
PG-3DVTON: Pose-Guided 3D Virtual Try-on Network

Sanaz Sabzevari1 a, Ali Ghadirzadeh2 b, Mårten Björkman1 c and Danica Kragic1 d
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Abstract: Virtual try-on (VTON) eliminates the need for in-store trying of garments by enabling shoppers to wear clothes
digitally. For successful VTON, shoppers must encounter a try-on experience on par with in-store trying. We
can improve the VTON experience by providing a complete picture of the garment using a 3D visual pre-
sentation in a variety of body postures. Prior VTON solutions show promising results in generating such 3D
presentations but have never been evaluated in multi-pose settings. Multi-pose 3D VTON is particularly chal-
lenging as it often involves tedious 3D data collection to cover a wide variety of body postures. In this paper,
we aim to develop a multi-pose 3D VTON that can be trained without the need to construct such a dataset.
Our framework aligns in-shop clothes to the desired garment on the target pose by optimizing a consistency
loss. We address the problem of generating fine details of clothes in different postures by incorporating multi-
scale feature maps. Besides, we propose a coarse-to-fine architecture to remove artifacts inherent in 3D visual
presentation. Our empirical results show that the proposed method is capable of generating 3D presentations
in different body postures while outperforming existing methods in fitting fine details of the garment.

1 INTRODUCTION

3D virtual try-on (3DVTON) platforms apply real-
istic image synthesis for online marketing, enabling
the process of fitting target clothes on human bod-
ies in the 3D world. The use of 3DVTON holds the
promise of eliminating a fair amount of online shop-
ping returns that are due to a mismatch in style, size
and body shape. Despite significant advances in prior
works (Han et al., 2018; Wang et al., 2018; Dong
et al., 2019; Issenhuth et al., 2019; Zheng et al., 2019;
Yang et al., 2020; Chou et al., 2021; Ge et al., 2021;
Xie et al., 2021) on virtual cloth try-on, the 3D aspect
of the solution has not yet been well explored.

Multi-pose virtual fitting requires generating in-
tuitive and realistic views for users in line with real
try-on experience. Most of the existing works (Pons-
Moll et al., 2017; Bhatnagar et al., 2019; Mir et al.,
2020; Patel et al., 2020) focus on dressing a 3D
person directly from 2D images built on the para-
metric Skinned Multi-Person Linear (SMPL) (Loper
et al., 2015) model. Furthermore, typical manipu-
lations are carried out by image-based virtual try-
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on systems to fit target in-shop clothes onto a ref-
erence person (Han et al., 2018; Yu et al., 2019;
Han et al., 2019; Issenhuth et al., 2020). Most
of these works adopt geometric warping by utiliz-
ing Thin Plate Spline (TPS) (Bookstein, 1989) trans-
formations to deal with cloth-person misalignment.
However, they cannot flexibly be applied to arbi-
trary poses and neglect the underlying 3D human
body information. Besides, some fine-grained 2D
details are not preserved well in synthesized images
without using a reference model like SMPL, even in
3D approaches, e.g., Monocular-to-3D Virtual Try-
On (M3D-VTON) (Zhao et al., 2021). One stream
of work proposed to reconstruct a rigged 3D human
model to address the artefact problem occurring at the
boundaries of clothing (Kubo et al., 2019; Tuan et al.,
2021). Nevertheless, it requires huge computational
costs and efforts, which limits its practical applica-
tion.

In this work, we address the above by multi-pose
image manipulation that is neither restricted to coarse
output results nor needs excessive manual effort to re-
construct a 3D human model. The proposed Pose-
Guided 3D Virtual Try-On Network (PG-3DVTON)
manipulates the target in-shop outfit beforehand and
spatially aligns it to a 3D target human pose. The
framework integrates 2D image-based virtual try-on
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Figure 1: Pose-Guided 3D virtual try-on network. We present a 3D single-image human body guided by arbitrary poses
and garments. Our method first generates the multi-pose cloth virtual try-on. We then synthesize the double depth map based
on the target posture to construct 3D mesh photo-realistic results. The first three columns represent inputs, columns 4 to 8
are generated warped clothes, target semantic maps, and try-on meshes with double depth maps of our proposed approach,
respectively.

and 3D depth estimation to generate 3D try-on of a
dressed person with the identity of the person pre-
served, as shown in Figure 1. The main contributions
of the paper are:

• We extend M3D-VTON to a multi-pose scenario
in a multi-stage network conditioning on arbitrary
poses and target garments through coarse-to-fine
generation.

• We utilize dual geometric matching modules to
reduce the artefacts generated at boundaries of
outfits, especially around neckline, which is cru-
cial for achieving more realistic results.

• We incorporate tree dilated fusion blocks to cap-
ture more spatial information with dilated convo-
lution. We also aggregate multi-scale features to
generate an initial double depth map for 3D vir-
tual try-on.

• We present a training strategy for end-to-end
training of our proposed approach which pre-
serves high-quality details, specifically for the
texture of garments.

2 RELATED WORK

2.1 Virtual Try-on Network

VTONs commonly consist of several multi-module
pipelines and data preprocessing steps. Below, we
overview approaches closely related to our work.

Fixed-Pose VTON. Image-based VTON systems
involve a two-stage process. First, the in-shop cloth-
ing is warped to align to the target area in the hu-
man body. The second stage consists of texture fu-
sion of the warped garments and target reference im-
age while synthesizing the disclosed parts. There are
extensive works that rely on this process. Specifi-
cally, the pioneering one is VITON (Han et al., 2018)
which uses Shape Context Matching (SCM) (Be-
longie et al., 2002) as a matching method for warp-
ing the in-shop clothing. Some other related works
like CP-VTON (Wang et al., 2018), CP-VTON+ (Mi-
nar et al., 2020), and ACGPN (Yang et al., 2020)
apply TPS for geometry matching using convolution
neural network (Rocco et al., 2017). For the fusion
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stage, encoder-decoder networks like U-Net (Ron-
neberger et al., 2015) are used to synthesize try-on
images to preserve the try-on cloth texture.

A feature warping module is present in (Han et al.,
2019), known as ClothFlow, enhance the prediction
of an appearance flow for aligning the source and
target clothing areas in a cascaded manner. To im-
prove textural integrity of try-on clothing and han-
dle large deformations, ZFlow (Chopra et al., 2021)
uses gated appearance flow. Further, ZFlow integrates
UV projection maps with dense body-part segmenta-
tion (Güler et al., 2018) to mitigate undesirable arte-
facts, particularly around necklines. (Raffiee and Sol-
lami, 2021), (Minar et al., 2021), and (Xie et al.,
2021) use garment transfer as a more concrete syn-
thesizing method for the try-on images. Garment-
GAN deals with complex body pose and occlusion by
employing a Generative Adversarial Network (GAN),
alleviating the loss of target clothing details (Raffiee
and Sollami, 2021). To further improve the warping
network for different clothing categories, (Xie et al.,
2021) propose a dynamic warping exploration strat-
egy called Warping Architecture Search for Virtual
Try-ON (WAS-VTON), searching a fusion network
for various kinds of clothes. Cloth-VTON+ recon-
structs a 3D garment model through the SMPL model
to generate realistic try-on images using conditional
generative networks (Minar et al., 2021). However,
estimating the 3D parameters for the input person and
leverage the standard SMPL body model for 3D cloth
reconstruction is rather time consuming.

Another aspect of integrating pose information is
stated in the following. TryOnGAN (Lewis et al.,
2021) incorporates a pose-conditioned StyleGAN2
interpolation to create a try-on experience. This
work typically results in high-resolution to visualize
fashion on any person, but it also fails to extreme
poses and underrepresented garments. To further im-
prove photo-realistic try-on images without human
segmentation, Parser Free Appearance Flow Network
(PF-AFN) employs a teacher-tutor-student approach.
It is initially designed to train a parser-based teacher
model as a tutor network. Then it treats tutor knowl-
edge as inputs of the parser-free student model in a
distillation scheme. A similar counterpart parser-free
method is the StyleGAN-based warping module to
overcome significant misalignment between a person
and a garment image (He et al., 2022). Despite the
recent advances, the results are constrained to poses
similar to the input image.

Multi-Pose VTON. The work towards a multi-
pose guided virtual try-on network is initially pre-
sented in (Dong et al., 2019) by proposing Multi-pose

Guided Virtual Try-On Network (MG-VTON). This
work aims to transfer a garment onto a person with
diverse poses and consists of three stages: a condi-
tional human parsing network, a deep Warping Gener-
ative Adversarial Network (Warp-GAN), and a refine-
ment render network. Attentive Bidirectional Genera-
tion Adversarial Network (AB-GAN) is another sim-
ilar approach to refine the quality of the try-on im-
age through a bi-stage strategy, including a shape-
enhanced clothing deformation model and an atten-
tive bidirectional GAN (Zheng et al., 2019). Fash-
ionOn (Hsieh et al., 2019) introduces FacialGAN and
clothing U-Net to extract salient regions like faces and
clothes for refining the try-on images. However, some
fine-grained details, particularly around necklines,
were still missing, likewise in the earlier works (Dong
et al., 2019; Zheng et al., 2019; Wang et al., 2020a).
Reposing of humans based on a single source image is
proposed through a pose-conditioned StyleGAN net-
work (Albahar et al., 2021). While this approach
provides high-quality human pose transfer, it remains
challenging to transfer both poses and garments con-
currently. Another recent study relies on swapping
both pose and garments. 2D multiple-pose virtual
try-on based 3D clothing reconstruction called 3D-
MPVTON (Tuan et al., 2021) renders natural clothing
deformations while imposing limitations due to the
rigged reconstructed 3D garment model. Dressing in
Order (DiOr) introduces a flexible person generation
for several fashion editing tasks, including layering
multiple garments of the same kind (Cui et al., 2021).
It is, however, a limitation that could not overcome
both reposing and garment transfer simultaneously.
Semantic Prediction Guidance for Multi-pose Virtual
Try-on Network (SPG-VTON) (Hu et al., 2022) in-
cludes three sub-modules by conducting a global and
a local discriminator to control the generated results
using DeepFashion (Liu et al., 2016) and Multi-Pose
Virtual try on (MPV) (Dong et al., 2019). Despite
achieving a photo-realistic try-on, the method cannot
be used on a 3D virtual try-on and disregards the un-
derlying 3D body information.

2.2 3D Virtual Try-on

3D virtual try-on without a scanned 3D dataset is
an intriguing and challenging problem due to the
complex deformation of a garment. Prior work has
demonstrated successful 3D human reconstructions as
well as generating fine-detail clothes, but still, these
methods cannot transfer clothes from one domain to
another (Saito et al., 2019; Saito et al., 2020; Li
et al., 2020). The most popular of these methods is
PIFuHD (Saito et al., 2020). It renders a high-quality
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3D human mesh based on 2D images through a multi-
level Pixel-Aligned Implicit Function and circum-
vents premature decisions regarding explicit geome-
try. One way to predict the underlying human shape
and clothing is MGN (Bhatnagar et al., 2019) that
is associated with the body represented by an SMPL
model while limiting to the predefined garments from
a digital wardrobe. Pix2Surf (Mir et al., 2020) also
proposed to translate texture from 2D garment im-
ages to a 3D virtually dressed SMPL. It uses silhou-
ette shape instead of clothing texture to make it ro-
bust to highly varying garment textures. However, the
body texture is ignored in this method, and it requires
considerable costs to collect scanned 3D datasets for
training. Our work involves translating both a cloth
image and poses of a human body into a target one
for a 3D try-on task.

3 BACKGROUND

3.1 Problem Formulation

PG-3DVTON focuses on generating a 3D clothed hu-
man body wearing a target garment under arbitrary
poses, see Figure 2. It takes as input a target pose Pt ,
an image of the in-shop cloth C, and an input image of
a person I, and outputs a synthesized 3D try-on mesh
IO which represents the same person wearing the in-
shop cloth at the target posture.

3.2 Geometric Matching Module

Each module uses a Geometric Matching Module
(GMM) to preserve the details of the person’s im-
age and the texture of the clothes due to huge
pixel-to-pixel misalignment. In CGM, GMM1 warps
the in-shop garment under the target pose, and
in FGM, GMM2 converts the warped garment back
to the target garment. We denote εA

i and εB
i as fea-

ture extractors for each GMMi, i ∈ {1,2}. Features
extracted are correlated in a single tensor as the in-
put of a regressor network. The output of the corre-
lation map contains all pairwise similarities between
the corresponding features. The regression network
consists of two 2-strided convolutional layers, two 1-
strided ones and one fully-connected output layer to
predict the spatial transformation parameter θi. The
architecture of a GMM is shown in Figure 3.

The thin-plate spline (TPS) is an algebraic tool to
interpolate surfaces over a set of known correspond-
ing control points in the plane (Bookstein, 1989). The
TPS transformation in the GMM performs this inter-
polation based on control points of two images. These

control points are defined as a fixed uniform grid over
the second image and their corresponding points in
the first image. Thus, the control point position of the
first image plays an important role in TPS transforma-
tion parametrization because the control points in the
second image are fixed.

4 PG-3DVTON

PG-3DVTON is based on two modules: a Coarse
Generation Module (CGM) and a Fine Generation
Module (FGM). CGM estimates the region of the de-
sired garment and a base 3D shape of the input per-
son. The FGM is then applied to refine the final 3D
try-on mesh results. The purpose of this module is to
preserve rich details of the garment on the reference
person and the details of the face. These modules are
described below.

4.1 Coarse Generation Module

The CGM module is responsible to generate a coarse
representation of the final output. It consists of
four sub-modules including semantic parsing predic-
tion, spatial cloth warping, double-depth map estima-
tion, and coarse appearance generation which are de-
scribed below.

Semantic Parsing. This module predicts the se-
mantics of the generated image at the new pose to
better fit the garment. It receives as input the semantic
parsing at the initial pose SI and a garment mask MC

and outputs a semantic parsing Ŝt for the target pose
Pt ; (SI ,Pt ,MC)→ Ŝt . The network is implemented as
a U-Net (Ronneberger et al., 2015), and is trained by
optimizing LS = Lad +λceLce, where Lce denotes the
cross-entropy loss, Lad is an adversarial loss, and λ

is a hyper-parameter to balance the two losses. The
cross-entropy loss is defined as:

Lce =−
∥∥Sgt ⊙ log(Ŝt)⊙ (1+MC)

∥∥
1 , (1)

where, Sgt is the ground truth data, ⊙ is the element-
wise multiplication, and ∥.∥1 denotes the L1 norm.
The adversarial loss is defined as:

Lad = EX [log(D(X))]+EZ [log(1−D(G(Z)))], (2)

where G(Z) is a generator that generates a target se-
mantic parsing Ŝt from a random sample in a latent
space Z, and D(X) is a discriminator trained to tell Ŝt

apart from the ground truth in X = {Sgt}. Both G(Z)
and D(X) are conditioned on the inputs [SI ,Pt ,MC].
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Coarse Generation Fine Generation

Figure 2: Overview of the proposed PG-3DVTON. The pipeline consists of two parts: a) Coarse Alignment: The Coarse
Generation Module (CGM) is introduced for prediction of the human segmentation and depth map, producing the initial
rigged try-on image via aligning the warped clothing and the composition mask. b) Refinement: To generate fine-grained
details of a 3D reference image wearing the target cloth, the Fine Generation Module (FGM) is adopted. Once RGB-D
representation is achieved, the 3D clothed human with the target pose and garment converted to get colored point clouds and
finally remeshing the predicted point cloud.

Figure 3: Diagram of the Geometric Matching Module.

Cloth Warping. As shown in Figure 2, this module
warps the in-shop cloth to fit the target pose using a
GMM. It receives the face region of the input image

F I , target pose Pt , the binary mask of the input image
MI , and clothes C and outputs the warped image of
the clothes Cw; (F I ,Pt ,MI ,C)→Cw.

Initial Depth Map. We model a 3D representa-
tion of the resulting try-on using a double-depth map
to model the front D f and the back Db depth im-
ages;

(
SI ,Pt ,MC

)
→ (D f ,Db). This module is im-

plemented as a U-Net and takes the same inputs as
the semantic parsing prediction module. The model
is pre-trained using the following loss function:

Ld =
∥∥∥D f −Dgt

f

∥∥∥
1
+
∥∥Db −Dgt

b

∥∥
1 , (3)

where, Dgt
f and Dgt

b denotes the ground-truth front
and back depth maps, respectively. The ground truth
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maps are created by first generating 3D meshes using
Pixel-Aligned Implicit Function for High-Resolution
3D Human Digitization (PIFuHD) (Saito et al., 2020),
which are then projected orthographically by Pyren-
der (Matl et al., 2019) to create the pseudo ground-
truth depth maps.

Coarse Appearance. To generate the appearance,
it is required to colour the translated semantic parsing
map according to the input image and warped in-shop
cloth image. Inspired by (Wang et al., 2020a), a tree
block generator (Fu et al., 2018) utilizes dilated con-
volutions to retain some specific parts of the try-on
image by aggregating multi-scale features and retriev-
ing more spatial information. The goal of this module
is to predict the initial coarse try-on result Îc and the
binary mask of the target garment M̂c conditioned on
the warped cloth image Cw, the person image without
the garment Iw/C, and the target semantic parsing Ŝt ;(
Cw, Iw/C, Ŝt

)
→
(
Îc,M̂c

)
. Then, the output is fed into

the FGM for further refinement. The generated coarse
result ÎG is captured by:

ÎG =Cw ⊙ M̂c︸ ︷︷ ︸
Ĉw

+ Îc ⊙
(
1− M̂c)︸ ︷︷ ︸

Îw/C

, (4)

where Ĉw is the cloth region in the coarse result, and
Îw/C is the coarse generated result without clothes.
The corresponding loss function LC used in this pa-
per is:

LC = λattenLatten
(
M̂c,Mw)+λsmoothLsmooth

(
ÎG, Igt)

+λperceptLpercept
(
ÎG, Igt)+Ladv

(
ÎG, Igt) .

(5)

where the attention loss Latten is

Latten =
∥∥M̂c −Mw∥∥

1 +λTV
∥∥∇M̂c∥∥

2 , (6)

and λTV is the total variation regularization parameter
to preserve edges (Liang et al., 2011), ∥.∥2 is the L2 or
Euclidean norm, Mw is the ground-truth warped cloth
mask as well as ∇M̂c is the gradient of the composi-
tion mask. Moreover, the smooth loss Lsmooth (Gir-
shick, 2015) is employed to be more robust to the
outliers compared to L2 loss which is sum of all the
squared differences in between the ground-truth data
and the generated output:

Lsmooth(ÎG, Igt) =

{
0.5(ÎG − Igt)2 if |ÎG − Igt |< 1
|ÎG − Igt |−0.5 otherwise

(7)
where Igt is the ground-truth input image under target
posture.
The perceptual loss Lpercept (Johnson et al., 2016) is

used to preserve the high-level content and the style of
the garment. It includes two perceptual loss functions
based on the network’s loss Φ (pretrained network for
image classification): (i) feature reconstruction loss
is Euclidean distance between feature representations
and (ii) style reconstruction loss is squared Frobenius
norm of the difference between the Gram matrices of
the generated and ground-truth images. The first one
encourages the pixels of the output images to have
similar feature representations, while the latter pe-
nalizes it in a case that deviates in content from the
ground-truth data. More details of the this loss func-
tion can be found in (Johnson et al., 2016).
The objective function to guide distinguishing be-
tween real and fake labels is introduced by Ladv
through Least Squares Generative Adversarial Net-
works (LSGANs) (Mao et al., 2017). Also, λatten,
λsmooth, λpercept , and λadv are hyper parameters.

4.2 Fine Generation Module

After generating the coarse result, the following pro-
cess adds more information to the try-on image by
synthesizing photo-realistic body texture.

Face Refinement. Retaining the facial characteris-
tics of the person is one of the challenges in VTON
systems. We use a GAN-based tree block network
to address this. The network uses the face regions
of generated try-on image F Îg

and the original refer-
ence image F I , resulting in a refined face region F̂r;(

F I ,F Îg
)
→ F̂r, which is combined with the coarse

try-on image without the face Iw/F to produce a new
refined try-on image Îr. For training the following ob-
jective function is used:

Lr
F = LV GG

(
F̂r,F Igt

)
+λL1

∥∥F̂r −F Igt
∥∥

1

+λ
F
advLadv

(
F I , F̂r)+λ

F
smoothLsmooth

(
Îr, Igt) .

(8)

where LV GG is a perceptual loss defined as (Wang
et al., 2018)

LV GG
(
F̂r,F Igt

)
=

5

∑
i=1

λi
∥∥φi
(
F̂r)−φi

(
F Igt
)∥∥

1 (9)

and F Igt is the face region of the target person ground-
truth image Igt , φi is the feature map of i-th layer
in the visual VGG19 network (Simonyan and Zisser-
man, 2014).

Cloth Reconstruction. To preserve some specific
parts of the in-shop cloth image, such as the neck-
line, in the generated try-on images, a second GMM is
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used to reconstruct the in-shop cloth image C from the
warped cloth image Cw in CGM. The reconstructed
cloth image is given by Ĉ = T PSθ2(C

w), which cap-
tures rich details through the geometric cloth warping
method in (Wang et al., 2018) and is trained with the
loss Lw; (C,Cw)→ Ĉ.

Lw = Lsmooth
(
Cw,CI)+∥∥Ĉ−C

∥∥
1 (10)

Here Lsmooth is defined similarly to (7). The image CI

denotes the ground-truth region of the cloth image, C,
extracted from the reference image under the target
pose Pt .

Depth Refinement. To minimize the discrepancy
between the ground-truth depth map and the re-
constructed one, it is necessary to keep the high-
frequency depth details. To achieve this, the image
gradient Ig is acquired by concatenating the gradient
images of Cw and Iw/C. We apply the Sobel operator
to detect edges and capture the gradient images on the
aforementioned images. Then, the triplets Cw, Iw/C,
Ig are concatenated with initial depth maps to produce
the refined double-depth map (Dr

f ,D
r
b) through a U-

Net;
((

Cw, Iw/C, Ig
)
,(D f ,Db)

)
→ (Dr

f ,D
r
b). Inspired

by (Hu et al., 2019), the weighted sum of two loss
functions is considered during training as follows

Lr
d = λdepth

(
1
n

n

∑
i=1

log
(∥∥Dr

i −Dgt
i

∥∥
1 +1

))
︸ ︷︷ ︸

Ldepth

+λgrad

(
1
n

n

∑
i=1

log
(
∇x
(∥∥Dr

i −Dgt
i

∥∥
1

)
+1
)

+log
(
∇y
(
∥Dr

i −Dgt
i ∥1
)
+1
))

︸ ︷︷ ︸
Lgrad

.

(11)

where Dr
i and Dgt

i are the i-th refined depth point, and
the ground-truth one, respectively, n is the total num-
ber of front/back depth map points, and ∇ represents
the Sobel operator.

4.3 Joint Training and Final 3D Human
Mesh

While the training process is handled separately for
each network, the performance deteriorates when
fine-grained details are desired. Therefore, we jointly
train all the sub-modules of the proposed approach ex-
cept depth modules to remedy the influence of coarse
try-on results. We formulate the overall objective

function as:

Ltotal = LS +Lw +LC +Lr
F . (12)

Consequently, we extract the front and back view
depth maps to convert the 3D point clouds. The front
depth map is incorporated in the try-on result. How-
ever, there is a need to inpaint the try-on image for
the back texture inspired by (Telea, 2004). Finally,
we remesh the predicted point cloud viewer for 3D
presentation.

5 EXPERIMENTS

5.1 Dataset

The MPV dataset (Dong et al., 2019) consists of
pairs of female models and top garment images per-
formed for experiments used for both train and test
sets. It should be noted that we need to construct
the pseudo depth dataset for a monocular-to-3D vir-
tual try-on dataset, in which each person image has
the corresponding front and back depth maps (D f and
Db), respectively. For this we use PIFuHD (Saito
et al., 2020) to obtain the relative generated human
mesh. Then it is orthographically projected to the
depth maps. We divide the whole dataset into a 12997
image train set and a 2577 image test set. The images
in this dataset have a resolution of 256×192.

5.2 Implementation Detail

The sub-modules of the CGM are trained to provide
the inputs for the FGM. The Adam optimizer is
adopted to train the combined network for 200 epochs
with the initial learning rate set to 0.0002. We addi-
tionally set different batch sizes for each modules; 64
for semantic parsing and GMM modules, and 8 for
the remaining modules, while using 2 GPUs. We im-
plement the model in Pytorch and trained on NVIDIA
RTX 2080Ti GPUs.

5.3 Qualitative Results

We compare the results of the proposed network with
the following baseline methods: MG-VTON (Dong
et al., 2019), Down to the last detail (Wang et al.,
2020a), and M3D-VTON (Zhao et al., 2021).
MG-VTON: is an improved version of the 2D Vir-
tual Try-ON (VTON) system, including the change
of input posture. We define a 3D virtual try-on
presentation and adapt it for diverse poses.
Down to the Last Detail: is the baseline to tackle the
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VTON system for multiple poses. Despite its effort
to preserve the carving details, some mismatches
explode, especially around the neckline. We augment
the cycle consistency loss to this network for better
visual tracking of the clothing region in the generated
results.
M3D-VTON: is the state-of-the-art method to
present 3D VTON with the simple try-on task of
fitting the desired garment on the reference person.
We enhance this network through matching the
arbitrary poses and taking care of carving details.

We present the comparison of our method with the
existing state-of-the-art in Figure 4. It should be noted
that we perform the comparison for a single pose
since the benchmark model includes the estimation
of depth maps applied to a single posture. Although
the resolution of M3D-VTON is roughly two times
higher than the rest, it performs poorly for different
clothing regions. The face has not been generated in
M3D-VTON since it does not allow changing the pos-
ture; accordingly, we could just compare qualitatively
with the pseudo ground-truth PIFu-HD in Figure 5.
This figure illustrates that our PG-3DVTON generates
realistic monocular 3D VTON while preserving mesh
texture.

5.4 Ablation Study

We perform an ablation study, including removing
the end-to-end joint training strategy on held-out test
data. It is verified that this strategy could enhance the
generated results due to optimizing the entire frame-
work and could help to reduce artifacts for various
cloth synthesizes. It is also illustrated in Figure 6 that

Figure 4: The visualized 2D-virtual try-on result compari-
son. Our method has better performance at generating cloth
rich details illustrated in red boxes.

Figure 5: The visualized generated double-depth maps. The
first two columns and the last one represent the inputs, while
the others are generated 3D try-on results and PIFU-HD
mesh, respectively.

training separately of the modules as semantic parsing
leads to the unpleasing generation. Then it is required
to fine-tune in the end-to-end training process.

5.5 Evaluation Metrics

There are two different metrics to evaluate the ef-
fectiveness of the proposed structure in a 2D pre-
sentation: Image-based and Feature-based metrics.
We use the Structural Similarity Index Measure
(SSIM) as a representative for image-based metrics
and the Fréchet Inception Distance (FID) for feature-
based ones. A higher score for SSIM and a lower
value for FID indicate the higher accuracy of the gen-
erated images compared with the ground-truth im-
ages. We also use two common depth evaluation met-
rics: Root Mean Squared Error (RMSE) and Absolute
Relative error (Abs.). Our approach outperforms the
baselines in terms of geometric details of the depth
estimation. It should be noted that the PIFU score
is captured based on the average double-depth score,
while NormalGAN is computed from either front or
back depth.

In Table 1, we summarize evaluation results from
1500 generated try-on images cropped around the
generated clothes, disregarding the face area. These
show that our PG-3DVTON achieves the maximum
SSIM scores on the MPV dataset. A greater score of
SSIM and a lower score of FID demonstrate that the
quality of the generated image is closer to the ground-
truth image. Thus PG-3DVTON is better at fitting
the in-shop clothes onto the input person under dif-
ferent postures. However, failure cases are also pre-
sented, primarily due to the stochasticity of the se-
mantic segmentation, with examples shown in Fig-
ure 7, especially for the facial area or the area unre-
lated to clothes between the generated image and the
original image for evaluation.
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Figure 6: The effective results of our end-to-end training pipeline and ablation study.

Figure 7: Failure Cases for real-world applications due to
stochasticity provided by the semenatic segmentation esti-
mation network.

Since this is the first work that explores the multi-
pose 3D-VTON, we compare the generated 3D try-on
mesh with the 3D human reconstruction and baseline
approaches, as shown in Table 2. To make a fair com-
parison, we only consider cases for which the input
and target poses are the same, even if PG-3DVTON
can handle also changes in pose. To compare with
these benchmark models, we evaluate both the global
metrics RMSE and Abs., which estimate the depth be-
tween the generated depth map and that of the ground-
truth. The lower score of PG-3DVTON in Table 2 il-
lustrates superior shape generation ability compared
to the state-of-the-art methods.

Table 1: Quantitative comparison with the state-of-the-art
methods on the MPV dataset.

Method SSIM ↑ FID ↓
MG-VTON (Dong et al., 2019) 0.705 22.42
Down-to-the-Last-Detail (Wang et al., 2020a) 0.723 16.01
M3D-VTON (Zhao et al., 2021) 0.685 22.05
PG-3DVTON (Ours) 0.797 14.64

Table 2: Quantitative comparison for double-depth score
(All values have been multiplied by 103 to improve read-
ability in the table).

Method RMSE ↓ Abs. ↓
PIFU (Saito et al., 2019) 27.07 8.12
NormalGAN (Wang et al., 2020b) 18.21 11.23
M3D-VTON (Zhao et al., 2021) 14.68 8.79
PG-3DVTON (Ours) 14.16 6.87

6 CONCLUSIONS

We have presented a 3D synthesis approach for a
multi-pose virtual try-on. The core novelties lie in
1) producing the 3D try-on mesh through body depth
estimation under arbitrary poses and 2) a geomet-
ric matching module augmentation in the end-to-end
training process. Our experiment demonstrates that
the proposed methodology could enhance transferring
the in-shop garment to the person image in the target
posture while synthesizing the corresponding depth
maps. In addition, this framework outperforms the

PG-3DVTON: Pose-Guided 3D Virtual Try-on Network

827



benchmark models in estimating the front and back
body depth maps. We have validated the VTON task
by performing an ablation study and quantitative eval-
uation concerning the state-of-the-art. Our model pro-
vides an economical and alternative way to 3D scan-
ning for the monocular 3D multi-pose virtual try-on.
In future work, we will explore the application of the
proposed method to the tailoring industry with sewing
pattern datasets. Furthermore, the multi-stage net-
work is dependent on the success of previous levels,
such as the semantic parsing module in our pipeline.
Subsequent work may include incorporating the dis-
tillation process to alleviate the human parsing for a
multi-pose try-on.
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