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Abstract: Machine Learning (ML) models can predict diseases with noteworthy results. However, when implemented,
their generalization are compromised, resulting in lower performances and render healthcare professionals
more susceptible into delivering erroneous diagnostics. This study focuses on the use of uncertainty measures
to abstain from classifying samples and use the rejected samples as a selection criterion for active learning.
For the multi-label classification of cardiac arrhythmias different methods for uncertainty quantification were
compared using three Deep Learning (DL) models: a single model and two pseudoensemble models using
Monte-Carlo (MC) Dropout and Deep Ensemble (DE) techniques. When tested with an external dataset, the
models’ performances dropped from a F1-Score of 96% to 70%, indicating the possibility of dataset shift. The
uncertainty measures for classification with rejection resulted in an increase of the rejection rate from 10% in
the training set to a range between 30% to 50% on the external dataset. For the active learning approach, 10%
of the highest uncertainty samples were used to retrain the models and their performance increased by almost
5%. Although there are still challenges to the implementation of ML models, the results show that uncertainty
quantification is a valuable method to employ in safety mechanisms under dataset shift conditions.

1 INTRODUCTION

Over the years, medical technology has been devel-
oped and improved in order to ensure the most effec-
tive healthcare to the general public. Artificial Intel-
ligence (AI) is quickly evolving due to its potential
to assist evidence-based clinical decision-making and
achieve value-based care (Chen and Decary, 2020).
As a result, there has been a growing amount of sci-
entific research regarding the use of ML algorithms
in the medical domain. ML models have progressed
to the point that they can predict a variety of dis-
eases, with performances that can be superior to those
achieved by healthcare professionals. This is achiev-
able because ML models are trained with patient data
in order to identify patterns that would otherwise be
undetected and, thereby, produce an estimate of a pa-
tient’s current or future clinical state.

However, while showing promising results, these
models still have some limitations for their deploy-
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ment on clinical settings since their generalization ca-
pabilities are often compromised, resulting in lower
performances and rendering healthcare professionals
more susceptible into delivering erroneous diagnos-
tics. This occurs since conditions in which we use the
medical systems diverge from the conditions in which
these systems were created, leading to mismatches
between the training data and the data intended to be
classified. This problem is called dataset shift and, in
general, the greater the degree of shift, the poorer is
the model’s performance (Malinin et al., 2021). This
is one of many problems that contribute to the limited
number of models implemented in real life setting,
with only 64 AI/ML medical systems approved by the
FDA up until 2020 (Benjamens et al., 2020). As a re-
sult, it is critical that ML models include safety mech-
anisms to mitigate the dataset shift problem and im-
prove the trustworthiness of these models. If AI/ML
models fail to possess these mechanisms, they will be
unable to be effectively implemented with FDA ap-
proval, leading AI/ML models to oblivion as decision
support models.

Quantifying the uncertainty of models’ predic-
tions is a key method to assess the model’s confi-
dence in their decisions. Although uncertainty quan-

252
Simão, R., Barandas, M., Belo, D. and Gamboa, H.
Study of Uncertainty Quantification Using Multi-Label ECG in Deep Learning Models.
DOI: 10.5220/0011680700003414
In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2023) - Volume 4: BIOSIGNALS, pages 252-259
ISBN: 978-989-758-631-6; ISSN: 2184-4305
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



tification has already demonstrated promising results
in different fields, the literature on ECG classification
is scarce. The works of (Vranken et al., 2021) and
(Aseeri, 2021) are relevant works under this topic,
however a single-label classification is applied, even
though multi-label datasets are used.

In this paper, we develop a classification approach
with rejection option based on uncertainty measures
and evaluate the uncertainty as a selection method for
active learning. Although the main purpose is to de-
velop an agnostic framework for the classification of
cardiac arrhythmias, this work will concentrate on es-
tablishing the practical value of the uncertainty quan-
tification applied in three types of DL models in dif-
ferent medical datasets and their role in the referred
methods. This research aims at providing a better
understanding of the capacity of the model’s gener-
alization through uncertainty estimation as well as
demonstrate that uncertainty aware models are capa-
ble of containing safety mechanisms and, therefore,
be considered trustworthy systems to be implemented
in clinical settings.

2 RELATED WORK

2.1 Uncertainty Estimation Measures

In the general literature (Shaker and Hüllermeier,
2020; Barandas et al., 2022), a distinction between
two intrinsically different sources of uncertainty is
done: aleatoric and epistemic. Aleatoric Uncertainty
(AU) is associated with the variability in the outcome
of an experiment which is due to intrinsic random-
ness of the data generating process that cannot be ex-
plained away given more observations or data sam-
ples (Shaker and Hüllermeier, 2020). Epistemic Un-
certainty (EU) refers to the lack of knowledge of the
model and usually is caused by incomplete domain
coverage since unknown regions of the data space will
always be presented. The presence of new classes that
were not contemplated in the training of the model,
are an example of high EU. This uncertainty can be
reduced by increasing the training data, better model-
ing or better data analysis (Barandas et al., 2022).

In traditional probabilistic modeling and Bayesian
inference, the uncertainty of a prediction is given by
the posterior distribution. Considering a finite dataset
D composed of instances x ans labels y, where yk ∈
{y1, ...,yK} is a set of K class labels, an hypothesis h
maps the instances x to the outcomes y. The posterior
P(h|D) can be obtained via the Bayes rule:

P(h|D) =
P(D|h)P(h)

P(D)
(1)

where P(D|h) is the probability of data given h and
P(h) is a prior distribution. For a single probabil-
ity distribution, an uncertainty measure that combines
both aleatoric and epistemic uncertainty can be cal-
culated through the probability of the predicted class,
given by:

p(ŷ|x) = max
k

p(yk|x,D) (2)

The entropy of the predictive posterior modeled
by Shannon’s entropy is also an uncertainty measure
for single probability distribution defined by:

H[p(y|x)] =−
K

∑
k=1

p(yk|x) log2 p(yk|x) (3)

In DL the randomness induced during training and
inference can be used to obtain an uncertainty esti-
mation (Mi et al., 2019). DE and MC Dropout are
techniques commonly used for this quantification. DE
consists of training repeatedly the same neural net-
work with different parameters due to the randomness
in the initialization and training process (Ståhl et al.,
2020). Each model makes its own prediction and the
final prediction is derived from the composition of all
models in the ensemble. MC Dropout is a method that
omits a certain percentage of neurons at each layer
of a neural network during training and testing, with
the missed neurons randomly selected for each itera-
tion and each test time (Gal et al., 2016). The final
prediction is obtained from the composition of all the
predictions with distinct dropouts.

For these methods, the approximation proposed
by Depeweg et al (Depeweg et al., 2018) can be used
to obtain a measure of total, aleatoric and epistemic
uncertainty:

utotal(x) := H[
1
M

M

∑
i=1

p(y|x,hi) (4)

ualeat(x) :=
1
M

M

∑
i=1

H[p(y|x,hi)] (5)

uepist(x) := utotal(x)−ualeat(x) (6)

2.2 Classification with Rejection Option

When a classifier is not sufficiently confident in the
prediction, the model can abstain from producing an
answer or discard a prediction if the uncertainty is
sufficiently high. Therefore, a classifier with rejec-
tion can cope with unknown information, reducing
the threat caused by the existence of unknown sam-
ples or mislabeled training samples that can compro-
mise the performance of the model. The standard
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approach for classification with rejection option, also
known as Chow’s theory (Chow, 1970), is the calcula-
tion of a rejection threshold that minimises the classi-
fication risk. One approach to achieve this is through
the uncertainty associated with every prediction. The
empirical evaluation of methods for quantifying un-
certainty is a non-trivial problem, due to the lack of
ground truth uncertainty information. A common ap-
proach for indirectly evaluating the predicted uncer-
tainty measures is using Accuracy-Rejection Curve
(ARC). The ARC represents the accuracy of a clas-
sifier against its rejection rate, varying from 0 to 1
(Nadeem et al., 2009).

2.3 Active Learning

ML models, particularly DL models, demand a vast
labelled dataset to learn properly. The number of la-
belled data required grows with the complexity of the
problem or the complexity of the input data. This
issue is particularly dominant in the medical field.
In order to automate the analysis of a given medical
exam, it would be necessary an expert to annotate a
large number of exams, labelling them to indicate if
the patient has certain condition or not. However, ob-
taining the amount of the needed labelled data is time-
consuming and expensive. One possible solution to
this problem is active learning. In this approach, the
model chooses what unlabelled data is appropriate for
training, and request an external “oracle”, for example
a medical work, for the label of the selected data (Set-
tles, 2009). The choice of the data to be labelled is se-
lected by an acquisition function, which ranks points
based on their potential informativeness (Gal et al.,
2016). There are a variety of acquisition functions
and many of them rely on model uncertainty to eval-
uate the potential informativeness of the unlabelled
data points. The more informative is the selected data,
the fewer labelled training examples are necessary to
achieve a greater classifier accuracy. Therefore, the
quantification of uncertainty plays a central role in
active learning and can be valuable to improve the
model’s performance when implemented in clinical
settings.

3 METHODOLOGIES

3.1 Databases

Four public multi-label cardiac arrhythmia datasets
from various countries were employed, having been
provided by the PhysioNet/Computing in Cardiology
Challenge 2020, as proposed by Perez Alday et. al

(Alday et al., 2020). A subset of five classes were
selected for classification: Atrial fibrillation (AF),
First-degree atrioventricular block (IAVB), Left bun-
dle branch block (LBBB), Right bundle branch block
(RBBB) and Sinus rhythm (NSR). These classes were
chosen since almost all of them are presented in each
dataset and are the most frequent classes overall. The
training database is composed of the CPSC2018 and
PTB-XL dataset. The PTB and G12EC databases are
used as external data in this research.

3.2 Data Preparation

To reduce the computational costs, only the ECG aVR
lead was used since this lead produced the best results
in the work of Chen et al. (Chen et al., 2020). The
data was downsampled to 125 Hz and a 10 seconds
window size was used. Data with length below that
value were excluded and data above 10 seconds were
truncated, so that all the samples have 1250 sample
data points. The ECG signals were filtered using a
2nd order band-pass Butterworth filter between 1 and
40 Hz and it was also employed a smooth function
using a window of 10 samples. Lastly, the data was
normalised through a z-normalisation.

3.3 Proposed Algorithm

The model developed is a one-dimensional CNN. The
architecture consists of three convolutional blocks,
each with a convolutional layer followed by a batch
normalization layer, a PRelu activation function with
an initializer of 0.25, a max pooling layer and a
dropout layer with rate of 0.25. Each convolutional
layer has the same kernel size (31x31) but different
number of filters (the first has 512 filters, the second
has 256 and the last one has 128 filters). After the
convolutional blocks, a flatten layer was applied, re-
sulting in a Latent Vector. Three fully connected lay-
ers are added and the last one has a sigmoid activation
function with the same number of neurons as classes.
The flowchart of the proposed algorithm is shown in
Figure 1.

The model was trained in 30 epochs with a batch
size of 64. The loss function employed was the binary
cross-entropy and an Adam optimizer with a learning
rate of 0.1. Since the model is trained with imbal-
anced datasets, it was added the class weight param-
eter that defines the weighting to adopt for each class
when fitting the model.
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Figure 1: The flowchart of the designed algorithm. The algorithm architecture consists of three convolutional blocks, each
with a convolutional layer followed by a batch normalization layer (B̄), a PRelu activation function with an initializer of 0.25,
a max pooling layer and a dropout layer with rate of 0.25. A flatten layer was applied, resulting in a Latent Vector. Three fully
connected layers are added and the last one has a sigmoid activation function with the same number of neurons as classes.

3.4 Training and Testing

The data from CPSC2018 and PTB-XL database was
split into 60% training, 20% validation and 20% test-
ing. The test set from this database was used as an
in-distribution set and will be referred as test-in from
now on. The test set composed from all the samples in
the PTB and G12EC datasets is named test-out. Two
approaches were employed: the MC dropout and the
DE. Both approaches were applied 30 times to both
test sets, resulting in 30 models for each. To obtain
the final prediction with both MC Dropout and DE
approach, it was applied the majority vote for each
class.

3.5 Uncertainty Approaches

For the single CNN, the predicted posterior proba-
bility, also known as maximum probability, and the
Shannon entropy of the predicted probabilities were
used as uncertainty measures. In the case of MC
Dropout and DE, the total uncertainty, EU and AU
measures were estimated. Since a prediction in a
multi-label classification can return more than one
class, the network sigmoid values do not sum 1. For
this reason, in this multi-label scenario, each class
was assumed as an independent binary case and the
uncertainty calculated by each class. Besides the un-
certainty by class, an aggregation mechanism based
on the sum of all class uncertainties was employed as
the final prediction uncertainty.

Regarding the uncertainty evaluation, a common
approach for evaluating the predicted uncertainty is
by using ARC. However, due to the imbalance data,

instead of using accuracy as a performance measure,
the F1-score was used and the F1-Rejection curve was
computed to evaluate the behaviour of the developed
models. These curves were performed for the uncer-
tainty measures mentioned previously with the rejec-
tion occurring from the sample with the highest un-
certainty in its classification to the sample with the
lowest uncertainty. This evaluation was performed
considering the overall performance. Since the data
is multi-label, the uncertainty of an ECG sample is
the sum of each class uncertainty and, therefore, each
sample uncertainty is represented by a value between
0 and 5.

3.6 Active Learning

Uncertainty estimation can be used to select the sam-
ples with higher uncertainty, taking advantage of the
separation between epistemic and aleatoric uncer-
tainty, where the former is more relevant as a selection
criterion (Hüllermeier and Waegeman, 2021). Fol-
lowing this idea, the retraining process was performed
for the single model and the DE model, where a new
set was added to the previous training set for the re-
training process. Each model was retrained for four
more epochs using the newly dataset and the same pa-
rameters previously used to train the initial models.

To validate if samples with high epistemic uncer-
tainty are more informative to the DE model, three
different sets composed by 10% of the test-out were
defined to the retraining process, namely: 1) random
samples; 2) samples with the highest epistemic uncer-
tainty; 3) samples with the highest total uncertainty.
For the single model, the retraining was done with
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samples with the highest Shannon Entropy and for
random samples as well.

4 RESULTS

In order to access the models’ generalization capaci-
ties, it was compared the performance of the single,
MC Dropout and DE models tested with test-in and
tested with test-out.

Figure 2: Micro average F1-score results for the three de-
veloped models tested in test-in and test-out sets.

As it can be seen in Figure 2, the three models,
when tested with the test-in set, have similar perfor-
mances, with micro average F1-score around 96%-
97%, being comparable to the state of the art results.
However, when the models are tested with the test-
out set, their performances decrease significantly in
all three models, having a micro-average F1-Score
of approximately 70%. The DE model obtained the
highest F1-score in both test sets with a maximum dif-
ference of 3% from the other models.

Regarding the classification with rejection option,
even though this method does not solve the problem
of model’s generalization that leads to poor perfor-
mance results under data shift, it can be a viable ap-
proach to abstain to predict a class under high uncer-
tainty conditions. For each model, the uncertainties
measures presented in Section 2.1 were calculated for
the test-in and test-out sets and the results can be
seen in Figures 3 and 4. For the single model, the be-
haviour of both uncertainties measures in test-in and
test-out are similar. However, both uncertainty mea-
sures obtain higher uncertainty in the test-out set.

As for the results in Figure 4, for the test-in set,
the MC Dropout and DE models estimate similar val-
ues of uncertainty, presenting the same median and
the same range of total uncertainty. The MC Dropout
presents a higher range of AU while the DE detects
higher EU. As for the test-out set, both models cap-
ture higher uncertainty than for the test-in set in all
the three types of uncertainty measures.

Figure 3: Uncertainty Estimation for both test sets in the
single model.

Figure 4: Uncertainty Estimation for both test sets in the
MC Dropout(up) and DE(down) models.

To investigate the role of uncertainty in rejection,
the F1-rejection curve was produced for the three
models, rejecting the samples according to the highest
calculated uncertainties. To validate the rejection rate
in both sets, a 10% rejection in the training set was ap-
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plied and the uncertainty thresholds obtained. Using
the same thresholds on test-in and test-out, the rejec-
tion rates increased to approximately 12% and 40%,
respectively, using the single model for both maxi-
mum probability and entropy measures. For the MC
Dropout the rejection in test-in was 9% and vary be-
tween 31% and 34% for test-out depending on the un-
certainty measure used. The DE model vary the rejec-
tions rates between the intervals 13%-16% and 45%-
51% for test-in and test-out, respectively. Further-
more, as it can be deducted for the micro average F1-
Scores presented in the Table 1, for all the three mod-
els and for all uncertainty measures, the more samples
rejected, the better is the models’ performance. Even
though the curves based on the different uncertainty
methods are quite similar, throughout the rejection,
the DE model presents better micro average F1-Score
results for the same rejection rate.

Apart from employing the rejection option, a pos-
sible method to deal with dataset shift is by retraining
the model with samples that have crucial information
to help improve its performance. A potential solution
is the active learning approach, in which the samples
used to retrain the model contain the highest uncer-
tainty associated with their classifications. To eval-
uate the three uncertainties in this approach, the re-
trained models were tested with the test-out set with-
out the 10% samples to fairly compare the increase
between the retrained model and the baseline model.
Thus, the following nomenclature was used: 1) Pre-
vious trained model using the complete test-out set
(Baseline - test-out-100); 2) Previous trained model
tested only on 90% of test-out, i.e 10% of test-out
was used to retrain the model (Baseline - test-out-
90); 3) Retrained model using the selected 10% data
and tested on the remaining 90% (Retrain - test-out-
90). Furthermore, to serve as control, this process
was performed for 10% of random samples in order
to observe the role of uncertainty in this approach.
This procedure was conducted 10 times and the mean
and standard deviation of the results are represented
in Figure 5.

As it can be observed in Figure 5, when the sam-
ples with the highest uncertainty are removed from
the test-out, the model performance increases slightly,
from 2%-4%. After retraining the two models with
these samples and evaluating it without them, a max-
imum increase of almost 5% is observed when com-
pared to the baseline models that are tested with all
the samples of test-out. These conclusions are sup-
ported through the results served as a control, where
the samples selected are random and the trained mod-
els have similar performance as the original models.

Figure 5: Micro average F1-score for the Active learning
approach for the highest uncertainties and for random sam-
ples.

5 DISCUSSION

To make the decision support systems as trustwor-
thy as possible, it is critical to access the confidence
that ML models have in their classifications. This
work studied these concepts using four large public
ECG databases for the classification of cardiac ar-
rhythmias. As multiple cardiac arrhythmias can be
presented within the same recording, a multi-label
classification setting was adopted for the development
of DL models.

The performance of the three models developed
were assessed for two test sets, where the test-in has
data from the same database as the training and the
test-out presents data from a different database. Al-
though these models produced similar performance
results for the same test set, the DE and MC Dropout
outperform the single model, as expected since these
models assist in reducing models’ high confidence in
incorrect classifications. The DE model revealed has
the better performance in both test sets, which it is
consistent with the literature. When tested with the
test-out set, the performance of all the three mod-
els drops significantly, confirmed by the decrease of
F1-Score from around 96% to 70%. These results
indicate the possible presence of dataset shift since
the data from test-out has different characteristics and
distributions than the data used for training.
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Table 1: Rejection rate results and the respective F1-Score values for each uncertainty.

Model Uncertainty Test-in Test-out

Rejection F1-Score Rejection F1-Score

Single CNN
Maximum Probability 12.24% 98.54% 39.81% 79.14%

Shannon Entropy 12.16% 98.38% 41.70% 79.89%

MC Dropout Aleatoric 9.51% 98.46% 31.92% 82.25%

Epistemic 9.35% 98.29% 33.68% 83.07%

Total 9.41% 98.47% 34.30% 83.33%

DE Aleatoric 16.21% 99.34% 51.03% 86.26%

Epistemic 13.46% 99.10% 45.05% 85.25%

Total 15.75% 99.41% 49.95% 87.00%

Regarding the uncertainty estimations, the Shan-
non entropy and maximum probability were esti-
mated for the single model and the aleatoric, epis-
temic, and total uncertainty for the MC Dropout and
DE models. For the single model, both maximum
probability and entropy obtained similar results, while
for the MC Dropout and DE the total uncertainty pre-
sented slightly better result. This suggests the ben-
efit of estimating uncertainty using the combination
of epistemic and aleatoric uncertainty. Additionally,
all uncertainties computed for the test-out were sig-
nificantly higher than for the test-in set. This shows
that the model is less confident on the classification of
cardiac arrhytmias and as result there is higher prob-
ability of misclassified samples. This is an indication
of dataset shift and the main reason of models’ perfor-
mance drop in test-out set. Furthermore, it is impor-
tant to mention that it was expected that the EU would
be higher than the AU in test-out since the data comes
from a different source and might be a different dis-
tribution. This reveals that there are still challenges in
capturing these two uncertainties correctly.

In order to improve the trustworthiness of the
models, the classification with rejection option was
applied. For both test sets, the models performance
increased with rejection, revealing that the higher the
uncertainty in a given classification, the higher is the
probability of the models to misclassify the samples.
Additionally, the uncertainty threshold, selected from
the training data, increased from 10% to a range be-
tween 30% to 50% depending on the model or un-
certainty measure employed. The increase in rejec-
tion rate confirms that high uncertainty is presented in
the classifications and the uncertainty is higher in the
test-out set. This is another evidence of the dataset
shift effect and that the models are not as prepared to

classify data with different distributions.
Another alternative to improve the models’ per-

formance and reliability is through the retraining of
models with unseen data. In this manner, it was em-
ployed an active learning approach, using 10% of the
samples with the highest uncertainty in the test-out
set. The results showed that the models improved
their performance by a maximum of almost 5% when
using uncertainty versus 2% when using a random
selection. These results demonstrate that data with
high uncertainty has information that the model has
not yet learned and hence the models benefit from
the retraining with this selection method. Moreover,
when removing the 10% of the samples with the high-
est uncertainty and test 90% of the test-out in the
baseline models, the performance improved, showing
that the samples with highest uncertainty are misclas-
sified. This underlines the importance of the uncer-
tainty quantification in detecting incorrect classifica-
tions.

6 CONCLUSIONS

The evaluation and comparison of uncertainty mea-
sures has proven to be essential in an in-depth anal-
ysis of ML models, allowing us to understand their
limitations. Furthermore, the preliminary results re-
veal that the quantification of uncertainty should be
considered a key feature of any ML model as a safety
mechanism.

Although there are still no ground truth for the es-
timation of uncertainty, all the metrics used were ca-
pable to detect uncertainty in multi-label data. Never-
theless, there are still challenges in capturing the un-
certainty through the employed measures, specially in
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the separation of epistemic and aleatoric uncertainty.
It is also possible to infer the role of uncertainty as a
valuable method under dataset shift conditions and in
strategies such classification with rejection option and
active learning approaches.

Thus, the development of uncertainty aware mod-
els will provide healthcare professionals with access
to the model’s confidence in its predictions but also
refrain the model from delivering classifications with
high uncertainty. Furthermore, samples that have dif-
ferent characteristics and distributions than the ones
learned by the models have higher uncertainty asso-
ciated with their classifications and, therefore, can be
used to retrain the ML models and improve its gen-
eralization and robustness. The active learning ap-
proach is a reliable method for this purpose, demon-
strating that it is a technique capable to self-regulate
the learning of the models in a real life setting, with a
reduction in computational cost as well as in the cost
of labelling the data usually required. Despite the en-
couraging results, much more research is needed in
the area of clinical data uncertainty, particularly in
multi-label data.

To conclude, data with different characteristics
and distributions from those learnt by the ML mod-
els will always exist, so it is imperative that AI sys-
tems possess uncertainty associated methods as safety
mechanisms to produce reliable models to implement
as a decision support system in clinical settings.
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