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Abstract: Event cameras are bio-inspired vision sensors that record the dynamics of a scene while filtering out unneces-
sary data. Many classic pose estimation methods have been superseded by camera relocalization approaches
based on convolutional neural networks (CNN) and long short-term memory (LSTM) in the investigation of
simultaneous localization and mapping systems. However, and due to the usage of LSTM layer these methods
are easy to overfit and usually take a long time to converge. In this paper, we introduce a new method to
estimate the 6DOF pose of an event camera with a deep learning. Our approach starts by processing the events
and generates a set of images. It then uses two CNNs to extract relevant features from the generated images.
Those features are multiplied using the outer product at each location of the image and pooled across loca-
tions. The model ends with a regression layer which outputs the estimated position and orientation of the event
camera. Our approach has been evaluated on different datasets. The results show its superiority compared to
state-of-the-art methods.

1 INTRODUCTION

The relocalization of the camera pose, which aims
at inferring the position and the orientation of the
camera from an observed scene (Qu et al., 2022),
is a fundamental problem in many computer vision
applications, such as autonomous vehicle driving,
robotics, augmented reality, and pedestrian visual po-
sitioning. Conventional computer vision relocaliza-
tion methods can be categorized into two categories:
(1) the geometric-based and (2) the learning-based
approaches. Geometric-based approaches (Mur-Artal
and Tardós, 2017) are mainly based on local feature
matching. Their standard process consists of extract-
ing a set of local features from a given image and
performing a 2D-3D matching with corresponding 3D
points and then calculating the camera pose of six de-
grees of freedom generally using Perspective-n-Point
algorithms (Lepetit et al., 2009). This category of ap-
proaches highly relies on the accurate feature extrac-
tion and matching process, which is not always sat-
isfied, particularly in the case of illumination varia-
tions (Li et al., 2020).

More recently, with the resurgence of deep learn-
ing, notably, Convolutional Neural Networks (CNN),
many computer vision applications have been revis-
ited with data-driven approaches. The new meth-
ods achieved high performance in different tasks
such as object recognition (Eitel et al., 2015), image

classification (Mahajan et al., 2018), and segmenta-
tion (Badrinarayanan et al., 2017). Deep learning-
based approaches have shown a high ability to extract
robust features (Kendall et al., 2015), however, they
require a large amount of training data (usually thou-
sands of images) and many computational resources
(powerful and expensive GPUs). That is why ap-
proaches that do not require recomputing every time
on such extensive data might be more interesting. For
example transfer learning and integration could be
compelling alternatives to alleviate this issue.

Moreover, both conventional camera relocaliza-
tion categories of methods are still suffering from il-
lumination changes, blur, and flat images in which it
is difficult to extract features. These issues are mainly
due to the nature of the input images captured by con-
ventional cameras and fed into these methods.

Event cameras which are also known as neuro-
morphic cameras are imaging sensors that respond to
local changes in brightness. Differently from conven-
tional cameras, the raw output of these cameras is a
sequence of asynchronous events (discrete pixel-wise
changes in brightness) corresponding to changes in
the scene illumination. They have several advantages
compared to conventional cameras. They have a high
temporal resolution, extensive dynamic range, and no
motion blur. These advantages make the usage of the
event cameras ideal in the context of robotic applica-
tions, particularly pose estimation.
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Build upon these advantages, Rebecq et al. (Re-
becq et al., 2017) presented a method which combines
IMU and event information to estimate the 6DOF
camera pose. More recently, a method called (SP-
LSTM) has been proposed to estimate the 6DOF of an
event camera by (Nguyen et al., 2019). The method
uses a VGG16 achitecture (Simonyan and Zisserman,
2014) trained from scratch with stochastic gradient
descent algorithm and two stacked spatial LSTM lay-
ers. The method achieves promising results in cam-
era pose estimation, but requires an expensive training
time due to the retraining of the full network model
with the LSTM layer.

In this paper, we present a new method which al-
leviate the problems of LSTM layers. We propose a
deep learning model composed of two CNNs aimed
to extract relevant features from event images. The
extracted features are then aggregated using the outer
product at each location of the image and pooled us-
ing a bilinear pooling operation (Lin et al., 2015). We
also leverage new development made for deep learn-
ing and employ the ADAM optimizer (Kingma and
Ba, 2014) along with ELU activation function (Clev-
ert et al., 2015). We conducted experiments on differ-
ent datasets and report superior results compared to
state-of-art methods.

The rest of this paper is organized as follows. The
proposed method is presented and detailed in Sec-
tion 2. In section 3, we present extensive experimen-
tal results. Finally, we conclude this paper and discuss
future work.

2 PROPOSED METHOD

We proposed a novel attention based fully convolu-
tional neural network for pose estimation. The pro-
posed attention mechanism helps the model focus on
the motion-relevant regions in images. Given a se-
quence of events captured using an event camera, we
first process the raw event and create a set of event
images following (Nguyen et al., 2019). The image
preprocessing is presented in Section 2.1. Once the
events are converted into images shown in figure 1,
they are fed into a convolutional neural network. The
extracted features are then aggregated using bilinear
pooling (Lin et al., 2015) vector for the pose esti-
mation. The details about the model architecture are
given in Section 2.2.

2.1 Image Preprocessing

Unlike normal frame-based cameras, which capture a
whole image at a predetermined time interval, event

cameras only capture a single event at a timestamp
depending on brightness changes at a local pixel.
The initial stage in this project is to solve pose
relocalisation problem, inspired by (Nguyen et al.,
2019) (Kendall et al., 2015) (Kendall and Cipolla,
2016), first we took the event stream and transform
it to an event image I ∈ Rh∗w, where h and w are the
dimension of the event image. Formally, the event e
is a tuple represent by,

e =< et ,(ex,ey),ep >

where et is the timestamp of the event, (ex,ey) is the
pixel coordinate and ep = ±1 is the polarity that de-
notes the brightness change at the current pixel. The
event image is computed from the event stream as fol-
lows:

I(ex,ey) =

{
0 i f ep =−1
1 i f ep = 1

(1)

The second step is to enlarge the image to have
224× 224 pixel size, in accordance with the original
image’s aspect ratio and give it as input to the CNNs.
Figure 1 shows an example of event images obtained
after the preprocessing from event stream (Gallego
and Scaramuzza, 2017). The preprocessing step plays
an important role since it affects the quality of the
event images, which are used to train the CNN and
estimate the camera relocalisation.

2.2 The Network Model

In our method, we propose to extract different sets of
features from the event image. We employ two convo-
lutional neural networks denoted respectively A and B
(see Figure 2). Two feature maps are extracted from
the networks A and B which apply several pooling and
non-linear transformations to the original event im-
age. The intuition is that A and B learn different fea-
tures from the input image. Then the output of both A
and B are combined by a bilinear pooling layer. This
layer provides a powerful representation which fuses
the two sets of features by leveraging the higher-order
information captured in the form of pairwise correla-
tions between the extracted features. In our experi-
ments, we use the pretrained MobileNetV2 (Sandler
et al., 2018) model as a first feature extractor A and
a VGG16 (Simonyan and Zisserman, 2014) as a sec-
ond feature extractor B. The used MobileNetV2 and
VGG16 have already been trained on a very large col-
lection of images from ImageNet (Deng et al., 2009)
both models achieved excellent results of relocalisa-
tion and image classification challange.

Let us denote the event camera pose by y = [p,q],
where p ∈ R3 represents the three dimensional cam-
era position and the quaternion q ∈R4 codes the cam-

Fully Convolutional Neural Network for Event Camera Pose Estimation

595



Figure 1: Image preprocessing from point cloud events to event image.

Figure 2: An overview of our 6DOF pose relocalization method for event cameras . We first create an event image from
stream of events. Then we extract features from the created event image using a Bilinear pooling. Then the feature vector is
then given to a fully connected layer of seven neurons is used to regress the camera pose vector.

era orientation. In our experiments, the used CNNs
have been pretrained on the ImageNet dataset (Deng
et al., 2009) with input dimensions of 224×224×3.
Deep features are learned from the input event images
obtained from the preprocessing step. Both network
A and B outputs feature maps represented respectively
by the matrix V of dimensionality n×d, and the ma-
trix U of size m× d. Here, n and m are the number
of kernels in the output layers of the networks A and
B, respectively. The dimensionality of each filter is d;
it is obtained by flattening the 2-dimensional feature
map, i.e., the output image that has undergone several
kernel convolutions and pooling transformations. The
bilinear pooling operation is then defined as:

X =UV T ,U ∈ Rm∗d ,V ∈ Rn∗d ,X ∈ Rm∗n (2)

The connection between the CNN outputs and the
bilinear pooling is preceded by an ELU (Clevert et al.,
2015) activation function F(x). It is defined as:

F(x) =

{
x x > 0
α(ex–1) x <= 0

(3)

In order to regress the seven-dimensional pose
vector, a linear regression layer is added at the end
of the model (see Figure 2 the output layer).
Training Settings and Loss Function. In our
method, we train our model using Adam (Kingma and
Ba, 2014) optimizer (with parameters β1 = 0.9, and
β2 = 0.999) to obtain high performance by calculat-
ing the adaptive learning rate of each hyper parame-
ter, and to prevent redundancy and get faster gradient
update.
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We choose the smooth l1 loss instead of the mean
square loss function in our implementation. The
smooth l1 loss over n samples is defined as:

smoothl1(x,y) =
1
n

n

∑
i=1

zi (4)

where zi is given by :

zi =

{
0.5(xi − yi)

2/β, if |xi − yi|< β

|xi − yi|−0.5∗β, otherwise
(5)

where x and y are the ground truth and the target
camera pose vectors, respectively. β is an optional
parameter which specifies the threshold at which to
change between l1 and l2 loss. As β varies, the l1
segment of the loss has a constant slope of 1. In our
implementation we set β equals to 1.

Following Kendall et al. (Kendall et al., 2015)
work, at the test phase we normalize the quaternion
to unit length, and utilize Euclidean distance to as-
sess the difference between two quaternions. The dis-
tance should be measured in spherical space in theory,
but in reality, the deep network produces a predicted
quaternion q̂ that is close enough to the groundtruth
quaternion q. This makes the difference between the
spherical and Euclidean distance insignificant.

3 EXPERIMENTAL RESULTS

The proposed method has been evaluated on a collec-
tion of six real event data. In this section, we present
the datasets used for the method evaluation, the train-
ing environment, and the experimental results.

3.1 Dataset

We conducted experiments on the event camera
dataset that was collected by (Mueggler et al., 2017).
The dataset includes a collection of scenes captured
by a DAVIS240C from minilabs. They contain the
cloud of events, images, IMU measurements, and
camera calibration from the DAVIS. The groundtruth
camera poses are collected from a motion-capture
system with sub-millimeter precision at 200Hz. We
adopt the timestamp of the motion-capture system to
build event frames. All the events with the timestamps
between t and t + 1 of the motion-capture system is
grouped as one event image. Without using the loss of
generality, we consider the ground-truth pose of this
event image as the camera pose shot by the motion
capture system at instant t + 1. This method techni-
cally limits the speed of the event camera to the speed
of the motion capture system. We Follow the same

evaluation protocol as in (Nguyen et al., 2019). The
protocol includes two type of splits:

• The Random Split where we select 70% of the
event images for training and the remaining 30%
for testing.

• The Novel Split in which we select the first 70%
of each event for the training, then the rest 30%
of the event for the test. In this way, we have two
independent sequences on the same scene. Fol-
lowing Nguyen et al. (Nguyen et al., 2019) the
training sequence is selected from timestamp t0 to
t70, and the testing sequence is from timestamp t71
to t100).

3.2 Training Environment

Once the preprocessing stage is performed, patches of
size 224× 224 pixels are taken from each frame and
fed into the CNNs in a patch-level dataset. To eval-
uate the effectiveness of our proposed method in this
paper, we conduct several experiments and compare
our results with those of deep learning architectures
with state of the art models using LSTM. We used
Pytorch (Paszke et al., 2019) to implement the pro-
posed method. All our experiments have been con-
ducted on a platform composed of a processor In-
tel(R) Xeon(R) CPU @ 2.00GHz, a CPU memory of
size 24GB, and a single Tesla T4 GPU. The networks
have been trained with 350 epochs with a learning rate
equals to 2exp−3 with momentum-decay equals to
4exp−3 and a weight decay set to 0.

3.3 Results

We use the same protocol of comparison reported
in (Nguyen et al., 2019) and used in PoseNet (Kendall
et al., 2015) and Bayesian PoseNet (Kendall and
Cipolla, 2016). As quantitative evaluation, we choose
to calculate the median and average error of the pre-
dicted pose in position and orientation. The Euclidean
distance is used to compare the predicted position to
the groundtruth, and the anticipated orientation is nor-
malized to unit length before being compared to the
groundtruth. For location and orientation, the median
and average error are recorded in m and deg(°), re-
spectively.

3.3.1 Comparison with State-of-the-Art
Methods

we report the comparison results between our method
explained on the section 2.2 and the state of the
art models namely PoseNet(Kendall et al., 2015),
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Table 1: Comparison between our method results and the results of PoseNet (Kendall et al., 2015), Bayesian PoseNet (Kendall
and Cipolla, 2016) and SP-LSTM (Nguyen et al., 2019). The evaluation is performed using the random split protocol.

PoseNet (Kendall et al., 2015) Bayesian PoseNet (Kendall and Cipolla, 2016) SP-LSTM (Nguyen et al., 2019) Ours

Median Error Average Error Median Error Average Error Median Error Average Error Median Error Average Error

shapes rotation 0.109m, 7.388° 0.137m, 8.812° 0.142m, 9.557° 0.164m, 11.312° 0.025m, 2.256° 0.028m, 2.946° 0.018m, 1.753° 0.020m, 2.551°

shapes translation 0.238m, 6.001° 0.252m, 7.519° 0.264m, 6.235° 0.269m, 7.585° 0.035m, 2.117° 0.039m, 2.809° 0.033m, 2.211° 0.036m, 2.717°

box translation 0.193m, 6.977° 0.212m, 8.184° 0.190m, 6.636° 0.213m, 7.995° 0.036m, 2.195° 0.042m, 2.486° 0.029m, 1.507° 0.032m, 1.693°

dynamic 6dof 0.297m, 9.332° 0.298m, 11.242° 0.296m, 8.963° 0.293m, 11.069° 0.031m, 2.047° 0.036m, 2.576° 0.027m, 1.802° 0.029m, 2.394°

hdr poster 0.282m, 8.513° 0.296m, 10.919° 0.290m, 8.710° 0.308m, 11.293° 0.051m, 3.354° 0.060m, 4.220° 0.040m, 2.937° 0.051m, 3.783°

poster translation 0.266m, 6.516° 0.282m, 8.066° 0.264m, 5.459° 0.274m, 7.232° 0.036m, 2.074° 0.041m, 2.564° 0.036m, 2.045° 0.039m, 2.315°

Average 0.231m, 7.455° 0.246m, 9.124° 0.241m, 7.593° 0.254m, 9.414° 0.036m, 2.341° 0.041m, 2.934° 0,030m, 2.204° 0.034m, 2.708°

Table 2: Comparison between our method results and the results of PoseNet (Kendall et al., 2015), Bayesian PoseNet (Kendall
and Cipolla, 2016) and SP-LSTM (Nguyen et al., 2019). The evaluation is performed using the novel split protocol.

PoseNet (Kendall et al., 2015) Bayesian PoseNet (Kendall and Cipolla, 2016) SP-LSTM (Nguyen et al., 2019) Ours

Median Error Average Error Median Error Average Error Median Error Average Error Median Error Average Error

shapes rotation 0.201m, 12.499° 0.214m, 13.993° 0.164m, 12.188° 0.191m, 14.213° 0.045m, 5.017° 0.049m, 11.414° 0.050, 3.681° 0.053m, 6.823°

shapes translation 0.198m, 6.969° 0.222m, 8.866° 0.213m, 7.441° 0.228m, 10.142° 0.072m, 4.496° 0.081m, 5.336° 0.062m, 4.554° 0.068m, 5.854°

shapes 6dof 0.320m, 13.733° 0.330m, 18.801° 0.326m, 13.296° 0.329m, 18.594° 0.078m, 5.524° 0.095m, 9.532° 0.071m, 5.787° 0.091m, 7.550°

Average 0.240m, 11.067° 0.255m, 13.887° 0.234m, 10.975° 0.249m, 14.316° 0.065m, 5.012° 0.075m, 8.761° 0.061m, 3.448° 0.070m, 6.742°

Bayesian PoseNet (Kendall and Cipolla, 2016) and
SP-LSTM(Nguyen et al., 2019) using CNN and
LSTM.

3.3.2 Random Split

The results reported in this table 1 have been obtained
using the random split strategy. We use 6 sequences
(shapes rotation, box translation, shapes trans-
lation, dynamic 6dof, hdr poster, poster transla-
tion) for this experiment. In all this sequences, our
model obtains the lowest mean and average errors.
It achieves 0.030m and 2.204° in average median
error of all sequence of the real dataset while the
most recent method SP-LSTM result 0.036m, 2.341°,
PoseNet and Bayesian PoseNet results are 0.231m,
7.455° and 0.241m, 7.593°, respectively

3.3.3 Novel Split

Table 2 presents comparison results from the novel
split presented in Section 3.1. One can notice from
this table that the novel split is more difficult to handle
than the random split the errors from all methods are
bigger than errors reported with the random split. We
use three sequences from the shapes scene (shapes
rotation, shapes translation, shapes 6dof) in this
novel split. The results of our method are superior
to the results obtained with state of the art methods. It
achieves 0.061m and 3.448° in average median error
of all sequence of the real dataset while the most re-

cently method SP-LSTM result 0.065m, 5.012°, and
0.240m, 11.067° and 0.234m, 10.975° from PoseNet
and Bayesian PoseNet errors, respectively.

We recall that in the novel split, the testing set is
selected from the last 30% of the event images. This
means we do not have the “neighborhood” relation-
ship between the testing and training images. In the
random split, the testing images can be very close to
the training images since we select the images ran-
domly from the whole sequence for training/testing.

To conclude, the extensive experimental results
from both the random split and novel split setup show
that our method successfully relocalizes the event
camera pose using only the event image coming from
the cloud of polarity. The critical reason for the im-
provement is using bilinear pooling to learn the spatial
relationship features in the event image . The experi-
ments using the novel split setup also confirm that our
approach successfully encodes the scene’s geometry
during the training and generalizes well during the
testing. Furthermore, our network also has a speedy
inference time and requires only the event image as
the input to relocalize the camera pose.

4 CONCLUSION

In this paper, we introduce new method to estimate
the 6DOF pose of an event camera with a deep learn-
ing. First, the events are preprocessed to build event
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images. Then a set of features are extracted using a
deep convolutional neural network bilinear pooling.
These extracted features are aggregated and fed into
a single layer which is connected to a fully connected
layer for the pose regression. In our training, we used
the adam optimizer instead of conventional stochas-
tic gradient descent. We also used ELU activation
functions. Furthermore, our method has fast infer-
ence time and needs only the event image to relocal-
ize the camera pose. The results on publicly available
datasets show that our approach generalizes well and
outperforms recent works including LSTM based ar-
chitectures.
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