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Abstract: Video-based sign language recognition aims to support deaf people, so they can communicate with others by
assisting them to recognise signs from video input. Unfortunately, most existing sign language datasets are
limited to a small vocabulary, especially in low-resource languages such as Thai. Recent research in the Thai
community has mostly paid attention to building recognisers from static input with limited datasets, making
it difficult to train machine learning models for practical applications. To overcome this limitation, this paper
originally introduces a new video database for automatic sign language recognition for Thai sign language
digits. Our dataset has about 63 videos for each of the nine digits and is performed by 21 signers. Preliminary
baseline results for this new dataset are presented under extensive experiments. Indeed, we implement four
deep-learning-based architectures: CNN-Mode, CNN-LSTM, VGG-Mode, and VGG-LSTM, and compare
their performances under two scenarios: (1) the whole body pose with backgrounds, and (2) hand-cropped
images only as pre-processing. The results show that VGG-LSTM with pre-processing has the best accuracy
for our in-sample and out-of-sample test datasets.

1 INTRODUCTION

Over 5% of the world’s population – or about 450
million people worldwide – require rehabilitation to
address their ‘disabling’ hearing loss, as reported by
(World Health Organization, 2021). The use of hear-
ing assistive technologies such as sign language inter-
pretation can further improve access to communica-
tion and education for people with hearing loss. How-
ever, many people with normal hearing cannot under-
stand sign language. Moreover, most countries have
developed their sign languages because they have dif-
ferent cultures, alphabets and vowels. This fact may
also create a barrier for promoting the development of
assistive sign language interpreters.

According to the current progress of global sign
language recognition research, there are five main as-
pects that must be considered when working with sign
language recognition in deep learning: feature fusion,
input modality, training dataset, language complex-
ity, and deep models (Rastgoo et al., 2021). Firstly,
feature fusions can be organised into three categories:
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using only hand pose features, using both hands and
face pose features, and using the body, hand and face
pose features to enhance the accuracy of the sign lan-
guage system (Chen et al., 2020; Doosti, 2019; Wang
et al., 2018). Secondly, the input modality can be di-
vided into gloved-based and vision-based. The glove-
based model uses an electronic circuit and sensors at-
tached to a glove to send signal data for hand pose de-
tection. In another way, vision-based modalities like
RGB, depth, thermal, and skeleton offer a more re-
alistic and natural system based on data humans can
sense from their environment (Zheng et al., 2017;
Kim et al., 2017). Thirdly, Sign Language Recog-
nition (SLR) models have various languages in the
input data, such as American Sign Language (ASL)
(Pugeault and Bowden, 2011), Indian Sign Language
(ISL), (Forster et al., 2014), Boston ASL, and so on.
They have garnered more attention due to more pop-
ularity and usage. However, understanding sign lan-
guage requires very precise domain knowledge, and it
is not feasible to try to label many samples per class
(Li et al., 2020). Next, language complexity deter-
mines some grammatical rules to connect the move-
ments of the face, hands, and body parts because of
several parameters such as eyelashes, eye gaze, eye-
brows, orientation, shape, and mouth parameters. Fi-
nally, deep models are used for the automatic index-
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ing of signed videos, pose estimation, multi-person,
hand detection, and other interactions between hu-
mans and computer applications (Newell et al., 2016).

Regarding deep applications to SLR, most works
have used Convolution Neural Network (CNN) with
other deep learning architectures, such as the Recur-
rent Neural Network (RNN), to increase performance
when dealing with the video input than the only CNN.
Although CNN and RNN models as well as their com-
binations were designed long ago, most researchers,
as studied by (Rastgoo et al., 2021), have continued
to use them in SLR, but only a few changes in the
used modalities and datasets. For example, having
achieved high training accuracy on ISL, (Wadhawan
and Kumar, 2020) proposed static signs in sign lan-
guage recognition using CNN on RGB images. In ad-
dition, (Ferreira et al., 2019) presented multi-modal
learning techniques from three specific modalities for
an accurate SLR, using colour, depth on Kinect, and
Leap Motion data based on CNN.

Our contributions are twofold. First, we origi-
nally introduce a new video database for Thai sign
language recognition on digits. Our dataset has about
63 videos for each digit and is performed by 21 sign-
ers. To our knowledge, this is the first video dataset
for the Thai sign language research community. Sec-
ond, we conduct a substantive study on the design
and development of deep learning systems based on
our dataset. Specifically, we implement and investi-
gate four systems: CNN-Mode, CNN-LSTM, VGG-
Mode, and VGG-LSTM, and compare their perfor-
mances under two scenarios: (1) the whole body pose
with backgrounds, and (2) hand-cropped images only
as pre-processing. The paper is structured as follows.
Section II describes related work on the Thai sign lan-
guage (TSL) datasets that currently exist in the Thai
research community. Next, we explain our dataset,
methodology, and pre-processing steps in section III.
Section IV discusses the steps and results of our ex-
periments. Finally, we conclude the experiments and
discuss the direction of future work in section V.

2 RELATED WORK

In this section, we briefly discuss some of the Thai
sign language datasets that exist at present. Ac-
cording to the situation of persons with disabilities
in Thailand, there were 393,027 people, or 18.69%,
with a hearing impairment and interpretive disabil-
ity in December 20211, representing the second lead-
ing disability type among all 2,102,384 disabled peo-

1https://dep.go.th/th/

ple. This problem causes difficult communication be-
tween those who can hear and the groups of deaf and
hard-hearing people who communicate with sign lan-
guage, a subset of hand gestures. Although Thai Sign
Language (TSL) was initially developed from Amer-
ican Sign Language (ASL), it has distinct hand ges-
tures from other countries based on tradition, culture,
and geography. The structure of TSL consists of 5
parts: the hand shapes, position of the hands, move-
ment of the hands, orientation of the palms in relation-
ship to the body or each other, and face of the signer.
Even though TSL is the only standard sign language
in Thailand, it still lacks public sign language datasets
and signers. As a result, most Thai researchers have
to provide datasets on their own without experts’ in-
volvement (see Tables 2 and 3).

Furthermore, TSL can be split into two major di-
rections: fingerspelling and natural sign language.
Fingerspelling is used for specific names such as
places, people, and objects that cannot be signed us-
ing gestures. (Chansri and Srinonchat, 2016) pro-
posed investigating the hand position in real-time sit-
uations with Kinect sensors but without the environ-
mental contexts, such as the skin colour and back-
ground. (Pariwat and Seresangtakul, 2017) presented
an example of a system based on Thai fingerspelling
using global and local features with Support-Vector
Machine. At the same time, (Nakjai and Katanyukul,
2019) employed a histogram of Oriented Gradients
(HOG) with CNN to deal with Thai fingerspelling.

Despite the aforementioned, most deaf and hard-
of-hearing people use the natural Thai sign language
to communicate with each other because it is easy
and fast. However, a significant problem with natural
signs is that the number of Thai sign language datasets
is very low. For example, (Chaikaew et al., 2021) pre-
pared their dataset by using five gestures and shot 100
videos per word, so the total was 500 videos contain-
ing 50 FPS with H.264 format for each video. Then,
input datasets were trained with RNN-based models:
LSTM, BiLSTM, and GRU. Although their results
demonstrated greater than 90% accuracy, they pre-
sented only in-sample evaluation. Undoubtedly, the
in-sample domain is higher than the out–of-sample
evaluation. Next, (Chaikaew, 2022) applied the holis-
tic landmark API of MediaPipe to extract features
from live video capture consisting of face, hand and
body landmarks. Afterwards, they trained their data
on three models to evaluate the performance of each
model. However, neither research paper showed the
number of signers. Generally, a good sign recogni-
tion model should be robust to inter-signer variations
in the input data, such as signing paces and signer ap-
pearance, to generalise well to real-world scenarios.
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Figure 1: Examples of Thai digit number datasets.

3 METHODS AND DATASET

In this section, we explain the dataset and methods
for our processes. Firstly, we describe the Thai digit
number dataset, including how to calculate the av-
erage videos step by step, followed by the model
architecture comprised of four crucial deep-learning
models, including CNN-Mode, CNN-LSTM, VGG-
Mode, and VGG-LSTM to compare the performance
of each model. Next, we explain our application on
the YOLOv5 model to detect hand only as our pre-
processing from video inputs. We discuss our imple-
mentation including parameters used by YOLOv5.

3.1 Thai Digit Number Dataset

The digit number (1-9) dataset used in this study was
acquired from two main sources: the Internet and per-
sons, by controlling the deaf person experts. First,
there are multiple educational sign language websites,
including the Office of the Royal Society2 and the
National Association of the Deaf in Thailand3. An-
other main source was videos from the general public.
However, experts controlled all the processing of sign
poses. Finally, we selected videos whose titles clearly
describe the words of the sign.

In total, we acquire 567 videos consisting of 540
videos for the in-sample test set and 27 videos for the
out-of-sample test set, and the length of each video is
2-4 seconds varied by sign language gesture. There
are 21 signers performed in all the videos, including
15 women and 6 men, as illustrated in Figure 1.

After the collection of in-sample videos, we calcu-
late the length of all videos to be 27.08 minutes (1,628
secs). Hence, the average length per video is

average length per video =
length of all videos
number of videos

(1)

=
1,628
540

≈ 3.015 sec

2http://164.115.33.116/vocab/index.html
3https://www.th-sl.com/search-by-act/

Figure 2: CNN-Mode for digit classification from a video.

Next, we convert all the videos into image frames
at 25 fps following the Phase Alternating Line theory
(PAL system). Thus, we have 25× 3.015 = 75.375
≈ 75 frames per video or 75× 540 = 40,500 image
frames for all videos. However, the sizes of image
frames are in different scales, so we resize all image
frames to be 96×96 to feed the input of models.

3.2 Model Architecture

We implement four deep learning-based system:
CNN-Mode, CNN-LSTM, VGG-Mode and VGG-
LSTM, and evaluate their performance based on the
collected dataset. Each deep system is investigated
under two scenarios, i.e., (1) whole body poses with
background and (2) only hand-cropped poses, to find
out the best design of deep learning-based systems.

3.2.1 CNN-Mode

2D CNNs are widely used to extract spatial features
of input images. Considering that a video input is a
sequence of image data, our first implementation uses
a CNN model (given in Table 1) to determine the class
for each image input. The output represents the poste-
rior probability that the input represents a digit. Each
predicted output is aggregated by the statistical mode
operator. This deep architecture is referred to as CNN-
Mode and is illustrated in Figure 2. Note that the
mode is the most commonly observed value in a set
of data. The outputs of the softmax layer are calcu-
lated to determine the most occurred digit in a video
input as an output prediction from the video, as shown
in Equation (2). In the equation, xi represents the pre-
dicted digit at frame i (there are 75 frames per video).

Word←Mode(CNNi∈{1,...,75}(xi)) (2)
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Table 1: The CNN model used in CNN-Mode and CNN-LSTM architectures.

Layer Filters Kernel Size Strides Activate Function Neural Units
Conv2D 8 3×3 ReLU

MaxPooling2D 2
Conv2D 16 3×3 ReLU

MaxPooling2D 2
Conv2D 32 3×3 ReLU

MaxPooling2D 2
Conv2D 64 3×3 ReLU

MaxPooling2D 2
Fully Connected 1 - - - ReLU 256
Fully Connected 2 - - - ReLU 84
Fully Connected 3 - - - softmax 9

Figure 3: CNN-LSTM fordigit classification from a video.

3.2.2 CNN-LSTM

Recall that Recurrent Neural Networks (RNN) and its
variants e.g. LSTM are employed to capture the long-
term temporal dependencies among inputs. Thus,
our next architecture is constructed by a CNN and a
LSTM to capture spatio-temporal features from input
video frames. In particular, the CNN extracts features
from each frame, and the LSTM aggregates the in-
formation over time. Finally, two consecutive fully-
connected layers (256 and 84 units with ReLU activa-
tions) and a softmax layer are utilized to obtain final
classification scores. This architecture is referred to as
CNN-LSTM as shown in Figure 3. Table 1 details the
architecture of the CNN model used in CNN-LSTM.
The size of LSTM cell is set to 30 and the number of
the stacked recurrent layers in LSTM is set to 1.

It is worth mentioning that CNN-LSTMs are often
employed for visual time series prediction and gener-
ating textual descriptions from video inputs (Brown-
lee, 2017). This work also investigates the utilization
of this architecture for Thai sign language from video
on our collected dataset.

Figure 4: VGG-Mode for digit classification from a video.

3.2.3 VGG-Mode and VGG-LSTM

Both CNN-Mode and CNN-LSTM are trained from
scratch. It is natural to further investigate the utiliza-
tion of state-of-the-art architectures on the collected
dataset. Here, we use VGG16 (Simonyan and Zisser-
man, 2014) pre-trained on ImageNet to extract spatial
features and then feed the extracted features to the sta-
tistical mode operator, called VGG-Mode (cf. Figure
4), and LSTM, called VGG-LSTM (cf. Figure 5). The
LSTM part here is also set the same as CNN-LSTM.
Note that the size of an input image for the pre-trained
VGG16 is set to 96× 96× 3 – not 224× 224× 3 as
used in the original VGG16 work.

3.3 Training a YOLOv5 Model for
Human Hand Recognition

In the object detection task, YOLO series (Redmon
et al., 2016; Redmon and Farhadi, 2017; Redmon
and Farhadi, 2018) play an important role in one-
stage detectors. YOLO examines an image by divid-
ing it into a grid of smaller parts and then performs
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Figure 5: VGG-LSTM for digit classification from a video.

Figure 6: Cropping only hand by using YOLOv5.

object detection on them. By inspecting the image
only once, YOLO models enable high-speed applica-
tion to real-time object detection. YOLOv5 (Jocher
et al., 2021) inherits the characteristics of the proce-
dures with more optimised speed and accuracy.

Considering that each video contains the whole
body of a signer (see Figure 6a). We design a hand
cropper as a pre-processer by implementing a hu-
man hand detector using YOLOv5. Here, we train a
YOLOv5 model from scratch. First, we obtain images
with annotations on human hands from Google Open
Images Dataset V6 comprising 22,094 training im-
ages and 2,056 validation images. Then, we train the
model for 90 epochs to reach a precision of 84.47%
and a recall of 75.73% for the validation set. The
trained model is then used for recognising the hands
of the signers in the videos.

3.3.1 Cropping Hand Method

For cropping only a hand of the signer scenario, we
provide the YOLOv5, set the default Intersection over
Union (IoU), and the confidence threshold for crop-
ping hand to 0.45 and 0.7, respectively. Examples of
hand detection are illustrated in Figure 6. We use a
0.7 confidence threshold because of high fidelity hand
motion capture at speed.

After cropping hands, we acquire 16,221 frames,
which is a nearly fourfold decrease from the original.
Then, we need to calculate the average of cropped-
hand frames because the average number of frames

for each pose changed.

average cropping =
all cropped-hand frames

number of videos
(3)

=
16,221

540
≈ 30 frames

Figure 7: (a) whole body pose (b) cropping only hand.

Next, we continually use a normalisation method
to standardise the input frames by creating dummy
files and a technique for padding image frames be-
cause the sizes of frames are reduced after the only
cropping hand process, as illustrated in Figure 7. The
conditions for creating dummy files and padding im-
age frames are as follows.

3.3.2 Padding and Resizing Images

The images are normalised to a size of 96×96 pixels
using padding, resizing, and re-shaping techniques.
On the condition that the size of the image frames is
less than 96×96 pixels, it is necessary to make white
padding on the edge of the image, as shown in Figures
8a and 8b. On the other hand, it is necessary to resize
the scale to 96× 96 pixels if the size is greater than
96×96 pixels.

Figure 8: (a) Vertical padding image, (b) Both vertical and
horizontal padding images and (c) dummy file.

3.3.3 Dummy Files and Random Images

For the dummy file and randomly selected images
condition, we must add the dummy file (white im-
age) to 30 frames provided the number of images is
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Table 2: Comparisons of Thai sign language datasets with static images.

References Words Images Mean Signers
(Chansri and Srinonchat, 2016) 16 320 20 unknown

(Pariwat and Seresangtakul, 2017) 15 75 5 5
(Nakjai and Katanyukul, 2019) 25 125 5 11

lower than 30 frames, as shown in Figure 8c. If the
number of images is higher than 30 frames, however,
we have to use the frame-down sampling technique
by randomly selecting only 30 frames sorted by the
sequence of hand pose movement to standardise the
quality of diverse frames and decrease the computa-
tional requirement.

4 EXPERIMENTS AND RESULTS

In this section, we detail the evaluation of the pro-
posed architectures for Thai sign language on the col-
lected video dataset. We use an Intel(R) Core i7, 2.9
GHz with 64 GB of RAM; all models are created us-
ing TensorFlow and Keras version 2.8.0 for all experi-
ments. Furthermore, the models are trained on a GPU
NVIDIA RTX-3090 with 24 GB memory.

In the first step of our experiment, we set up each
deep-learning model as described in Section 2. Then,
the dataset was split 6:2:2 into training, test and vali-
dation sets. Subsequently, we set the CNN parameters
as described in Table 1 and the training parameters as
described in Table 4; other hyper-parameters are set
as default in the original models. Table 5 illustrates
the evaluation performance of each model under two
scenarios: the whole body with background (denoted
by +), and the only hand-cropped (denoted by ∗). The
evaluation table comprises total parameters and train-
ing accuracy, as well as in-sample and out-of-sample
evaluation. The in-sample evaluation is the data from
the test set frames, which split data from the previous
process (540 videos from eighteen signers). The out-
of-sample evaluation is the other data (27 videos from
three signers), not the input dataset.

According to the total parameter data, the models
with LSTM use the parameters more than the mode
operator due to its algorithm and architecture’s com-
plexity. However, it can be seen that while the mode
operator uses low parameters, the training accuracy is
high at nearly 96%, higher than LSTM on the only
hand-cropped scenario. Also, the training accuracy
for the mode rises dramatically compared to LSTM
on whole body pose conditions.

Evaluation metrics for both in-sample and out-of-
sample test sets are accuracy, precision, recall, and
F1-score. From the training accuracy on each model
and focused scenario, it can be observed that higher

training accuracy results in a greater F1-score on the
in-sample evaluation. In addition, considering the
out-of-sample evaluation, the CNN-Mode∗ has the
lowest number of parameters compared to other mod-
els, but it is fairly suitable on the F1-score. However,
the VGG-LSTM∗ is the best model for Thai sign lan-
guage if we would like to get the highest performance
because the accuracy and F1-score are 81.25% and
85.21%, respectively.

5 DISCUSSION AND
CONCLUSION

This paper originally introduces a video-based Thai
signed digit language dataset and conducts extensive
experiments on various deep learning-based architec-
tures, namely CNN-Mode, VGG-Mode, CNN-LSTM
and VGG-LSTM under two different scenarios: the
whole body and the only hand-cropped. From the ex-
periment, many models may get high percentages for
training accuracy and the in-sample evaluation. How-
ever, they cannot guarantee the out-of-sample evalua-
tions (cf. CNN-Mode+ and VGG-Mode+ from Table
5). The VGG-LSTM∗ has the highest efficiency for
both in-sample and out-of-sample test sets.

In the future, we plan to collect more Thai sign
language words, both Thai fingerspelling and isolated
Thai signed language, to cover more fundamental vo-
cabularies sufficient for the communication with deaf
people. Moreover, we aim to reduce the total num-
ber of parameters in the model for easier installation
on AI embedded boards to facilitate communication
between normal-hearing people and deaf people.
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Table 3: Comparisons of Thai sign language datasets with real-time videos.

References Words Videos Mean Signers
(Chaikaew et al., 2021) 5 500 100 unknown

(Chaikaew, 2022) 15 900 60 unknown
Our Dataset 9 567 63 21

Table 4: The parameter and hyper-parameters used by each implemented model.

Model Batch size Learning rate Dropout Epochs Optimizer Early Stopping LSTM Cell
CNN-Mode+ 32 0.0001 0.2 70 Adam 5 -
VGG-Mode+ 32 0.0001 0.2 70 Adam 5 -
CNN-LSTM+ 16 0.00001 0.1 50 Adam 5 30
VGG-LSTM+ 16 0.00001 0.1 50 Adam 5 30
CNN-Mode∗ 32 0.0001 0.2 70 Adam 5 -
VGG-Mode∗ 32 0.0001 0.2 70 Adam 5 -
CNN-LSTM∗ 16 0.00001 0.1 50 Adam 5 30
VGG-LSTM∗ 16 0.00001 0.1 50 Adam 5 30

Table 5: Evaluation metrics for each implemented model.

Model Total
Parameter

Training
Accuracy

(%)

In-sample Evaluation (%) Out-sample Evaluation (%)

Accuracy Precision Recall F1
Score Accuracy Precision Recall F1

Score
CNN-Mode+ 122,377 96.53 65.22 64.71 63.27 63.98 19.25 17.12 18.5 17.78
VGG-Mode+ 15,916,945 97.24 83.59 81.08 79.79 80.43 27.25 25.3 20.2 22.46
CNN-LSTM+ 129,249 65.12 23.55 22.86 21.42 22.11 18.5 16.36 15.76 16.05
VGG-LSTM+ 15,301,657 74.81 46.48 24.96 38.88 30.4 23.25 18.66 21.42 19.94
CNN-Mode∗ 122,377 97.59 71.14 68.49 71.11 69.77 64.25 64.66 66.28 65.45
VGG-Mode∗ 15,916,945 99.83 89.81 87.8 84.81 86.27 66.72 72.22 91.66 80.78
CNN-LSTM∗ 129,249 98.45 88.58 71.71 79.52 80.59 62.5 59.79 58.57 59.17
VGG-LSTM∗ 15,301,657 99.93 93.51 94.06 93.51 93.78 81.25 89.58 81.25 85.21
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