SHFL:Shufflenet, SHFLV2:ShufflenetV2, MNV1:
MobileNet, MNV2: MobilenetV2, MNV3: Mo-
bilenetV3). Each model name represents the back-
bone network model except for the FBCR (ours).
We evaluated two cases of FBCR with and without
loss function Lbcl in equation (5). We adopted light-
weighted models2 that can practically be used in edge
devices such as smartphones. The second column
shows the accuracy for each finger. The third column
shows the average accuracy for all fingers (mIoU). We
used inference speed in a GPU-less environment to se-
lect models for comparison. One criterion is that the
inference time on a smartphone is less than 700 msec
(see Table 4). As can be observed, the proposed model
FBCR w/o Lbcl outperforms other pixel-by-pixel esti-
mation methods, such as the MobilenetV3-based seg-
mentation model (MNV3) (Howard et al., 2019). Fur-
thermore, FBCR w/ Lbcl improves the accuracy by
about 0.3 %.

Table 4 shows the result of processing time on
the CPU for each model. We used a smartphone
(QualcommSnapdragonT M835) for the performance
evaluation. The inference speed of the FBCR model
is a bit slower than the MNV3 model (Table 4). We
can improve the performance by restricting the adapt-
able object resolutions of the Feature Pyramid Net-
work(FPN) in FCOS.

4.2 Robustness in Background
Variations

Table 5 shows the prediction accuracy (mIoU) for
warm color backgrounds (Table 2:IWB). As can be
observed, the proposed model FBCR outperforms
MNV2 (the second-best model in Table 3).

Figure 6 shows the extraction results with differ-
ent models for complex background scenes. We com-
pared three models, Heuristics, MNV2, and ours. The

2Lightweight Model for Real-Time Semantic Seg-
mentation: https://github.com/Tramac/Lightweight-
Segmentation

first column is the case for almost all warm color back-
grounds. In this case, the heuristics method fails to
predict all finger regions. MNV2 predicts all finger
regions, but the shape of the first, third, and fourth fin-
gers is irregular.

On the other hand, FBCR (ours) model predicts all
fingers except the fourth finger. Instead of outputting
an unclear finger region, output nothing. The second
column is the results for the warm color background
(a red bar is behind the finger). In this case, the heuris-
tics method fails to predict except for the little finger.
MNV2 predicts all finger regions, but the index finger
region includes part of the red bar region.

On the other hand, the FBCR model predicts all
finger regions correctory. The third column is a com-
plex background beside the balcony on a sunny day,
with shadows on the hand. The results of the heuris-
tics method appear to be affected by a difference in
luminance in finger regions. In this case, both MNV2
and FBCR predict all fingers correctly. The last
column is another case for warm color background
(wood-grained table). In this case, both MNV2 and
FBCR predict all finger regions correctory.

Figure 6: Finger region extraction example for each model.

4.3 Robustness for Finger Touching

Table 6 shows the prediction accuracy (mIoU) for
all finger-touching images(Table 2:ICF). We did not
include finger-touching hand images in the training
datasets in this study. Then the prediction accuracy
of both FBCR and MNV2 degrades. As can be ob-
served, the proposed model FBCR remarkably outper-
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Table 3: Prediction accuracy for each model.

Model Name mIoU for each Finger ID mIoU for all fingers
INDEX MIDDLE RING LITTLE

SHFL 0.907 0.930 0.924 0.921 0.922
SHFLV2 0.906 0.924 0.929 0.928 0.922
MNV1 0.907 0.927 0.926 0.923 0.921
MNV2 0.910 0.934 0.932 0.927 0.926
MNV3 0.908 0.929 0.922 0.916 0.919
FBCR(ours) w/o Lbcl 0.912 0.937 0.937 0.934 0.932
FBCR(ours) w/ Lbcl 0.923 0.940 0.941 0.935 0.935

Table 5: Prediction accuracy for warm color backgrounds.

Model Name mIoU for each Finger ID mIoU for all fingers
INDEX MIDDLE RING LITTLE

MNV2 0.722 0.776 0.731 0.679 0.727
FBCR(ours) 0.774 0.781 0.787 0.781 0.781

Table 6: Prediction accuracy for finger touching images for each model.

Model Name mIoU for each Finger ID mIoU for all fingers
INDEX MIDDLE RING LITTLE

MNV2 0.448 0.320 0.263 0.127 0.289
FBCR(ours) 0.547 0.624 0.525 0.548 0.560

Table 4: Processing time for each model. (Qualcomm Snap-
dragon (TM) 835).

Model Name Inference Speed (msec)
SHFL 580

SHFLV2 565
MNV1 496
MNV2 673
MNV3 163

FBCR(ours) 230

forms MNV2 (the second-best model in Table 3) for
all fingers.

Figure 7 shows the extraction results with differ-
ent models for finger posture differences. Since one
of our purpose of finger region extraction is user au-
thentication, the posture is restricted to the range that
the finger surface can be seen from the camera. There-
fore a small amount of rotation or pitching is the target
of this comparison.

The top column of Figure 7 shows the extraction
results for finger touching in the middle. The tails of
the middle finger region and the ring finger regions
on MNV2 are estimated short because of the fingers’
touch in the middle. On the other hand, finger re-
gion and length are correct on the FBCR model. The
second column shows the extraction results for four-
finger touching. The shape of the third and fourth fin-
gers is crumbling, and the boundary of the middle fin-
ger is corrupted. The third column of Figure 7 shows a
hand rolling case (rotation in the y-axis). In this case,
the index finger overlaps the region of the middle fin-

Figure 7: (Left) estimation results with MNV2; (right) esti-
mation results with the model FBCR (ours).

ger area a little. The index finger region on the MNV2
model is crumbling, and other finger regions are not
correct either.

The drawback of the FBCR is that when the model
fails to detect a finger, there is no output of region
estimation for that finger.

5 CONCLUSIONS

This paper proposed a shape-aware finger region seg-
mentation method for user authentication from hand

Finger Region Estimation by Boundary Curve Modeling and Bezier Curve Learning

377



images. We adopted a deep-learning-based Bezier
curve estimation model to realize shape-aware model
training. Finger regions generally have a bell shape
and can be represented by parametric spline curves
such as Bezier curve. Our model estimates the set of
control points and then reconstructs the curved bound-
ary of fingers. We prepared ground truth data for
each finger (index finger, middle finger, ring finger,
little finger). Then trained, a conventional encoder-
decoder-based deep learning network and proposed
Bezier curve estimation model. We showed that the
proposed method outperforms other models by pixel-
wise IOU (0.935) in using edge devices such as smart-
phones and keeps the finger’s shape despite the case
with warm color and complex background. We plan
to improve the inference speed for the application to
edge devices in future work.
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