
An Efficient Unified Architecture for Polynomial Multiplications in
Lattice-Based Cryptoschemes∗

Francesco Antognazza1 a, Alessandro Barenghi1 b, Gerardo Pelosi1 c and Ruggero Susella2

1Politecnico di Milano, Milano, Italy
2STMicrolectronics S.r.l., Agrate Brianza (MB), Italy

Keywords: Lattice-Based Cryptography, Hardware Accelerators, Polynomial Ring Multipliers.

Abstract: The significant effort in the research and design of large-scale quantum computers has spurred a transition to
post-quantum cryptographic primitives worldwide. The post-quantum cryptographic primitive standardization
effort led by the US NIST has recently selected the asymmetric encryption primitive Kyber as its candidate
for standardization. It has also indicated NTRU, another lattice-based primitive, as a valid alternative if in-
tellectual property issues are not solved. Finally, a more conservative alternative to NTRU, NTRUPrime was
also considered as an alternate candidate, due to its design choices which remove the possibility for a large
set of attacks preemptively. All the aforementioned asymmetric primitives provide good performances, and
are prime choices provide IoT devices with post-quantum confidentiality services. In this work, we propose
a unified design for a hardware accelerator able to speed up the computation of polynomial multiplications,
the workhorse operation in all of the aforementioned cryptosystems, managing the differences in the polyno-
mial rings of the cryptosystems. Our design is also able to outperform the state of the art designs tailored
specifically for NTRU, and provide latencies similar to the symmetric cryptographic elements required by the
scheme for Kyber and NTRUPrime.

1 INTRODUCTION

Public-key cryptography (PKC) plays a fundamental
role in today’s technology providing the properties
of confidentiality, data and origin authentication and
non-repudiability, and its diffusion is witnessed by the
number of widely-used protocols that rely on it, such
as TLS and PGP. PKC primitives are in wide use to
encrypt data between two parties without a pre-shared
secret over an insecure channel, or to build a Pub-
lic Key Infrastructure, and to guarantee the integrity
and authenticity of data in form of digital signatures.
Currently the most used algorithms, RSA and Ellip-
tic Curve cryptography, rely on the hardness of inte-
ger factoring, or the hardness of computing discrete
logarithm in finite cyclic groups. However, in 1994,
Peter Shor designed an algorithm for quantum com-
puters which solves both the prime factoring and dis-
crete logarithm problems with an exponential speedup

a https://orcid.org/0000-0003-3480-486X
b https://orcid.org/0000-0003-0840-6358
c https://orcid.org/0000-0002-3812-5429
∗This Research Was Made Possible Thanks to the Sup-

port of STMicroelectronics.

with respect to classical computers, effectively break-
ing the corresponding cryptosystems (Sklavos et al.,
2017).

Due to the long term confidentiality and
data/origin authentication guarantees required from
asymmetric cryptographic primitives, and in sight of
the recent advancements in the implementation of
quantum computers, a significant effort in standard-
izing quantum-resistant algorithms for public-key
cryptography is urgently required. For that reason,
the National Institute of Standards and Technology
(NIST) in 2016 started the Post-Quantum Cryptogra-
phy (PQC) standardization process to assess viable
candidates either for Public Key Encryption (PKE),
in form of a Key Encapsulation Mechanism (KEM),
and for digital signatures. The process refined its 69
candidate algorithms, reducing them to to a single
KEM and three digital signatures for immediate
standardization at the end of the third round (NIST
PQC Team, 2022). Furthermore NIST provided a list
of candidates which are still under investigation as
alternate, as they rely on different computationally
hard problems. Arguably the the most successful
class of algorithms of this standardization process is

Antognazza, F., Barenghi, A., Pelosi, G. and Susella, R.
An Efficient Unified Architecture for Polynomial Multiplications in Lattice-Based Cryptoschemes.
DOI: 10.5220/0011654200003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 81-88
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

81



lattice-based algorithms, being attractive in terms of
computational latency and with acceptable key and
ciphertext sizes.

Besides the candidate selected for immediate stan-
dardization, Kyber, three other schemes were deemed
particularly interesting in the contest: NTRU, NTRU
Prime and Saber. NTRU was officially recommended
as the fallback alternative in case patent issues cannot
be solved by the end of 2023 (Alagic et al., 2022);
NTRU Prime is an NTRU variant with conservative
choices in the underlying algebraic structure, which
prevent a number of attacks preemptively; Saber is
based on a slightly different algebraic problem with
respect to Kyber (Module Ring-learning with round-
ings instead of Module Ring-learning with errors)
which is at least as computationally hard as the one
of Kyber.

The four aforementioned lattice based cryptosys-
tems rely on the arithmetics of polynomials with in-
teger coefficients modulo q, where q is either a power
of two, or a small prime; all considered modulo a
polynomial with a low number of terms. Depending
on the choices, the polynomial ring obtained may be
more or less friendly to sub-quadratic multiplication
techniques. Among such techniques, the Number-
Theoretic Transform (NTT) is the most efficient way
to perform a multiplication, provided that the max-
imum degree of the polynomial generating the ring
is a power-of-two and the coefficient ring is modulo
a prime: given an n degree polynomial, it runs in
O(n log2(n))) sequential steps. By contrast, efficient
versions of the schoolbook algorithm, which runs in
O(n2) such as the one by Comba, can always be ap-
plied, leading to extremely compact designs but also
reduced throughput. Software and hardware imple-
mentations of the multiplication algorithms also rely
on divide-et-impera techniques such as Karatsuba or
Toom-Cook decompositions: these techniques trade
off an increased design complexity and larger con-
stants hidden in the O notation for a constant decrease
in the complexity exponent. An emerging hardware
design approach is the one known in the literature
as x-net or LFSR-based multiplier. Its undelrying
idea is to perform n coefficient-wise multiplications
per clock cycle, resulting in a total computation time
which is O(n).
Contributions. Our work aims to show that it is pos-
sible to have a unified design for an hardware accel-
erator computing the polynomial multiplication in all
the polynomial rings of the four lattice-based cryp-
tosystems: Kyber, NTRU, NTRU Prime and Saber.
The structure of such an accelerator stems from an
architecture able to achieve efficiency results beyond
the state of the art for NTRU-like cryptosystems. We

provide efficiency results of a synthesis-time special-
ized accelerator for the arithmetic used by NTRU
HPS and HRSS, NTRU Prime, Saber and Kyber cryp-
toschemes, namely every round-3 lattice-based KEM
proposals at NIST’s Post-Quantum standardization
contest. Subsequently, we provide a unified design
supporting all the polynomial rings, for all security
levels of the KEMs, allowing cryptographic agility
without the need of replacing the hardware compo-
nent. We validated the correctness of the results, gath-
ered the performance and resource figures for every
parameter set specified by the latest specifications, for
both an FPGA design flow. We note that our design
uses a sequential memory layout to store polynomial
coefficients in memory, and accesses them in a sin-
gle sweep: our design is thus eligible to be be used
in a pipelined fashion, a feature not achievable with
current NTT based multipliers.

2 BACKGROUND

In this section, we provide a summary of the polyno-
mial arithmetics for the polynomial rings employed
in Kyber, NTRU, NTRU Prime and Saber. Subse-
quently, we provide a summary of linear-time hard-
ware modular multipliers obtained with the x-net
technique. In the following, we will denote polyno-
mials of degree n with lowercase letters, highlighting
the variable, as a(x) = ∑

n−1
i=0 aixi.

The aforementioned cryptosystems consider the
arithmetics over two quotient polynomial rings each,
Rq and Rp are Zq [x]/〈p(x)〉 and Zp [x]/〈p(x)〉. The
differences in the ring structures arise from the choice
of the values of p,q and p(x), of which a summary is
reported in Table 2. In particular, p is always chosen
to be a small odd number between 3 and 11; q is ei-
ther a small power of two (between 211 and 212) or a
prime number of the same order of magnitude. The
latter choice yields polynomials with coefficient over
a field, Zp, while the former choice allows a trivial
modular reduction modq via truncation of the most
significant bits.

The polynomial employed to obtain the quotient
ring, p(x) gives Rq and Rp a cyclic structure in Kyber
and Saber (xn + 1), a nega-cyclic structure in NTRU
(xn− 1). The cyclic structure name stems from the
fact that, given an element a(x) ∈ Rp, computing the
result of x ·a(x) is equivalent to cyclically shifting its
coefficients towards the higher degrees by one po-
sition. Similarly, the nega-cyclic structure implies
that the same cyclic shift takes place, but a sign flip
of the constant term also takes place after the cyclic
shift. The authors of NTRU Prime chose xn−x−1 as

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

82



Table 1: Number of Rp ×Rq multiplications in encapsu-
lation and decapsulation primitives of each analyzed cryp-
toschemes. One further Rq × Rq multiplication is used
during the decapsulation in NTRU, denoted by ? symbol.
Module-based cryptoschemes Saber and Kyber perform one
k×k matrix-vector and either one or two vector-vector mul-
tiplications, where the elements are polynomials in Rq or
Rp, during encapsulation and decapsulation, respectively.

Cryptoscheme Module Multiplications
rank k Encap. Decap.

NTRU / 1 2?
NTRU Prime / 1 3

NTRU LPRime / 2 3
Saber 2,3,4 k2 + k k2 +2k
Kyber 2,3,4 k2 + k k2 +2k

Table 2: Summary of the features of the polynomial rings
Rp =Zp [x]/〈p(x)〉 and Rq =Zq [x]/〈p(x)〉 for each KEM.

Scheme q p n p(x)

Kyber prime 5, 7 2i
xn +1valori 256

Saber 2i
7, 9, 11 2i

xn +1valori 256

NTRU 2i
3 prime xn−1valori valori

NTRU Prime prime 3 prime xn− x−1valori valori

the polynomial modulus, thus obtaining polynomial
fields for Rq and Rp: this removes constraints further
the ring structure which is present in Kyber and Saber,
preventing future attacks which may exploit it.

To align our notation with the one of the cipher
specifications, we will consider the representatives of
the coefficient ring as the integers balanced around the
zero element, for example between−d(q−1)/2e and
b(q−1)/2c.

Modular Polynomial Multiplication Algo-
rithms. Modular Polynomial multiplications with
large operands are extremely common in crypto-
graphic primitives, and have thus seen significant
efforts in their optimization. A first classification
criterion is the strategy which is employed to perform
the modular polynomial reduction: indeed, depend-
ing on the algorithm being employed, it is sometimes
possible to interleave the reduction operation with the
intermediate steps of the multiplication algorithm,
saving on the memory elements required for the
computation. The second classification criterion
is the asymptotic complexity of the multiplication
method, counted as the number of coefficient-wise
multiplications, as a function of the number of
coefficients of the operands, n.

The operand scanning, schoolbook method in-

volves O(n2) coefficient-wise multiplications as it
adds together all the results of multiplying the first
polynomial factor by each one of the monomials com-
posing the second factor. Sub-quadratic methods, pi-
oneered by Karatsuba (Karatsuba, 1963), provide an
algorithm to compute the polynomial multiplication
in O(nloga(2a−1)), where a ≥ 2, coefficient-wise mul-
tiplications. In particular, Karatsuba proposed the al-
gorithmic variant for a = 2, while Toom and Cook
generalized the result for a > 2. The reason for avoid-
ing the ubiquitous application of such methods is that,
while the number of coefficient-wise application de-
creases, they require an increasing number of poly-
nomial additions and subtractions to compute the re-
sult. While additions and subtractions have a lin-
ear cost in n, their overhead offsets the gains com-
ing from saving multiplications for small values of n.
Given that the ratio between the absolute values of
the computational costs of multiplications and addi-
tions/subtractions varies depending on the platform it
is commonplace to determine the break-even value for
a through exhaustive evaluation for a specific design.
In our context, Karatsuba was used in (Marotzke,
2020) instantiating three parallel schoolbook Comba
multipliers, and (Dang et al., 2021) design involved
a 3-way Toom-Cook computing five parallel multipli-
cations recursively with odd-even Karatsuba method.

Finally, it is possible to compute polynomial mul-
tiplications in O(n log2(n)) exploiting Fourier trans-
forms. The method relies on the fact that multi-
plying two polynomials can be seen as the convo-
lution of their coefficients, interpreted as integer se-
quences. This allows to perform the multiplication
computing the discrete-time Fourier transform of the
sequences, performing the element-wise multiplica-
tion of the results and computing the inverse Fourier
transform. The total cost of the operation depends
on the cost of computing the Fourier transform, to
which a linear amount of coefficient-wise multiplica-
tions must be added. For the special case where n is a
power of two, computing the Fourier transform takes
O(n log2(n)), thus resulting in a O(2(n log2(n)) +
n) = O(n log2(n)) cost for the entire multiplication.
This technique is applied fruitfully to polynomials in
a ring Zq [x]/〈p(x)〉, provided that the degree of p(x)
is a power of two, and that Zq is a field, thus providing
all the required roots of unity, and goes by the name
of Number Theoretic Transform (NTT) (Dang et al.,
2021). As it is the case for the sub-quadratic multipli-
cation techniques, also the NTT requires some linear-
time operations to be computed, and thus the break-
even point for the value of n is sought experimentally.
Of the four cryptosystems we are considering, only
Kyber has a parameter choice which allows the use of

An Efficient Unified Architecture for Polynomial Multiplications in Lattice-Based Cryptoschemes

83



NTT based techniques.
Linear-Time Modular Multiplication Algorithms.
An orthogonal approach to the redesign of the multi-
plication algorithm is the one which exploits the in-
herent parallelism of the schoolbook approach. In-
deed, all the coefficient-wise multiplications involved
in a factor-times-monomial product can be computed
independently. This observation leads to the design of
a linear-time multiplication algorithm which exploits
n computation units and n coefficient-wide memories
to compute the entire product in O(n).

The first proposal of a linear-time modular multi-
plication algorithm specialized for the NTRUEncrypt
polynomial ring comes from (Liu and Wu, 2015). The
work achieves the multiplication in n clock cycles us-
ing n parallel multiply-and-accumulate (MAC) units.
Furthermore, to reduce the area of each MAC unit, the
work replaces the multiplier with a multiplexer, which
selects one of the three possible coefficient-wise mul-
tiplication outcomes, thanks to the small size of the
coefficients of the Rp operand.

This approach was then separately adapted for dif-
ferent polynomial rings of Saber, NTRU, and NTRU
Prime cryptoschemes in (Basso and Roy, 2021; Dang
et al., 2021; Farahmand et al., 2019). The authors of
(Basso and Roy, 2021) proposed a centralized way to
compute the few possible coefficient-wise multiplica-
tion results, and distribute them to every MAC unit. In
(Peng et al., 2021) it is proposed to postpone the re-
duction mod q of the coefficients of the multiplication
result to the end of the multiplication. This approach
entails larger accumulators to store them, while allow-
ing to save area as only a single modular reduction
unit is required.

3 PROPOSED ARCHITECTURE

Algorithm 1: x-Net polynomial multiplier.

Input: a(x) ∈ Zp[x]/〈p(x)〉, a(x) = ∑
n−1
i=0 aixi

b(x) ∈ Zq[x]/〈p(x)〉, b(x) = ∑
n−1
i=0 bixi

Output: r(x) = LIFT
(
a(x),Zq[x]/〈p(x)〉

)
b(x)

Data: p(x) ∈ Zq[x], monic, with degree n

1 r(x)← 0
2 for i = 0 to (n−1) do
3 r(x)← r(x)+bi ·a(x) // n parallel MACs
4 a(x)← a(x) · x mod p(x) // via LFSR

5 return r(x)

In this section we first provide a unified description of
the x-net approach to polynomial multiplication, for a
generic polynomial modulus p(x). Subsequently, we
employ our framework to describe the x-net multiplier

design for each one of the four polynomial rings re-
quired in Kyber, Saber, NTRU and NTRU Prime. Fi-
nally, we describe our unified multiplier architecture.

In the following, we consider the case of the mul-
tiplication of two polynomials where the first has co-
efficients in Zp, while the second has coefficients in
Zq and the product has coefficients in Zq, which is the
polynomial multiplication taking place in all the four
cryptosystems at hand. The operation is intended to
be computed lifting the coefficients of the first poly-
nomial Zp simply reconsidering their values as being
in Zq. We note that NTRU also requires a multipli-
cation between two polynomials with coefficients in
Zq: the description in the following also covers this
case, simply substituting appropriately sized signals
and registers where needed.

The idea underpinning the x-net multiplication
is to rewrite the computation of the polynomial
ring multiplication a(x) ·b(x) = r(x) mod p(x), where
each polynomial is in the form p(x) = ∑

n−1
i=0 pixi, as

described in Algorithm 1. In the following, we will
assume that p(x) is monic, as it is always the case
in practice. The polynomial multiplication is de-
composed as a sequence of coefficient-by-polynomial
multiplications and polynomial additions (line 3), and
multiplications by x and modular reductions (line 4).

The hardware structure of the x-net multipliers,
depicted in Figure 1 for the ring Zq [x]/〈xn +1〉 tack-
les the two operations with two logical component
complexes.

The operation r(x) + bi · a(x) is performed with
n independent Multiply and Accumulate (MAC) el-
ements which compute the product of the coefficient
bi by each coefficient of polynomial a(x), and add the
result to the corresponding coefficient of r(x). One
MAC element is highlighted in grey in Figure 1, and
is composed by a multiplier, an adder, a register able
to contain a coefficient of the result and a modular
reducer mod q.

The computation of a(x)← a(x) · x is efficiently
done storing the coefficients of a(x) in a shift regis-
ter, as the multiplication by x acts shifting the coef-
ficients by one position towards higher degree mono-
mials (to the right, in Figure 1). The computation of
the modular reduction of a(x)← a(x) · x mod p(x) is
done efficiently, considering that a(x) · x has degree
at most n, and therefore a single polynomial subtrac-
tion is sufficient to compute the mod p(x) operation.
To this end, the portion of the x-net multiplier man-
aging the operation (top portion of Figure 1) subtracts
an−1 p(x) from a(x) · x, materially adding the coeffi-
cients of (−an−1)p(x) to the ones of a(x) · x by per-
forming the addition between any two elements of
the shift-register which contains a(x). This network

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

84



1

0

0

Multiply
and accumulate

MUL

ADD

MUL

ADD

MUL MUL

ADD SUB

load

Computation

of

Computation
of

MUL

ADD

MUL

ADD

Figure 1: Structure of an x-net multiplier computing the product r(x) = (a(x) ·b(x)) mod p(x). The top portion of the modular
multiplier takes care of computing xi · a(x) mod p(x) at the i-th clock cycle, while the bottom part performs the coefficient-
by-polynomial multiplication.

structure will thus need as many multipliers and adder
as the number of non-null coefficients in p(x), bene-
fiting from values of p(x) with a very small number
of coefficients, as it is the case in the four considered
cryptosystems.
x-net Optimizations. The first observation leading to
an optimization is that the topmost portion of the x net
multiplier may operate entirely with values mod p,
leading to a significant saving in the resource con-
sumption. The lifting required to multiply coefficient
in Zp by coefficients in Zq is done within the mul-
tiplier units in the MAC elements simply by sign-
extending the two’s complement representation of the
Zp element.

The second observation leading to an optimization
is that, in case p is very small, as it is the case in our
cryptosystems, the multiplier in the MAC can be sub-
stituted by a multiplexer which selects among a small
set of fixed multiples of bi, which are computed by
a small number of additions. Taking as an example
p = 5, the multiplier is substituted by a multiplexer
selecting among the values {−2bi,−bi,0,bi,2bi} de-
pending on the value of the coefficient of the a(x)
polynomial. The values can be either precomputed
only once, and distributed, or computed within the
MAC unit and selected in place. The former solution
trades off area savings for a higher wiring congestion.

A final point concerning the optimization of the
x net multiplier is the tradeoff between performing
modular reductions in the multiply and accumulate
complex managing the coefficients of the result, and
performing the reductions upon result readout. The
reductions-at-readout approach requires accumulator
registers for r(x) of dlog2 (2npq)+ 1e bits, as n val-
ues modq will be added by the x net multiplier dur-
ing its operation. This increase in area is however
compensated by the removal of the modq reducers
from each multiply and accumulate complex, which

typically take more area, unless the reduction by q is
trivial (e.g., q is a power of two). We explored both
strategies devising modular reducers as follows. In
the former case, each accumulator register has log2 q
bits size, and we perform the mod q by conditionally
applying additions and subtractions. Since the dis-
tance between each integer multiplication result and a
valid Zq element is at most (q−1) · d(p−1)/2e, then
d(p−1)/2e additions and subtractions are carried out
in parallel with values multiple of q and the only valid
result in Zq is selected. In case of the coefficient in-
teger ring reduction operation performed during the
readout a single Barrett reduction module is used.
Specialized and Unified x-net Designs. We now de-
scribe the specializations which have to be enacted
for the design of the x-net multiplier for all the four
cryptosystems at hand. For NTRU and Saber, q is a
power-of-two, therefore there is no advantage in per-
forming a delayed modular reduction of the coeffi-
cients, as it amounts to a simple bit truncation. The
feedback network of the computation is very small
for all the four cryptosystems. Both Kyber and Saber
only require a subtractor to flip the sign of the an−1
coefficient before being fed back to the multipliers
and adders; NTRU only requires that an−1 itself is
fed back (as p(x) = xn−1) and NTRU Prime requires
feeding back an−1 into two multiply and add elements
(as p(x) = xn− x−1).

Providing a single unified design for all the four
cryptosystems was achieved considering the largest
among all the register sizes required by the four
designs, and inserting multiplexers regulating the
kind of coefficient-wise modular reduction being per-
formed, which multiply-add elements are active on
the feedback network of the register containing a(x),
and whether or not the sign of an−1 should be flipped.
Multiplying in Less than 3n Cycles. In our design,
we also explored the possibility of reducing the multi-

An Efficient Unified Architecture for Polynomial Multiplications in Lattice-Based Cryptoschemes

85



Table 3: Results of the synthesis targeting an Xilinx UltraScale+ ZCU106 FPGA for every NTRU, NTRU Prime, Saber and
Kyber parameter. The results are reported for a design transferring 4 small coefficients per clock cycle and either 1 or 2
large coefficients per clock cycle. Results of each configuration are grouped by security level (from top to bottom: AES-128,
AES-192, AES-256 equivalent security, plus three “above AES-256” parameter sets available in NTRU Prime).

Coefficient
Parameter set

Loading 4 small and 1 large coefficient per CC Loading 4 small and 2 large coefficients per CC
Reduction CLB CC Freq. Latency (µs) AT product CLB CC Freq. Latency (µs) AT product

done at MHz Enc. Dec. Enc. Dec. MHz Enc. Dec. Enc. Dec.

readout kyber512 3186 585 328 10.70 14.27 34 45 5460 329 291 6.78 9.04 37 49
readout sntrup653 8138 1479 288 5.14 15.41 41 125 11867 827 238 3.48 10.43 41 123
readout ntrulpr653 8138 1479 288 10.27 15.41 83 125 11867 827 238 6.95 10.43 82 123
each CC kyber512 4226 583 312 11.21 14.95 47 63 6508 327 197 9.96 13.28 64 86
each CC ntruhps2048509 2150 1153 638 1.81 5.42 3 ?11 4455 645 438 1.47 4.42 6 ?19
each CC sntrup653 8411 1477 275 5.37 16.11 45 135 13992 825 200 4.12 12.38 57 173
each CC ntrulpr653 8411 1477 275 10.74 16.11 90 135 13992 825 200 8.25 12.38 115 173
each CC lightsaber 2468 583 581 6.02 8.03 14 19 4200 327 375 5.23 6.98 21 29

readout kyber768 2615 585 312 22.50 28.12 58 73 4733 329 291 13.57 16.96 64 80
readout sntrup761 9043 1722 312 5.52 16.56 49 149 13762 962 238 4.04 12.13 55 166
readout ntrulpr761 9043 1722 312 11.04 16.56 99 149 13762 962 238 8.08 12.13 111 166
each CC kyber768 3202 583 328 21.33 26.66 68 85 5579 327 206 19.05 23.81 106 132
each CC ntruhps2048677 2825 1531 625 2.45 7.35 6 ?20 6208 855 475 1.80 5.40 11 ?33
each CC ntruhrss701 3336 1585 600 2.64 7.93 8 ?26 7428 885 425 2.08 6.25 15 ?46
each CC sntrup761 9691 1720 325 5.29 15.88 51 153 16429 960 188 5.11 15.32 83 251
each CC ntrulpr761 9691 1720 325 10.58 15.88 102 153 16429 960 188 10.21 15.32 167 251
each CC saber 3019 583 553 12.65 15.81 38 47 4993 327 425 9.23 11.54 46 57

readout kyber1024 2615 585 312 37.50 45.00 98 117 4733 329 291 22.61 27.13 107 128
readout sntrup857 10141 1938 312 6.21 18.63 62 188 15404 1082 238 4.55 13.64 70 210
readout ntrulpr857 10141 1938 312 12.42 18.63 125 188 15404 1082 238 9.09 13.64 140 210
each CC kyber1024 3202 583 328 35.55 42.66 113 136 5579 327 206 31.75 38.09 177 212
each CC ntruhps4096821 3712 1855 562 3.30 9.90 12 ?36 8052 1035 438 2.36 7.09 19 ?57
each CC sntrup857 11142 1936 312 6.20 18.61 69 207 19034 1080 188 5.74 17.23 109 328
each CC ntrulpr857 11142 1936 312 12.41 18.61 138 207 19034 1080 188 11.49 17.23 218 328
each CC firesaber 3245 583 497 23.46 28.15 76 91 5796 327 400 16.35 19.62 94 113

readout sntrup953 11073 2154 312 6.90 20.71 76 229 18111 1202 238 5.05 15.15 91 274
readout ntrulpr953 11073 2154 312 13.81 20.71 152 229 18111 1202 238 10.10 15.15 182 274
each CC sntrup953 12770 2152 312 6.90 20.69 88 264 21165 1200 188 6.38 19.15 135 405
each CC ntrulpr953 12770 2152 312 13.79 20.69 176 264 21165 1200 188 12.77 19.15 270 405

readout sntrup1013 12022 2289 312 7.34 22.01 88 264 19201 1277 238 5.37 16.10 103 309
readout ntrulpr1013 12022 2289 312 14.67 22.01 176 264 19201 1277 238 10.73 16.10 206 309
each CC sntrup1013 13017 2287 275 8.32 24.95 108 324 22219 1275 188 6.78 20.35 150 452
each CC ntrulpr1013 13017 2287 275 16.63 24.95 216 324 22219 1275 188 13.56 20.35 301 452

readout sntrup1277 14735 2883 325 8.87 26.61 130 392 23332 1607 238 6.75 20.26 157 472
readout ntrulpr1277 14735 2883 325 17.74 26.61 261 392 23332 1607 238 13.51 20.26 315 472
each CC sntrup1277 16686 2881 262 11.00 32.99 183 550 27283 1605 200 8.03 24.08 218 656
each CC ntrulpr1277 16686 2881 262 21.99 32.99 366 550 27283 1605 200 16.05 24.08 437 656

plication time under 3n cycles. Indeed, the described
architecture uses n clock cycles to load the a(x) from
memory, n cycles to compute the result of the mod-
ular multiplication (potentially without coefficient-
wise modular reduction), and n cycles to read out the
final polynomial multiplication result and store it into
the memory. This process can be sped up devising a
memory bus transferring multiple polynomial coeffi-
cients at once. Transferring α, β and γ coefficients
for respectively the small, large and result polyno-
mials, the overall latency of a polynomial multipli-
cation is dn/αe+ dn/βe+ dn/γe. Loading α coeffi-
cients of a(x) for each clock cycle is achieved trans-
ferring them in parallel from main memory, and hav-
ing the shift register containing a rotate by α posi-
tions at each clock cycle through appropriate connec-
tions. The same approach is applied for reading out γ

coefficients of the result from the accumulator regis-
ters, possibly instantiating γ parallel Barrett modules
when performing the reductions-at-readout approach.
To compute the multiplication of β Zq coefficients in
parallel, we need a total of β · n MACs. Indeed, to
compute the result of β multiplication steps, β mul-
tiplications and sums need to be computed at each
clock cycle, to obtain the result which is to be stored
β− 1 cells to the right of each MAC unit. Further-
more, it is to be noted that β steps of the update of
a(x) should be computed in a single step. This in turn
requires to perform β− 1 sign flips of the Zp coeffi-
cient for specific MAC units of Kyber and Saber, and
additional 2(β−1) multiply and additions for specific
MAC units of NTRU Prime.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

86



Table 4: Comparing results of our x-net and x2-net with
(Farahmand et al., 2019) (a), and (Carter et al., 2022) (b)
with multiplier architectures adaptable to multiple cryp-
toschemes targeting a UltraScale+ target. The count of
clock cycles do not consider the time to transfer the
operands and the result. No DSP were used.

Work Par. set CLB Freq. CC LUT FF BRAM

x-net sntrup761 6757 312 762 38798 21768 2
(a) sntrup761 9699 255 762 65207 32929 6

x-net ntruhrss701 3088 588 702 18383 10898 2
(a) ntruhrss701 5476 300 702 33230 32327 6

x2-net ntruhps4096821 7766 412 413 46293 12029 2
(b) ntruhps4096821 8728 187 412 54478 9227 -

x2-net firesaber 5602 338 129 30809 4654 2
(b) firesaber 3427 310 128 22127 7841 -

4 EXPERIMENTAL RESULTS

In this section we present the results of our synthe-
sis campaign on specialized x-net multipliers for all
the four cryptosystems we considered, and compare
them with the current state of the art solutions. Fur-
thermore, we report the figures of merit of our uni-
fied multiplier design. The correctness of the results
of our multipliers was tested through testbenches ob-
tained with a synthetic computation model written in
SageMath. We tested the correctness of the polyno-
mial multiplication for every ring defined by the pa-
rameter sets of Kyber, Saber, NTRU and NTRU Prime
cryptoschemes.

We conducted our syntheses for the Xil-
inx UltraScale+ ZCU106 FPGA (target
xczu7ev-ffvc1156-3-e) using Vivado 2021.1
with FLOW ALTERNATEROUTABILITY and PERFOR-
MANCE NETDELAY HIGH strategies for synthesis and
implementation. We explored four different choices
of the amount of coefficients being loaded namely
loading either one or four small coefficients, and one
or two large coefficients. As the configurations load-
ing four small coefficients achieve better performance
figures (transferring two large coefficients) and better
area-time product (transferring one large coefficient)
than their alternatives, we report their results for the
sake of brevity. We thus have that the first operand is
loaded into the registers 4 coefficients at a time, with
a transfer of data from 8 to 16 bits per clock cycle
depending on the cryptoscheme and parameter set.

Finally, we report the results of our unified multi-
plier design, able to support all security levels pro-
posed for standardization to NIST, for all the four
ciphers in Table 5. We also report the potential ad-
vantage of leaving out Saber, as a means of com-
parison. Our unified design provides complete run-
time flexibility at a cost of 36% more area resources,
than the largest tailored component required to run the
most demanding cipher it also runs. Furthermore, the

Table 5: Results of the synthesis targeting an Xilinx Ultra-
Scale+ ZCU106 FPGA compatible with parameter sets up
to security level 5. The unified design is configured to trans-
fer 4 small coefficients and 1 large coefficients per clock cy-
cle, and each parameter set can be selected at runtime. Two
DSPs and two BRAMs were used by both designs.

Supported Ciphers CLB Freq. LUT FF CARRY8

NTRU, NTRU Prime 15155 250 92575 27171 3452Saber, Kyber

NTRU, NTRU Prime 11318 250 72089 25439 3442Kyber

achieved running frequency is only 15% slower than
the slowest component it encompasses, while taking
no penalty on the number of clock cycles taken to
compute any of the multiplications with respect to a
dedicated design. Removing the support to Saber’s
polynomial rings, the area penalty drops to < 2%.

The results of our exploration are reported in Ta-
ble 3, in which we report the resource occupation
in Cell Logic Blocks (CLBs) of each multiplier, the
number of clock cycles taken for an entire modu-
lar multiplication, and the maximum target frequency
that the design was able to reach, obtained repeating
syntheses with a binary search strategy. Furthermore,
we also report the total latency taken by all Rp×Rq
multiplications in the key encapsulation (encryption)
and key decapsulation (decryption) primitives of the
scheme, as some schemes require more than a sin-
gle multiplication (see Section 2). We evaluated both
coefficient ring reduction strategies (at each clock cy-
cle, and upon readout) for NTRU Prime and Kyber
to determine which solution is to be preferred when
targeting an FPGA design.

By comparing the results among equivalent secu-
rity level, we can see that the time spent in polynomial
multiplications is larger in Kyber (a module RLWE
scheme) and Saber (a module RLWR) with respect to
NTRU-based schemes. Moreover, this difference in-
creases with the security level. This fact is balanced
by the flexibility of Kyber and Saber schemes, which
have an almost identical polynomial multiplier usable
in every parameter set. As it can be clearly seen, given
the large amount of parameter sets for NTRU Prime,
the latency of the multiplication for our design and
this cryptoscheme is linear in the degree of the poly-
nomials. As a consequence the performance penalty
imposed by larger security levels grows more slowly
than for Kyber and Saber.

When comparing the coefficient ring reduction
techniques, we note that delaying the reduction to the
readout yields a massive gain in logic resources uti-
lization and slight increase of working frequency, at
the cost of a moderate increase in Flip Flops. The
count of CLBs provides a joint indicator of the sil-
icon area employed since combines the number of

An Efficient Unified Architecture for Polynomial Multiplications in Lattice-Based Cryptoschemes

87



used memory elements (Flip Flops) and boolean logic
implementation resources (Lookup Tables), and con-
firms that using this coefficient reduction approach
decreases substantially the consumed FPGA area. We
report in tables the Area-Time (AT) product as an ef-
ficiency indicator to compare the designs, and com-
puted as the number of occupied CLBs times the
execution time in milliseconds. The gathered data
suggests that the x-net architecture is one order of
magnitude more efficient when employed to compute
polynomial multiplications during encapsulations in
NTRU rings. During the decapsulation, this no longer
holds, as we recall that one of the three multiplica-
tions specified in round 3 submission of NTRU does
not have one operand with small coefficients, thus re-
quiring an additional cost (indicated with a ? marker
in the table).

Table 4 reports the comparison of our
cryptosystem-specialized designs with the exist-
ing state of the art on NTRU and NTRU Prime linear
time multipliers. We note that our design achieves a
30% to 40% reduction in the required CLBs for both
cryptosystems, when comparing our solution which
loads a single large coefficient (x-net) with the one
in (Farahmand et al., 2019). Furthermore, we also
obtain a 28% to 96% gain in working frequency with
respect to the same design, therefore achieving also a
higher area-time efficiency. We compare our solution
loading two large coefficients at once, with the only
currently available datapoint in the public technical
report (Carter et al., 2022). The solution reported in
the technical report, where it is denoted as x2-net,
is 10% larger in area a 2.2× slower in the working
frequency for the design for NTRU. These results
show how the x-net design is a remarkable fit for the
Rp×Rq multiplications in NTRU and NTRU Prime.

5 CONCLUSION

In this work, we analyzed a flexible design for linear-
time polynomial multiplications, applicable to ac-
celerate four post-quantum cryptographic primitives:
Kyber, Saber, NTRU and NTRU Prime. We reported
quantitative results of the efficiency of primitive-
tailored designs, obtaining area savings (10%–40%)
and significant frequency gains (96%–120%) with re-
spect to the state of the art of NTRU and NTRU Prime
multipliers. Our unified design provides the first hard-
ware implementation of a polynomial multiplier able
to accelerate the computation of Kyber, Saber, NTRU
and NTRU Prime at all security levels in a single com-
ponent with a 15% frequency reduction, and only a
third of a dedicated multiplier in area increase.

REFERENCES

Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T.,
Kelsey, J., Lichtinger, J., Miller, C., Moody, D., Per-
alta, R., Perlner, R., Robinson, A., Smith-Tone, D.,
and Liu, Y.-K. (2022). . https://doi.org/10.6028/NIST.
IR.8413-upd1.

Basso, A. and Roy, S. S. (2021). Optimized polynomial
multiplier architectures for post-quantum KEM saber.
In 58th ACM/IEEE Design Automation Conference,
DAC 2021, San Francisco, CA, USA, December 5-9,
2021, pages 1285–1290. IEEE.

Carter, E., He, P., and Xie, J. (2022). High-performance
polynomial multiplication hardware accelerators for
KEM saber and NTRU. IACR Cryptol. ePrint Arch.,
page 628.

Dang, V. B., Mohajerani, K., and Gaj, K. (2021). High-
Speed Hardware Architectures and FPGA Bench-
marking of CRYSTALS-Kyber, NTRU, and Saber.
IACR Cryptol. ePrint Arch., page 1508.

Farahmand, F., Dang, V. B., Nguyen, D. T., and Gaj, K.
(2019). Evaluating the potential for hardware accel-
eration of four ntru-based key encapsulation mech-
anisms using software/hardware codesign. In Ding,
J. and Steinwandt, R., editors, Post-Quantum Cryp-
tography - 10th International Conference, PQCrypto
2019, Chongqing, China, May 8-10, 2019 Revised
Selected Papers, volume 11505 of Lecture Notes in
Computer Science, pages 23–43. Springer.

Karatsuba, A. (1963). Multiplication of multidigit numbers
on automata. In Soviet physics doklady, volume 7,
pages 595–596.

Liu, B. and Wu, H. (2015). Efficient architecture and im-
plementation for ntruencrypt system. In IEEE 58th In-
ternational Midwest Symposium on Circuits and Sys-
tems, MWSCAS 2015, Fort Collins, CO, USA, August
2-5, 2015, pages 1–4. IEEE.

Marotzke, A. (2020). A constant time full hardware imple-
mentation of streamlined NTRU prime. In Liardet, P.
and Mentens, N., editors, Smart Card Research and
Advanced Applications - 19th International Confer-
ence, CARDIS 2020, Virtual Event, November 18-19,
2020, Revised Selected Papers, volume 12609 of Lec-
ture Notes in Computer Science, pages 3–17. Springer.

NIST PQC Team (2022). PQC Standardization
Process: Announcing Four Candidates to
be Standardized, Plus Fourth Round Can-
didates. https://csrc.nist.gov/news/2022/
pqc-candidates-to-be-standardized-and-round-4.

Peng, B., Marotzke, A., Tsai, M., Yang, B., and Chen, H.
(2021). Streamlined NTRU prime on FPGA. IACR
Cryptol. ePrint Arch., page 1444.

Sklavos, N., Chaves, R., di Natale, G., and Regazzoni, F.
(2017). Hardware Security and Trust: Design and De-
ployment of Integrated Circuits in a Threatened En-
vironment. Springer Publishing Company, Incorpo-
rated, 1st edition.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

88


