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Abstract: Web applications are an easily accessible and valuable target for attackers. Therefore, web applications need
to be examined for vulnerabilities. Modern web applications usually behave in a stateful manner and hence
have an underlying state machine that determines their behavior based on the current state. To thoroughly test
a web application, it is necessary to consider all aspects of a web application, including its internal states. In
a blackbox setting, which we presuppose for this work, however, the internal state machine must be inferred
before it can be used for testing. For state machine inference it is necessary to choose a similarity measure
for web pages. Some approaches for automated blackbox stateful testing for web applications have already
been proposed. It is, however, unclear how these approaches perform in comparison. We therefore present
our evaluation framework for stateful web application testing, SWaTEval. In our evaluation, we show that
SWaTEval is able to reproduce evaluation results from literature, demonstrating that SWaTEval is suitable for
conducting meaningful evaluations. Further, we use SWaTEval to evaluate various approaches to similarity
measures for web pages, including a new method based on the euclidean distance that we propose in this
paper. These similarity measures are an important part of the automated state machine inference necessary for
stateful blackbox testing. We show that the choice of similarity measure has an impact on the performance of
the state machine inference regarding the number of correctly identified states, and that our newly proposed
similarity measure leads to the highest number of correctly identified states.

1 INTRODUCTION

With the widespread use of Web Applications (WAs),
it is necessary to expose and eliminate as many vul-
nerabilities in WAs as possible to ensure a minimal at-
tack surface. This applies to WAs such as web shops
as well as WAs provided by industrial devices for
monitoring and configuration purposes. Especially
for these industrial settings, a thorough test for vul-
nerabilities is necessary, since a successful attack on
the WA can lead to a production stop or even physi-
cal harm (Pfrang et al., 2019). Stateful blackbox WA
testing is crucial to a thorough test. In blackbox tests,
information regarding the internals of the tested WA is
unavailable. Stateful refers to tests that take the inter-
nal state of the WA into consideration. This provides
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the possibility to conduct tests in an efficient and pur-
poseful way (Doupé et al., 2012). As previously men-
tioned, however, a blackbox setting does not provide
explicit information about the internal state machine
of the WA. As a consequence, identifying the under-
lying state machine of the WA by different means is
inevitable in a blackbox setting.

Various approaches to automatic state machine in-
ference exist in the literature. For example, Raffelt
et al.(Raffelt et al., 2005) suggest a general automata
learning approach, while Doupé et al.(Doupé et al.,
2012) propose a method for a WA-specific state in-
ference. In general, the state machine of a WA is
learned by looking for changes in the behavior of the
WA when it is provided with different inputs. To iden-
tify changes in the behavior of the WA, we measure
the similarity between the web pages presented by a
WA with the help of a similarity measure. With this,
we can determine whether the internal state of the WA
has changed and what caused the state transition.
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The aforementioned challenges can be solved with
a set of different approaches. To evaluate the ap-
proaches in an individual or a combined manner, a
modular framework is necessary. Moreover, an easily
understandable Evaluation Target is needed to deter-
mine the performance and impact of the approaches.

The contribution of our work to the domain of
Stateful Web Application Testing (SWAT) can be
summarized as follows:

• We design and implement a modular framework
(SWaTEval) to analyze different approaches for
the multitude of challenges of stateful WA testing

• We design and implement a manageable and state-
ful Evaluation Target

• We implement various detection approaches with
the help of various similarity measures and evalu-
ate them using SWaTEval

Our evaluation is twofold. On the one hand, we
perform a qualitative and quantitative evaluation of
SWaTEval itself. This includes reproducing of re-
sults presented by a large study in literature (Yandra-
pally et al., 2020). We show that the results produced
with SWaTEval are coherent with the results from this
study, suggesting that SWaTEval produces meaning-
ful results. On the other hand, we use SWaTEval to
perform a new evaluation regarding the choice of sim-
ilarity measure for stateful blackbox WA testing. We
show that the choice of similarity measure has an im-
pact on the state machine inference and that the sim-
ilarity measure based on the euclidean distance leads
to the best results.

2 BACKGROUND

State-awareness is generally needed to maximize test
coverage of a WA (Doupé et al., 2012). Behind the re-
quirement to perform state-aware testing lies the fol-
lowing intuition: If a testing tool is unaware of the ex-
isting states, it might skip some of them while testing
and fail to reveal vulnerabilities in the missed states.
This is true for different meanings of the word state
in literature. Similar to Doupé et al., we consider the
WA state as the underlying internal state. For exam-
ple, the WA’s internal state for an authenticated user
usually differs from that of a non-authenticated user.
In contrast, the general case of the WA showing differ-
ent pages to the user does not correspond to different
internal states. In the following, we will always refer
to the internal state of the WA when using state.

Additionally, we use the following terminology.
The target that should be testend and is used for our
evaluation is a WA in its full form and functionality.

We refer to it as Evaluation Target or simply target.
A WA consists of various web pages like a login page,
or a register page. Endpoints expose functionality
and allow communication with a WA. Generally, they
point to web pages of a WA.

Since a blackbox WA does not reveal information
about its internals directly, we need to infer the under-
lying state machine by communicating with the WA.
There are various approaches to learn a state machine
in a blackbox setting (e.g. (Raffelt et al., 2005; Doupé
et al., 2012)). Most of them are based on the assump-
tion that a state transition is present if a request on
an Endpoint returns a response that is different from
previously observed responses to the same request on
the same Endpoint. We call a request-response pair
an Interaction with the WA.

In general, it is necessary to decide which End-
points of the WA should be tested. Similar Endpoints
have to be clustered properly and omitted. For this,
a method for clustering of similar Endpoints is nec-
essary. Lastly, the inferred state machine has to be
pruned by detecting similar states and merging them.

Summarized, the process of automatically learn-
ing the state machine of a WA in a blackbox setting
consists of the following challenges: (I) cluster sim-
ilar Endpoints, (II) detect a state change, and (III)
cluster similar states (Doupé et al., 2012). Various
approaches can be used for each of these challenges,
which we discuss in more detail in Section 5.2. Es-
pecially, different approaches can be taken to de-
fine the distance between two Endpoints or states (or
their similarity). To understand the impact of these
choices, an evaluation framework for SWAT is nec-
essary. This framework needs to focus on the state
detection capabilities and provide an Evaluation Tar-
get with manageable complexity. In this work, we
present SWaTEval, which aims to fulfill the need for
a general evaluation framework for SWAT.

3 RELATED WORK

Our work is located in the domain of SWAT while
also focussing on similarity measures for web pages.
The following paragraphs give an overview of related
work in these two areas.

Stateful Testing of Web Applications. SWAT is a
topic that has been around for some time and is, nev-
ertheless, still relevant. Doupé et al. proposed a first
approach to include the underlying state of the tested
WA into testing and fuzzing (Doupé et al., 2012).
However, the authors chose a non-modular approach
for their implementation, and their approach has not
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yet been compared to other approaches that include
the underlying state. Since then, various approaches
for stateful WA testing and crawling have been pro-
posed, for which Hassanshahi et al. provide a recent
overview (Hassanshahi et al., 2022). Moreover, a re-
cent work proposes a framework for SWAT (Drakon-
akis et al., 2020), but it only focuses on a single part
of SWAT, namely authentication and authorization.
To our knowledge, there is no work besides ours that
aims to provide a modular framework to evaluate dif-
ferent aspects of the SWAT process.

Several intentionally vulnerable WAs and bench-
marks exist that can be used as evaluation targets
for the evaluation of WA testing. Some of the most
prominent ones are WackoPicko (Doupé et al., 2010),
JuiceShop1, XVWA2, DVWA3, and OWASP Bench-
mark4. These evaluation targets mainly focus on the
vulnerabilities that a test might find. Although the
discovery rate of these vulnerabilities can be used as
an overall performance metric, a more specific evalu-
ation target is necessary to understand the impact of
stateful testing methods on the test performance. For
this, it is particularly important that the state machine
of the target is known and manageable in size.

There are several works focusing on different as-
pects of WA testing that are orthogonal to our ap-
proach. Borcherding et al. present an approach to im-
prove the performance of WA fuzzers transparently by
injecting additional information to the fuzzer’s traf-
fic using a proxy (Borcherding et al., 2020). We use
a similar approach to provide an interface for exist-
ing fuzzers in SWaTEval. Li et al. present an ap-
proach to test stateful web services based on a state
machine. They derive the state machine from a spec-
ification of the web service provided in the Web Ser-
vices Description Language (Li et al., 2018). In con-
trast, we build a state machine of the underlying WA
based on the blackbox HTTP communication with the
WA itself. Other approaches focus on stateful testing
of the network protocol implementation itself (Aich-
ernig et al., 2021; Pferscher and Aichernig, 2022).
In contrast, our work focuses on testing the interface
with which a user interacts directly. In contrast to
the blackbox testing used in this work, another ap-
proach to dynamic testing is to conduct gray-box test-
ing, which requires additional information about the
WA under test (Gauthier et al., 2021).

Similarity of Web Pages. As mentioned in Sec-
tion 1, it is essential to calculate the distance (or

1https://github.com/juice-shop/juice-shop
2https://github.com/s4n7h0/xvwa
3https://github.com/digininja/DVWA
4https://owasp.org/www-project-benchmark/

similarity) between two web pages when performing
SWAT. Since we focus our evaluation on similarity
measures, we give a short overview of related work
in this paragraph. Lin et al. propose a similarity
measure based on the similarity of links on the web
pages (Lin et al., 2006). Other works apply the Lev-
enshtein distance to calculate the distance between
two web pages (Popescu and Nicolae, 2014; Mesbah
et al., 2008). In contrast, Doupé et al. use a distance
metric based on a prefix tree (Doupé et al., 2012).
More recent works propose to measure the similar-
ity between web pages by using their content, such
as input fields (Lin et al., 2017), or buttons, anchors,
and images (Alidoosti et al., 2019). Yandrapally et al.
present an extensive study on the performance of dif-
ferent similarity measures based on various real world
WAs and nine open source WAs (Yandrapally et al.,
2020). Note that the understanding of state used by
Yandrapally et al. is different compared to ours. We
consider the internal state of the WA, similar to Doupé
et al. (see Section 2). In contrast, Yandrapally et al.
consider the dynamic webpage of the WA as the state.
Nevertheless, the concepts of web page similarity de-
scribed by Yandrapally et al. can be directly trans-
ferred to our work, and we use the results of their ex-
tensive work for comparison purposes in Section 6.2.

Oliver et al. present a method for generation of
a locality-sensitive hash called Trend Micro Locality
Sensitive Hash (TLSH) (Oliver et al., 2013). When
calculating the TLSH of an input, small changes in the
input lead to small changes in the output hash. This
property is beneficial since it provides a method to
represent data in a compressed way. Moreover, it al-
lows the calculation of meaningful distances between
data which is represented in this fashion. Oliver et al.
define a distance measure on TLSH which approxi-
mates the hamming distance. We choose TLSH and
the corresponding distance measure (TLSH Score) as
one of the possibilities to represent web pages and cal-
culate similarities (see section 5.2).

4 FUNDAMENTALS

As a basis for the following sections, we present our
research goals, our methodology, and the require-
ments we used for our approach in the following sub-
sections.

4.1 Research Statements

With our research, we aim to (I) design and imple-
ment an evaluation framework for SWAT and (II) con-
duct an evaluation and analysis of the different simi-
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larity measures and thus also verify the usefulness of
SWaTEval regarding its evaluation capabilities. We
formulate the following two research questions.

RQ1: Can we reproduce the results of Yandrapally
et al. by using SWaTEval?

RQ2: How do the different approaches for page sim-
ilarity measurement influence the number of
correctly detected states?

RQ3: Which combination of similarity measures per-
forms better in terms of the number of correctly
detected states?

4.2 Methodology

To achieve our previously stated research goals, we
first infer requirements from literature and formu-
late our requirements for a framework for the eval-
uation of SWAT. Afterwards, we design and imple-
ment a framework that meets these requirements. Fi-
nally, we evaluate our resulting framework qualita-
tively by using two different approaches. On the one
hand, we evaluate SWaTEval by using it to reproduce
the results of Yandrapally et al. (Yandrapally et al.,
2020). We thus show that SWaTEval is suited to pro-
duce meaningful results. On the other hand, we use
SWaTEval to evaluate different web page similarity
measures. We show thus that SWaTEval can success-
fully be used to conduct evaluations in the domain of
SWAT and that the similarity measure based on the
Euclidean distance performs best.

4.3 Requirements

As a basis for our design and implementation, we
gathered requirements for an evaluation framework
by investigating existing work. We used insights from
Doupé et al. (Doupé et al., 2012) and Hassanshahi
et al. (Hassanshahi et al., 2022) as well as our own
analysis of existing tools and frameworks. In the fol-
lowing, we present the resulting requirements for the
framework (FR) and the Evaluation Target (TR).

FR1 Modularity: The state machine inference and
testing approaches are modular and can easily
be modified or replaced.

FR2 Interaction: The crawling and fuzzing of the
framework can work in an interlaced fashion.

FR3 Traceability: All generated data can be traced
back and reproduced easily.

TR1 Similar Pages: The Evaluation Target has sim-
ilar (but not equivalent) web pages that should
be treated as the same web page.

Database Module

2 Fuzzer1 Crawler 3 Detector

Worker

Figure 1: Overview of SWaTEval showing a modular ap-
proach regarding the Modules and the execution logic. The
Modules are run in the order given by the numbers.

TR2 Different Pages: The Evaluation Target has
web pages that are significantly different and
should be treated as different web pages.

TR3 Statefulness: The Evaluation Target provides
the possibility to change its underlying state.

TR4 Complexity: The state machine is understand-
able and manageable by humans.

5 APPROACH

In this section, we present the approach and the
technical details for SWaTEval. First, we give an
overview of the framework and the used Modules. We
then present the various Modules of SWaTEval in fur-
ther detail. This includes a description of the new
similarity measure we present in this work. At last,
we describe the features and details of the Evaluation
Target.

5.1 SWaTEval

We applied the four principles of object-oriented pro-
gramming: encapsulation, abstraction, inheritance,
and polymorphism. The result is a compact frame-
work that avoids tight coupling, but allows compound
configurations with interchangeable Modules.

5.1.1 Overview

As shown in Figure 1,the Modules of SWaTEval are
divided into three categories: (I) Crawlers, which
are used for state selection and state traversal, (II)
Fuzzers, which are used for payload generation and
attack evaluation, and (III) Detectors, which are used
for pattern detection and information inference. All
Modules have access to a centralized database where
they can read and write data. This facilitates the inter-
action of the Modules and the sharing of information
between them. Especially, this allows the Crawlers
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Table 1: Implemented Modules of the different categories.

Name of Module Source

Basic Crawler (Doupé et al., 2012)

Dummy Fuzzer New work
External Fuzzers (Borcherding et al., 2020)

Clustering Detector New work

and Fuzzers to interact with one another as suggested
by literature (Hassanshahi et al., 2022; Doupé et al.,
2012). Further details on each module are available in
Sections 5.1.2 to 5.1.4.

Further, we encapsulate the execution logic of the
Modules in Workers. This creates the advantage that
the Modules can be dynamically spawned and run in
a distributed way, allowing SWaTEval to scale to for
bigger workloads.

In the following, we present the Modules we de-
signed and implemented. This includes approaches
from literature as well as our own approaches. Ta-
ble 1 shows an overview of the Modules as well as
their source.

5.1.2 Crawlers

The Crawlers’ goal is to walk through the WA and
find new Endpoints. The information found by the
Crawlers is saved in the database and is later used
by the Detectors which generate the preliminary state
machine. This state machine is then used by the
Crawler again to decide which states to explore next.

Basic Crawler. This Crawler implements a simple
approach for crawling. It navigates the WA to the first
available state that is not marked as explored, and vis-
its all available Endpoints in this state. To ensure
that the WA is always in the selected state, we re-
set the WA and navigate to the selected state before
each crawl iteration. While crawling, the Crawler
saves all generated data in the database. In the case
of the BasicCrawler, we assume that the WA can be
crawled thoroughly and assume convergence when all
detected states and Endpoints are visited, and no fur-
ther states and Endpoints are detected.

5.1.3 Fuzzers

The Fuzzers’ goal is to generate payloads to test the
WA and to analyze whether a vulnerability has been
found. In our setting, they are also used to trigger new
states of the WA by trying out different inputs. Simi-
lar to the Crawlers, the data generated by the Fuzzers
is also saved in the database. To differentiate between

the data generated by the Fuzzers and the Crawlers,
we flag the data in the database accordingly.

Dummy Fuzzers. To validate our concept, we im-
plemented a dummy Fuzzers for the Evaluation Target
we used in our evaluation. They mock the functional-
ity of a real Fuzzer by detecting the current state of the
WA and executing requests that are known to cause
state transitions. In addition, they also send non-fuzzy
requests that will not trigger a state transition, mim-
icking the behavior of a real Fuzzer.

External Fuzzers. Since SWaTEval has the goal to
integrate different approaches for SWAT, we also pro-
vide an interface for external Fuzzers such as Wapiti5

or Nikto6. This configuration is based on the work
by Borcherding et al.(Borcherding et al., 2020). To
interact with the external Fuzzer, we implement a
Fuzzer-specific strategy that starts the external Fuzzer
and intercepts its traffic using the MITM proxy7. This
allows us to inject state data in the requests of the ex-
ternal fuzzer such as cookies and headers, and simul-
taneously retrieve the responses of the WA.

5.1.4 Detectors

The Detectors compare the output of similar requests
before and after fuzzing to infer information on the
state machine. The intuition behind this decision is
the following. If a response to a request differs from
the responses that we received to the same request ear-
lier, a state change has likely happened between those
two requests. The detection approach presented be-
low is based on this assumption and uses it to infer
the state machine.

Clustering Detector. Our newly proposed ap-
proach is based on clustering. The clustering algo-
rithm uses Endpoints, Interactions, and States as in-
put, which we will denote as content in the following.
For this Detector type, the content is represented by
a locality sensitive hash. To measure the similarity
of two content entries, a distance score between their
respective hashes is calculated. The clustering algo-
rithm first calculates this distance, and then clusters
the web pages accordingly. The detection of a new
cluster is interpreted as a relevant change in the con-
tent, which represents an anomaly. This anomaly can
indicate a state transition, a state collapsing, or the
existence of an unseen Endpoint. The whole method

5https://wapiti-scanner.github.io/
6https://github.com/sullo/nikto
7https://mitmproxy.org/
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is described in further detail in the next section (Sec-
tion 5.2).

5.2 Clustering Based Detection

This section provides deeper insight into the inner
workings of our clustering based Detectors. Our ap-
proach aims to achieve the same goals as the approach
presented by Doupé et al.. Doupé et al. represent a
web page as a page link vectors which incorporate in-
formation on the DOM path, anchors, forms, parame-
ters, and values (Doupé et al., 2012). In contrast, we
create a latent representation of the data and apply di-
rect clustering methods on it. With these clustering
based methods, we aim to achieve a more adaptive
analysis that adjusts the clustering results to the newly
available data. We represent content generated in our
framework with the help of the locality sensitive hash
called TLSH (see Section 3). To be more specific, we
apply this hash to different parts of the available con-
tent as shown in the following.

5.2.1 Data Types

To represent the content of the WA and make use of it
during SWAT, we define three data types: Endpoint,
Interaction, and State. Each of these data types has
a hash attribute that contains the compact TLSH rep-
resentation of the contained data. Furthermore, we
define for our framework the data types Request and
Response to represent HTTP Requests and HTTP Re-
sponses, respectively.

Endpoints contain information about web ad-
dresses found while scanning a WA. They include
an address location, the parameters found in the URL
and the body, the HTTP method, the DOM location,
the corresponding state, and the source. Here, the
source is defined as the Interaction that created a Re-
sponse which contained the corresponding Endpoint.
To calculate the hash of an Endpoint, we concatenate
its URL, parameters, state, and DOM location in a
string and apply TLSH to it.

Interactions represent the communication with
the WA and are put together from an Endpoint, and
the corresponding Request, Response, and State. To
calculate the hash of an Interaction, we first parse the
body of its Response and extract links provided as an-
chors and forms. Then, we concatenate them with the
received response code, URL, and HTTP method, and
use the final string to generate a TLSH.

States contain information about the Interaction
that caused the transition, and paths from other States
that lead to the corresponding State. The state hash
is calculated by concatenating the related Interaction
hashes in a String and using it to generate a TLSH.

5.2.2 Clustering Based Detectors

We orient the SWAT challenges, that the Detectors of
SWaTEval should solve, on the challenges identified
by Doupé et al. (Doupé et al., 2012). The Endpoint-
Detector has the goal to decide which Endpoints are to
be classified as identical in order to discard duplicated
Endpoints and such reduce the time needed for a test.
The StateChangeDetector aims to identify state tran-
sitions in order to build the state machine. Similar to
the EndpointDetector, the StateDetector helps reduc-
ing the testing time by deciding which states of the
identified state machine are considered equivalent and
can be merged. As has been mentioned, the Workers
execute the Modules in a sequential order. After a
Crawling or a Fuzzing step, the Detectors are run in
the following order: (I) EndpointDetector, (II) State-
ChangeDetector, (III) StateDetector. Each of the De-
tectors makes use of our clustering approach which
we will explain in more detail in Section 5.2.3.

EndpointDetector. The EndpointDetector decides
which Endpoints should be visited in the upcoming
crawling iterations, since not every newly found End-
point should be visited by the Crawler. Some End-
points lead to Interactions that contain similar infor-
mation even if the Endpoint addresses differ. Since
duplicate information does not contribute to the state
machine inference, we want to avoid interacting with
duplicate Endpoints. For example, WAs sometimes
provide dynamically generated links on webpages,
which point to the same URL with slightly different
parameters. Such is the case in WackoPicko, an inten-
tionally vulnerable WA (Doupé et al., 2010). This WA
contains a calendar page that always generates a link
pointing to the same calendar page, but with the next
date selected. With this, it essentially creates a never
ending chain of Endpoints which will get a crawler
stuck in the corresponding state.

We solve this issue by calculating clusters of End-
point hashes. We consider Endpoints in the same
cluster to be the same. By labelling the Endpoints ac-
cordingly, the EndpointDetector helps the Crawler to
filter out identical Endpoints when selecting an End-
point for the next Interaction. Thereby, we ensure that
the subsequently visited Endpoints are considerably
different from any previously visited Endpoint and the
crawling procedure will eventually converge.

StateChangeDetector. The purpose of the State-
ChangeDetector is to detect state transitions. To
achieve this, it clusters all Interaction hashes gener-
ated when visiting an Endpoint and looks for outliers.
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As stated earlier, we assume that a state change
has occurred when the same Request results in a dif-
ferent Response than in previous Interactions. To de-
cide whether a Response is different from the ones
seen before, we apply our clustering approach again.
We calculate clusters using data from all Interactions
that have been carried out on the same Endpoint. If
the Interactions on the same Endpoint have more than
one cluster, we assume that a state change has hap-
pened. Based on this observation, we infer the state
machine as proposed by Doupé et al. (Doupé et al.,
2012), and a new state is created. As soon as the
Fuzzer creates a new Interaction, the StateChange-
Detector compares this Interaction with Interactions
having the same Endpoint and being created by the
Crawler. This ensures that the StateChangeDetector
can detect a state transition on time. As a result, it
ensures that future Interactions will be mapped to the
correct state.

StateDetector. An additional important step in the
state machine inference is the merging of similar
states (Doupé et al., 2012). This pruning operation
is crucial, since duplicate States will slow down the
scanning process without adding new information.

The StateDetector runs after the StateChange-
Detector and identifies states that appear equivalent.
The StateDetector allows only the earliest state to per-
sist and labels the identical ones as duplicates. This
ensures that the duplicate states are filtered out in the
following crawling steps.

Again, we use the clustering approach to solve this
challenge and calculate the clusters of states. If multi-
ple States are considered to be in the same cluster, we
assume that these states are duplicates. By labeling
them as duplicates, we allow only the initial distinct
state to persist. Additionally, we ensure that no pre-
vious state graph paths are broken by appending the
paths of the duplicate states to the persisted state. We
also transfer the Interactions and Endpoints of the du-
plicate states accordingly.

5.2.3 Clustering

For the Detectors, we apply clustering on TLSH
hashes to find patterns in the content. In the following,
we describe an issue coming from the requirements of
TLSH as well as our solution of augmenting the input
data with padding. Afterwards, we describe how we
preprocess the hashes for our clustering algorithms.

Padding. By design, the TLSH algorithm requires
a minimum input of 50 bytes to generate a hash. To
fulfil this requirement, we use a random but fixed

padding for the inputs to the TLSH algorithm. How-
ever, augmenting the TLSH input data with random
data might dilute the information of the actual data
and make the clustering result less reliable. Also,
the concrete choice of the padding may influence the
clustering results. We acknowledge the impact of our
padding choice during our evaluation (Section 6).

Preprocessing. We propose the following two ways
to preprocess the TLSH hashes in order to use them
as an input for the clustering algorithms:

Integer Representation. Since the TLSH algo-
rithm always results in a hash with 72 characters, we
can interpret the hash as a feature vector in R72. Each
entry of the vector is converted from a character to an
Integer by using its ASCII representation. With this,
we receive a numerical representation of the TLSH
hash which can be used for clustering.

Text-based Distance. The second approach is to di-
rectly apply a text distance on the hashes and create
a distance matrix, which then can be used as an input
for the clustering algorithm. In this case, we use the
TLSH Score proposed by the authors of TLSH, and
apply it pairwise on the content hashes to create the
distance matrix. The TLSH Score approximates the
Hamming distance and is calculated as the distance
of every two bits. Additionally, the score punishes
large differences with higher distance values (Oliver
et al., 2013).

Clustering Algorithm. We choose DBSCAN as the
algorithm for the clustering since it fits the properties
of our clustering task (Ester et al., 1996). It is not de-
pendent on the cluster shape and count, it is capable
of detecting densely positioned clusters, and robust to
noise and outliers. DBSCAN has two input parame-
ters that need to be chosen. ε defines the maximal dis-
tance between two samples in a neighbourhood, and
minPts determines the minimal number of neighbours
for a core point sample. We set the minPts parame-
ter to 1, since each Endpoint, Interaction, or state can
be a cluster on its own. This is in line with Schu-
bert et al., who state that minPts should be chosen
based on domain knowledge (Schubert et al., 2017).
ε, however, is optimized with the help of the Silhou-
ette Score (Shahapure and Nicholas, 2020) every time
we run the clustering procedure.

5.2.4 Evaluation Target

Complementary to SWaTEval, we created an Evalua-
tion Target, which is used to evaluate the performance
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of the Modules. Similar to Doupé et al. we imple-
mented a server-side rendered WA, meaning that the
DOM elements for each request are generated in the
back end and sent in the response each time (Doupé
et al., 2012). Based on the requirements defined in
Section 4.3, we integrated the following use cases in
the Evaluation Target.

User Login. The Evaluation Target supports login
functionality including a normal user and an admin.

Chained Links. The Evaluation Target includes an
Endpoint that takes a number as input parameter and
contains a link that points to the same page with an in-
cremented number. This mimics the previously men-
tioned case of a Crawler getting stuck in a feedback
loop of links (see Section 5.2). This challenges the
EndpointDetector, which should detect the Endpoints
generated after the first visit as duplicates.

Pages with Links and Content. The Evaluation
Target includes pages that can have links or content
which can be dynamically generated or constant. All
four possible combinations exist and can be used to
evaluate the StateChangeDetector and the Endpoint-
Detector.

State Machine. Furthermore, the Evaluation Target
includes additional states which are accessible only
when a proper keyword is given (see Figure 2). The
state machine can be used to test the features of a
StateChangeDetector or a Fuzzer. The state machine
also includes a state transition that resets the state ma-
chine to the initial state. This state transition creates a
challenge for the StateChangeDetector, as the State-
ChangeDetector has to merge the new state and the
initial one. Failing to do so will replicate the state
machine indefinitely.

6 EVALUATION

Our goal in evaluating SWaTEval is to verfiy the func-
tionality of the implemented Modules and their inter-
operability. To achieve this, we aim to ensure that
the requirements defined in Section 4.3 are fulfilled.
Moreover, we evaluate different similarity measures
and examine the performance of multiple framework
configurations. We conduct our experiments on a ma-
chine with 128GB of RAM and the following CPU:
Intel(R) Xeon(R) E5-1650 v3 @ 3.50GHz. Note that
the used hardware exceeds the needs of SWaTEval.

Initial

State 2.2 State 2.1

State 3.2State 3.1 State 3.3 State 3.4

Special

state2 1state2 2

state3 1
state3 2 state3 3

state3 3

special

initial

Figure 2: State machine of the Evaluation Target. Keywords
needed to access a new state are presented in italic.

6.1 Qualitative Evaluation

As the first step of our evaluation, we analyze how
SWaTEval fulfills the requirements for a framework
enabling SWAT evaluations as stated in Section 4.3.

Dividing the framework into Modules with the
same base functionality and encapsulating their indi-
vidual policy allows us to hide complexity and cre-
ate abstract workflows. By doing so, we ensure that
SWaTEval covers FR1 Modularity.

Interaction between the Modules of SWaTEval
(FR2 Interaction) is achieved by establishing the
database as a core point of information exchange. The
Modules are run in a sequential order, and they exe-
cute their logic only if the conditions specified in their
policy match the current state of the framework. For
example, a Fuzzer will only generate a fuzzing re-
quest if the Crawler and the Detectors have marked
the current state as fully explored. In order to sat-
isfy FR1 Modularity, we implement the policy of each
Module separately, which allows us to avoid tight
coupling and still have interoperating Modules.

FR3 Traceability aims to make the influence and
behavior of the different Modules and their interlaced
functionality visible. By separating the generated data
from the Modules, we allow for a centralized analysis
of the current state of SWaTEval. In addition, this al-
lows for manual data editing during runtime, enabling
experiments with edge cases and a deeper analysis of
the Modules’ behavior. To trace the various instances
of states, Endpoints, and Interactions, each instance is
identified by its hash. The database contains all rele-
vant information on the behavior of the Modules and
as such the content of the database can be stored and
used for documentation or analysis purposes. With
this, SWaTEval fulfills FR3 Traceability.

The Evaluation Target incorporates different web
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pages (see Section 5.2.4 for details). First, it in-
cludes web pages with similar content which should
be classified as the same web page (TR1 Similar
pages). This holds, for example, for /views/const-
content/const-links/random-page. Besides, our Eval-
uation Target includes pages with different content,
such as views/dynamic-content/const-links/random-
page (TR2 Different pages). Moreover, it implements
the possibility to change the underlying state of the
WA by (I) a user login, and (II) the artificial state ma-
chine controlled by different keywords, as shown in
Figure 2 (TR3 Statefulness). The state machine has
eight states and the transitions of the states can be re-
traced easily. With this, our Evaluation Target fulfills
the requirements TR1 - TR4.

6.2 Quantitative Evaluation

The goal of our quantitative evaluation is to ana-
lyze whether SWaTEval can be used to reproduce re-
sults from literature. We compare the results regard-
ing similarity measures based on our Evaluation Tar-
get with results from Yandrapally et al. (Yandrapally
et al., 2020). Note that Yandrapally et al. use a dif-
ferent terminology for the state of a WA, as each indi-
vidual web page is considered a state. This definition
maps to our understanding of an Endpoint. As a re-
sult, the evaluation of similarity measures for states
by Yandrapally et al. can be compared to our evalua-
tion of similarity measures for Endpoints.

We run various experiments for our comparison of
the similarity measures. First, we obtain the baseline
data by applying the similarity measures provided by
us (Section 5.2.3) and Yandrapally et al. to the tar-
gets given by Yandrapally et al.. Second, we apply the
same similarity measures to our Evaluation Target. As
a result, we obtain insights on the performance of dif-
ferent similarity measures for the large study of Yan-
drapally et al. as well as on our Evaluation Target.

Figure 3 shows the comparison of the accuracy of
similarity measures calculated on the targets used by
Yandrapally et al. and our Evaluation Target. The
x-axis presents the similarity measures and the data
representation they are based on. The y-axis displays
the achieved accuracy values of the different similar-
ity measures (see Section 5.2.3). Since the data by
Yandrapally et al. consists of more diverse WAs, it
is expected that the similarity measures show overall
less accuracy. Our results support this expectation.

Except for the differences in absolute values, our
results show the same trends and relative results for
the similarity measures. The TLSH Score results in
the lowest accuracy, while Levenshtein distance on
DOM data scores second best. The highest accu-
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Figure 3: Duplicate detection accuracy of various similarity
measures based on data by Yandrapally et al. and our Eval-
uation Target. The relative performance of the similarity
measures is the same.

racy is achieved by our proposed method using Eu-
clidean distance and the integer vector representation
of TLSH. The results show that the performance is
maximized both on the data from Yandrapally et al.
and from our Evaluation Target.

Our evaluation shows that our artificial Evalua-
tion Target leads to similar results as the study con-
ducted by Yandrapally et al.. Therefore, the conclu-
sion can be drawn that our Evaluation Target success-
fully incorporates the relevant features of real-world
WAs. With respect to RQ1, our results suggest that
our Evaluation Target achieves similar results to those
presented in literature.

6.3 Similarity Measures

In contrast to the evaluations presented in the previ-
ous subsections, which aim to evaluate SWaTEval it-
self, this subsection presents an evaluation of various
similarity measures by using SWaTEval. Neverthe-
less, this evaluation also shows that SWaTEval can
successfully be used for evaluations of different ap-
proaches for SWAT. The goal of this evaluation is to
analyze the influence of the choice of similarity mea-
sure on the results of the state machine inference.

Table 2 shows the similarity measures we consid-
ered for the Detectors in our Evaluation. For each of
the Detectors, we choose either Euclidean or Leven-
shtein as similarity measure (see Section 5.2.3), and
use them to calculate the distance between content
entries represented as TLSH. For the StateChange-
Detector, we additionally evaluate calculating the
Levenshtein distance of the body of the Responses.

Thus, we end up with 2 ·2 ·3 = 12 configurations
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Table 2: Similarity measures used for the evaluation.

ID Representation Sim-Measure

TLSH Score TLSH as String TLSH Score
Euclidean TLSH as Integers Euclidean

Levenshtein Response Body Levenshtein

Euclidean TLSH Score Levenshtein
0
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2
3
4
5
6
7
8

StateChangeDetector

C
or

re
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ly
id

en
tifi

ed
st

at
es

Average Number of Correctly Identified States

StateDet: Euclidean | EpDet: Euclidean
StateDet: Euclidean | EpDet: TLSH Score
StateDet: TLSH Score | EpDet: Euclidean
StateDet: TLSH Score | EpDet: TLSH Score

Figure 4: Means average number of correctly identi-
fied states for the different Detector configurations for the
StateChangeDetector, the StateDetector (StateDet), and the
EndpointDetector (EpDet). The euclidean similarity mea-
surement leads to higher numbers.

which we run 20 times each. This repeated execu-
tion accounts for one additional parameter which is
the padding for the TLSH which might affect the per-
formance of our Modules (see Section 5.2.3).

For each of the configuration combinations, we
analyzed the count of correctly identified states, the
count of Endpoints, and the count of Interactions.
Figure 4 shows the count of correctly identified states,
which is the most important metric to measure the
performance of the configurations. The configura-
tions for the StateChangeDetector are shown on the
x-axis. The bars correspond to the different combi-
nations for StateDetector and EndpointDetector, and
the error bars show the standard deviation calculated
on the data from the 20 runs of each configuration.
The correct number of states in the state machine is
marked with the dashed black horizontal line.

The graph in Figure 4 shows three main findings:
(I) The euclidean similarity measure leads to the high-
est number of correctly identified states, (II) the usage
of TLSH increases the variance of the results, and (III)
the choice of the similarity measure for the Endpoint-
Detector is the choice which has the lowest impact on

the number of correctly identified states.
The first finding can especially be seen for the Eu-

clidean StateChangeDetector (bars on the left), and
for the Euclidean StateDetector (plain bars). Overall
best results are achieved by the configuration where
all three Detectors use the Euclidean similarity mea-
sure. Especially, the Euclidean distance is better
suited as a similarity measure than the TLSH Score
developed specifically for TLSH. This finding is in-
teresting since literature shows that distance measures
based on the Manhattan distance are better suited for
data with higher dimensions than the Euclidean dis-
tance (Aggarwal et al., 2001). In our case of 72 di-
mensions, one would assume that the TLSH Score,
which approximates the Hamming distance, would
behave similar to the Manhattan distance and such
perform better than the Euclidean approach. A pos-
sible explanation might be the different nature of the
data. Aggarwal et al. use synthetic data drawn from
a normal distribution as well as data taken from the
UCI machine learning repository. In contrast, we use
TLSH as input for the distance measure and the clus-
tering. We believe that an analysis of the classifica-
tion performance on various types of data would be
an interesting starting point for future work, but we
consider it to be out of scope for this paper.

The second finding is that the use of TLSH in-
creases the variance of the results. This can be seen
especially in comparison to the Levenshtein State-
ChangeDetector (bars on the right) which is not us-
ing TLSH. The observation that the usage of TLSH
leads to a higher variance is expected since it is af-
fected by the padding mentioned before. Note that
the Euclidean distance measure is influenced by the
padding as well, since it also operates on the TLSH.
This shows that the choice of padding indeed has an
influence on the identified states.

The third finding concerns the impact of the
choice of similarity measure. As a measurement for
the impact, we choose to analyze the difference be-
tween the minimum and maximum values of cor-
rectly identified states from the different configura-
tions. This impact can already be seen in Figure 4.
We show these values in Table 3 in a more compact
form. For the StateDetector, for example, this table
shows the maximum difference of the mean numbers
of correctly identified states for all configurations for
which the StateDetector is using Levenshtein and Eu-
clidean, respectively. Based on this measurement, the
choice of the distance measure for the StateChange-
Detector and the StateDetector is more important than
the one for the EndpointDetector. This insight is also
reflected by the data depicted in Figure 4, where a
change in the EndpointDetector still leads to simi-
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Table 3: Impact of the choice regarding similarity measures
for the different Detectors. The choice for the Endpoint-
Detector has the lowest impact.

Detector Detection impact

StateChangeDetector 2.30
StateDetector 2.46
EndpointDetector 0.08

lar results, when the plain bars, and respectively the
patterned bars, are compared. For a deeper analy-
sis, we also evaluated the number of detected End-
points and the performed Interactions with the WA.
These numbers highly correlate to the number of cor-
rectly detected states. In regard to RQ3, we can state
that applying different distance measurements in the
presented approaches do influence the performance of
the StateChangeDetector and StateDetector, but only
have a small impact on the EndpointDetector.

6.4 Summary

Our evaluation had two objectives. On the one hand,
we showed that SWaTEval fulfills the requirements
for a SWAT framework (see Section 4.3). In addi-
tion, we showed that SWaTEval is able to reproduce
results by a study from literature by reproducing the
results by Yandrapally et al.. On the other hand, we
used SWaTEval to evaluate various similarity mea-
sures used for SWAT. We showed that the choice
of similarity measures for StateChangeDetector and
StateDetector indeed has an impact on the state ma-
chine inference and that, for our data, the euclidean
similarity measure lead to the best results.

7 FUTURE WORK

We created SWaTEval with the goal to create a foun-
dation and initial building block for future SWAT re-
search. On the one hand, SWaTEval is suited to
evaluate the impact of various choices for the state
detection. First, one could evaluate the impact of
the chosen state detection algorithm. E.g., Vaan-
drager et al. proposed a new approach to automated
automata learning which could be evaluated regard-
ing its suitability for WA automata learning by us-
ing SWaTEval (Vaandrager et al., 2022). Second,
one could approach the question of how much the
quality of the inferred state machine influences the
performance of the fuzzer. Third, the feature selec-
tion for the representation of Endpoints, Interactions,
and States could be evaluated and tuned. On the
other hand, additional approaches for Detectors could

be implemented and analyzed. A possible approach
would be to base new detectors on the anomaly detec-
tion capabilities of autoencoders such as presented by
Mirsky et al. (Mirsky et al., 2018). In addition, other
challenges of stateful fuzzing can be evaluated using
SWaTEval, such as the challenge of deciding which
state to focus on during the next fuzzing phase (Liu
et al., 2022).

The current scope of SWaTEval are server-side
rendered WAs. Even though this is still the standard
in industrial contexts, many of the modern WAs ap-
ply a client-based approach. In the future, SWaTEval
could be extended with Detectors and an appropriate
Evaluation Target for client-side WAs.

8 CONCLUSIONS

In this work, we present SWaTEval, a novel evalu-
ation framework for Stateful Web Application Test-
ing. It consists of modular implementations for De-
tectors, Crawlers, and Fuzzers, and an Evaluation Tar-
get. In our evaluation, we show that (I) the Evalu-
ation Target is a suitable substitute for an evaluation
of various real-world WAs, and that (II) SWaTEval
is suitable to conduct evaluations. By further using
SWaTEval for an evaluation of similarity measures,
we show that the choice of similarity measures has
an impact on the state machine inference, and that,
for our data, our euclidean similarity measure leads
to the highest number of correctly identified states.
This insight is invaluable for the design and imple-
mentation of future SWAT tools. Regarding the limi-
tations of SWaTEval, we would like to highlight two
points. First, our Evaluation Target currently only in-
cludes HTML web pages and as such does not cover
JavaScript based content. Second, SWaTEval cur-
rently focuses on server-side rendered WAs and does
not support, for example, Progressive Web Applica-
tions. Both points represent possible enhancements of
SWaTEval that should be addressed in future work.

One of our main goals for SWaTEval is that it will
be useful for future evaluations in the domain of State-
ful Web Application Testing. Hence, we published
the source code of SWaTEval8. SWaTEval thus pro-
vides a solid basis for future enhancements, imple-
mentations, and evaluations.

8https://github.com/SWaTEval
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