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Abstract: Human activity recognition (HAR) is utilized to automatically identify the daily-life activities of people for 
the effective management of age-related health conditions. Classical machine learning (ML) algorithms are 
used to design HAR systems, in a subject-specific or population-based configuration depending on the 
application. In this study, the performance of 8 classical and ensemble-learning-based ML classifiers has been 
studied for both HAR configurations. Inertial measurement unit (IMU) signals from 10 healthy participants, 
corresponding to various static, dynamic, and transitional daily-life activities, were acquired. Random forest 
(RF), ensemble adaptive boosting (EAB), ensemble subspace (ES), decision tree (DT), k-nearest neighbors 
(KNN), linear discriminant analysis (LDA), support vector machine (SVM), and artificial neural network 
(ANN) were used to classify these activities. The performance of the classifiers was measured in terms of 
mean classification accuracy (MCA). The results showed that, for a subject-specific HAR system, ES 
(97.78%) has achieved the highest MCA followed by RF (96.61%) and SVM (96.11%) while outperforming 
the DT, KNN, and LDA (P-value < 0.05). For a population-based HAR system, SVM (95.18%) achieved the 
highest MCA, however, no significant difference has been observed among the MCA of all the investigated 
classifiers (P-value > 0.05). Also, the class-wise comparison reveals that SVM outperformed the other 
investigated classifiers in terms of MCAs for each of the distinct activities. Based on the HAR configuration 
incorporating diverse static, dynamic, and transitional daily-life activities, the findings may be used to develop 
a customized HAR system for the effective management of movement disorders. 

1 INTRODUCTION 

According to the International Diabetes Foundation 
(IDF), the global diabetes prevalence in adults aged 
20 to 79 years old is expected to be 536.6 million in 
2021, rising to 783.2 million in 2045 (Atlas, 2015). 
Similarly, more than 10 million people worldwide are 
living with Parkinson’s disease (PD) and the 
incidence of PD increases with age (Tysnes  & 
Storstein, 2017). Such an aging population needs 
care. Smart healthcare systems seem to be a possible 
answer to the rising aging population dilemma. They 
can provide smart health services to meet the needs of 
this rising population by monitoring and analysing 
any critical health state of the elderly in their daily 
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activities. Smart healthcare systems not only allow 
older people to live autonomously, but they may also 
offer more sustainable healthcare solutions by 
reducing the strain placed on the entire health system 
by the aged and dependent persons. 

Human activity recognition (HAR) is a prominent 
research topic that can give a solution to such a 
challenge by playing an important role in healthcare, 
particularly in medical diagnosis and fitness 
monitoring. Accurate assessment of physical activity 
is therefore critical in establishing intervention 
methods, as it provides rich contextual information 
from which more important information may be 
inferred. HAR may also be used for people with a 
mental ailment or disease, such as Parkinson's 
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disease, to monitor their actions regularly and notice 
any abnormalities (Church, 2021). 

Machine learning (ML) or pattern recognition 
methods are primarily used to process signals for the 
development of HAR applications. Irrespective of the 
chosen ML method, the data is processed in two 
stages, i.e., training the ML model on the pre-
recorded dataset and then testing the trained model on 
unseen data. The HAR signal processing with ML 
methods involves data acquisition, signal pre-
processing, feature extraction, and classification. 
Each of the subsequent steps of the signal processing 
pipeline is of crucial importance to capture the 
desired information and extract patterns. Along with 
different choices for each subsequent signal 
processing step, a HAR system can be designed in 
two configurations i.e., subject-specific and 
population-based, depending on the application. In 
subject-specific HAR systems the training and testing 
data is utilized from the same subject, whereas, in 
population-based HAR systems the model is trained 
on data acquired from multiple subjects (population) 
and tested on new subjects. 

Among other parameters, the selection of the 
classifier is of utmost importance since its objective 
is to map extracted features into distinct classes. 
Various researchers have done tremendous work to 
identify the impact of each of the parameters on the 
performance of the HAR system.  Ambati et al. 2020 
conducted a comparative study for a smartphone-
based HAR system to evaluate the performance of 
different ML classifiers including naïve Bayes (NB), 
logistic regression (LR), decision tree (DT), and 
random forest (RF) using 3 different HAR datasets 
(Ambati & El-Gayar, 2020). The study reported that 
RF performed better than the rest of the utilized ML 
algorithms, however, the study did not report the 
utilized HAR configuration.  Similarly, another study 
also conducted a comparative analysis to evaluate the 
performance of different ML classifiers for mobile-

based HAR applications to recognize 6 different daily 
life activities (Min et al, 2020). 

For a subject-specific HAR system, the study 
reported that the RF algorithm outperforms the rest of 
the ML classifiers (Min et al., 2020). Another study 
compared LR, support vector machine (SVM), DT, 
and RF for a 6-class population-based HAR system 
and reported that SVM outperformed all the other ML 
classifiers by achieving a validation accuracy of 
96.57% (Muralidharan et al., 2021). Logacjov et al. 
(2021) presented a body-worn sensors-based HAR 
dataset from 22 participants (Logacjov et al., 2021). 
For a population-based HAR system with leave-one-
out validation the performance of k-nearest neighbors 
(KNN), SVM, RF, and XGBoost (XGB) was 
compared. The results demonstrated that SVM 
outperformed the rest of the algorithms with an F1 
score of 0.81±0.18. Baldominos et al. (2019) 
performed a comparative analysis of ML techniques 
for a mobile phone-based HAR system (Baldominos 
et al., 2019). The data were recorded from 10 healthy 
participants for 13 daily life activities and the 
performance of ensemble trees (ET), NB, KNN, LR, 
artificial neural network (ANN), and RF was 
compared for a population-based HAR system. The 
results demonstrate that ET outperformed the rest of 
the ML algorithms by achieving an accuracy of 
94.87%. Another study was conducted by Attal et al. 
(2015) from a dataset of 6 healthy subjects for 12 
different HAR activities (Attal et al., 2015). For a 
subject-specific HAR system KNN, SVM, and RF 
classifiers were used to classify different HAR 
activities. The results report that KNN outperforms 
the rest of the algorithm with an accuracy of 96.53 ± 
0.2. Vijayvargiya et al. (2021) compared the 
performance of KNN, LDA, bagging classifier 
(BagC), boosting classifier (BosC), DT, RF, and 
SVM for population-based HAR system by 
concluding that RF yields the best results with an 
accuracy of 92.71% (Vijayvargiya et al., 2021).  

Table 1: Daily life activities performed by each participant. 

ID Activity type Activity Description 

1 

Dynamic 

Walk normal (WN) Walking and turning at normal speed on a flat surface.
2 

Walk dual task (WD) 
Walking and turning at normal speed while carrying a 
tray and having glasses.

3 Walk slow (WS) Walking and turning at a slow speed on a flat surface.
4 Walk fast (WF) Walking and turning at a fast speed on a flat surface.
5 Stairs descending (SD) Descending the stairs.
6 Stairs ascending (SA) Ascending the stairs.
7 

Transitional 
Walk and sit (WSit) Walking towards the chair, sitting, and standing up.

8 Walk and lay down (WLay) Walking towards the bed, laying down, and standing up.
9 

Static 
Sitting on a chair (Sit) Sitting on a chair.

10 Laying on a bed (Lay) Laying on a bed.
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Although various researchers have done great 
work to identify the best ML algorithm for the 
development of HAR applications by conducting 
both subject-specific and population-based studies. 
However, there is no consensus about which ML 
algorithm is best suitable for both HAR 
configurations and there is a lack of simultaneous 
comparison of both configurations for the data 
recorded from the same population. For 
generalization, we hypothesize that it is important to 
compare different ML algorithms on the same 
population (subjects) for both HAR configurations 
due to the data-driven nature of the ML algorithms. 
Secondly, statistical significance and class-wise 
performance should also be taken into consideration 
while evaluating the performance of the algorithms. 
Finally, the performance of the ensemble learning-
based ML classifiers should also be investigated 
along with classical ML classifiers. 

Thus, this study aims to identify, among many 
available ML algorithms, which is best suited to HAR 
applications for both configurations (subject-specific 
and population-based). Furthermore, to statistically 
validate the results a one-way analysis of variance 
(ANOVA) test was also conducted. 

2 METHODOLOGY 

2.1 Dataset 

The experiment was conducted on ten healthy 
subjects (one female and nine males; average age 
(years) = 26.6±1.7; average height (cm) = 174.0±5.9; 
average weight (kg) = 69.6±6.3) without having any 
gait or movement disorders. Before recording the 
data, the participants were informed about the 
experimental protocol and they were instructed to 
follow their natural pattern of daily-life activities. The 
experimental protocol consisted of ten different static, 
dynamic and transitional activities as described in 
table 1. All the participants completed the designed 
daily-life activities in a lab environment (Laboratory 
of Movement Analysis (LAM-Motion Lab), 
University of Liège, Liège, Belgium) by following a 
structured experimental protocol. For each daily-life 
activity, the subjects performed 5 repetitions.  

An existing IMU-based hardware system was 
used to record the movement signals (Boutaayamou 
et al., 2019). Four customized wired-IMU sensors 
were placed on the left heel, right heel, left wrist, and 
lower back. To minimize the movement of IMU 
sensors all sensors were tightly attached to the body. 
Each IMU sensor (2 cm × 0.7 cm × 0.5 cm) with a 

sampling frequency of 200 Hz was equipped with a 
three-axis accelerometer (range: ±16 g) and a three-
axis gyroscope (range: 2000 degrees/second). All the 
IMU sensors, through wires, were connected to an 
integrated system comprised of a system-integrated 
memory, a microcontroller, and a battery. Once the 
data is recorded, all the data were transferred to a 
computer for further processing and analysis. 
MATLAB 2022a has been used to process and 
generate the results. 

2.2 Pre-Processing 

Most of the spectral power of human body 
movements is concentrated between 0 to 20 Hz 
(Wohlfahrt, 2012). Furthermore, the signals recorded 
by accelerometers are a combination of acceleration 
due to the movement of the body, acceleration due to 
gravity, the noise which is intrinsic to the 
measurement system, and motion artifacts. Only the 
acceleration signals (body acceleration and gravity 
acceleration) are required for the analysis in most of 
the applications, whereas other components are 
regarded as unwanted noise (Awais, 2018). 
Depending on the application and types of noise 
embedded in the original signals various digital filters 
can be utilized to minimize the effects of unwanted 
noise. For HAR applications both acceleration signals 
are quite useful thus it is only desired to separate any 
spectral content beyond the spectral range of human 
body movements. In this study, a third-order 
Butterworth lowpass filter with a cut-off frequency of 
20 Hz was applied to the acquired signals to remove 
the unwanted frequency components. Figure 1 depicts 
the raw and filtered signal both in the time and 
frequency domains. It can be observed that with the 
application of the applied digital filter the frequencies 
above 20 Hz have been discarded. 

2.3 Segmentation/Windowing 

The sensors attached to the body supply a continuous 
stream of signals acquired from the human body. To 
analyse and process them, these signals are 
segmented into segments of finite length. Primarily 
disjoint and overlap windowing/segmentation 
techniques are utilized to make segments of the 
signals under consideration. Before segmentation, it 
is important to consider the variable durations of 
different human body movements. For example, 
transitional activities (e.g., sit-to-stand) are 
completed in less time as compared to static (e.g., 
standing) or dynamic activities (e.g., walking). 
Intuitively, smaller segments or window sizes capture  
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Figure 1: The raw and filtered acceleration signal in the time and frequency domain. The upper graph shows the acceleration 
signal in the time domain, the lower graph shows the frequency spectrum of the raw signal. 

Table 2: ML classifiers and the training parameters. 

Classifier Training parameters 

Random forest (RF) 
Number of decision splits = 942 
Number of learning cycles = 30

Ensemble adaptive boosting (EAB) 
Number of decision splits = 20 
Number of learning cycles = 30 
Learning rate = 0.1

Ensemble subspace (ES) 
Learner = Discriminant  analysis 
Number of learning cycles = 30

Decision tree (DT) Number of decision splits = 100
K-nearest neighbors (KNN) Number of nearest neighbors = 1

Linear discriminant analysis (LDA) 
Discriminant type = linear 
Amount of regularization = 0

Support vector machine (SVM) 
Box constraint = 1 
Kernel function = linear

Artificial neural networks (ANN) 
Hidden layers = 18 
Training function = scaled conjugate gradient 

 
the underlying patterns of transitional activities while 
missing the information necessary to capture the 
patterns of dynamic and static activities. Similarly, 
longer window sizes provide better results for static 
and dynamic activities and perform poorly for 
transitional activities since the longer window sizes 
overlap the important information of transitional 
activities also these windows are very prone to noise. 
Furthermore, longer windows require more 
computational power as compared to smaller window 
sizes. Yamansavaşçılar & Güvensan (2016) 
suggested that, for HAR activities, a window size of 

more than 6 s is sufficient to capture the underlying 
patterns of the movements (Yamansavaşçılar & 
Güvensan, 2016). Thus, in this study, an overlap 
windowing technique with a window size of 6 s and 
an overlap size of 60% has been employed. 

2.4 Feature Extraction 

After the signals have been segmented, they must be 
transformed into feature space. The goal of the feature 
space is to minimize the dimensionality of the 
original data and extract the descriptive hidden 
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underlying information of movement patterns, 
making it easier to map the complicated data into 
predetermined categories. The collected features 
should have enough data to train the machine learning 
algorithms. Various temporal, frequency, and time-
frequency domain features have been reported to 
enhance the efficacy of a HAR system (Rosati et al., 
2018). In this study, the investigated features are: 
mean, root mean square, autocorrelation features for 
all three axis components (height of the main peak; 
height and position of the second peak), spectral peak 
features (height and position of the first 6 peaks), 
spectral power features (total power in 3 adjacent and 
pre-defined frequency bands of 1.5, 5, and 10 Hz) and 
signal magnitude area. 

2.5 Classification 

The feature space is utilized as an input to the 
classifier after extracting relevant information from 
the segments. The classifier creates the final 
mappings from the characteristics associated with 
each class. To classify daily-life activities for various 
HAR applications, multiple ML classifiers such as 
NB, DT, RF, SVM, LDA, KNN, and ANN are often 
employed. The performance of several ML 
algorithms (classical and ensemble-learning-based) 
has been evaluated, as the goal of this work is to 
determine the most suited ML classifier for subject-
specific and population-based HAR systems. Table 2 
describes the explored ML algorithms as well as the 
training parameter choices.  

In subject-specific HAR configuration, 70% of 
the data from each subject was randomly selected to 
train the classifier, and the remaining 30% of the data 
was utilized to assess the trained classifier's 
performance. A leave-one-out validation technique, 
on the other hand, has been used for a population-
based HAR system. The data from nine participants 
were initially concatenated and fed into the classifier 
for training, then the data from the last subject was 
utilized to evaluate the developed ML model. The 
technique continued until all of the participants, one 
by one, were tested. To assess the performance of 
each classifier, the classification accuracy (CA) has 
been calculated based on the actual and predicted 
results. CA is a percentage that is calculated by 
dividing the proportion of accurate predictions by all 
possible predictions and multiplying the result by 
100. To further validate the results, statistical analysis 
has been undertaken by using ANOVA with Tuckey’s 
honest post-hoc test to reject the null hypothesis by 
considering a P-value of 0.05 significant.  

3 RESULTS 

3.1 Subject-Specific HAR System 

Table 3 presents the CAs for all subjects 
corresponding to each investigated classifier. The 
cells with bold syntax represent the highest achieved 
testing accuracy for each subject. For all the subjects 
RF, EAB, ES, and SVM obtained more than 90% CA. 
The results indicate that ES achieved the highest 
accuracies for most of the subjects (nine subjects) 
followed by RF (one subject). Although ES has 
obtained the highest CAs for most of the subjects the 
RF, EAB, and SVM have also achieved comparable 
results. 

Mean classification accuracy (MCA) was 
calculated by averaging the CA for all subjects 
corresponding to each investigated classifier. MCA 
for all subjects showed that ES has achieved the 
highest MCA of 97.78% followed by RF (96.61%) 
and SVM (96.11%). Furthermore, statistical 
analysis revealed that ES has outperformed the DT, 
KNN, and LDA (P-value < 0.05). However, no 
significant difference in MCA of ES, RF, EAB, 
SVM, and ANN has been observed (P-value > 0.05). 
It can be observed that DT, LDA, KNN, and ANN 
performed poorly for SD, SA, WSit, and WLay 
activities. Furthermore, although ES, RF, SVM, and 
EAB have no statistically significant difference in 
MCAs, however, still ES is the only classifier 
obtaining more than 90% accuracy for all the 
individual activities. Despite having no statistically 
significant difference in MCA of ES, RF, EAB, 
SVM, and ANN (P-value > 0.05), ES has resulted in 
higher CAs for all the classes. 

3.2 Population-Based HAR System 

In the population-based HAR system, the ML 
classifiers were trained on data combined from nine 
subjects and tested on the data from the remaining 
subject. Table 4 presents the CAs for the population-
based HAR system corresponding to each testing 
subject. The highest CAs for individual testing 
subjects have been attained by SVM (three testing 
subjects), ES (three testing subjects), and RF (two 
testing subjects).  

All the classifiers attained more than 90% 
accuracy corresponding to at least one of the 
investigated classifiers except one testing subject 
(TSID = 8). According to statistical analysis, SVM 
and DT obtained maximum and minimum MCAs 
 of  95.18%  and 86.33%,  respectively.  However,  no 
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Table 3: CA (%) for all the subjects corresponding to each investigated ML classifier for a subject-specific HAR system. The 
first column represents the subject ID (SID). The cells highlighted in bold represent the classifier with the highest CA for 
each subject. 

SID RF EAB ES DT KNN LDA SVM ANN
1 98,3 96,0 98,7 94,0 94,4 98,0 96,0 91,7
2 97,9 97,5 97,9 93,6 94,0 93,6 97,2 97,9
3 97,9 95,4 98,7 92,4 91,6 94,1 97,0 96,6
4 95,3 95,3 97,2 88,1 91,3 91,7 96,0 94,9
5 96,1 96,1 97,2 89,0 91,5 92,9 95,8 94,3
6 95,7 94,5 97,9 86,0 94,9 88,9 96,2 93,2
7 96,9 96,9 97,3 93,9 92,9 95,9 96,9 96,6
8 94,8 93,1 97,0 86,6 86,6 77,9 92,2 88,7
9 99,3 96,0 98,9 93,8 95,2 98,5 97,1 97,1
10 93,8 93,4 97,1 91,8 94,7 93,0 96,7 95,1

Mean ± Std 96,6 ± 1,7 95,4 ± 1,3 97,8 ± 0,7 90,9 ± 3,0 92,7 ± 2,5 92,5 ± 5,6 96,1 ± 1,4 94,6 ± 2,7

 
significant difference in the MCA of all the evaluated 
classifiers for the population-based HAR system was 
identified (P-value > 0.05). SVM and DT resulted in 
the best and worst class-wise performance results, 
respectively. All the investigated classifiers are 
performing poorly in at least one of the classes, 
except SVM. Regardless of the testing subject data or 
signal class, SVM was able to classify all classes with 
substantially greater accuracy. 

4 DISCUSSION 

The study aimed to investigate the performance of 
classical and ensemble learning based on different 
ML classifiers to design subject-specific and 
population-based HAR systems. Both HAR 
configurations were designed based on IMU data 
recorded from 10 healthy volunteers. The data was 
comprised of various static, dynamic and transitional 
daily-life activities. For the first time, we explored the 
efficacy of ensemble-learning-based ML classifiers 
for both HAR configurations and compared the 
performance with classical ML classifiers. 

The findings for the subject-specific HAR system 
demonstrated that ES has obtained the highest MCA 
of 97.78% while outperforming the rest of 
investigated ML classifiers. Statistical investigation 
revealed no significant difference in the performance 
of ES, RF, EAB, SVM, and ANN (P-value > 0.05). 
Most of the literature, regarding the selection of a 
classifier for a subject-specific HAR system, suggests 
that RF, KNN, and SVM are the best suitable ML 
classifiers (Attal et al., 2015; Logacjov et al., 2021; 
Min et al, 2020; Muralidharan et al., 2021). Our 
findings are consistent with past research in this area, 
suggesting that RF delivers higher performance 
results. However, the results showed that ES 

outperforms RF in terms of MCA. ES has not only 
outperformed the other classifiers in terms of MCA 
but also, achieved higher classification rates in terms 
of class-wise MCA. The average class-wise CA for 
all the investigated classifiers showed that only ES 
has achieved more than 90% MCA for all the 
individual classes. Intuitively, it is difficult for any 
HAR system to differentiate among transitional 
activities since the underlying patterns of the 
movement signals are so similar. For example, the 
WSit class incorporates both walking and sitting, 
which is similar to the classes that require both 
walking and sitting. Because of this resemblance, it is 
difficult to distinguish transitory activities from the 
rest of the activities. Except for ES, all of the tested 
classifiers resulted in decreased MCA for transitional 
activities (SD, SA, WSit, and WLay). Based on these 
findings, it can be concluded that in a subject-specific 
HAR system, ES delivers the best classification 
results in a subject-specific HAR system. 

SVM resulted in the highest MCA for a 
population-based HAR system with an overall MCA 
of 95.18%. Statistical analysis has revealed that there 
is no significant difference in MCAs of all the 
investigated classifiers (P-value < 0.05). Previous 
literature on population-based HAR systems also 
indicates that SVM and RF are the best ML classifiers 
in terms of MCA (Baldominos et al., 2019; 
Logacjovet al., 2021; Muralidharan et al., 2021; 
Vijayvargiya et al., 2021). However, overall MCA is 
not the only indicator of the performance measure 
since it does not provide any insight into class-wise 
performance. Although SVM, LDA, ES, and RF have 
comparable performance in terms of MCA, however, 
the class-wise performance of these classifiers is 
vastly different. From figure 3 it is evident that RF, 
ES, and LDA are performing very poorly in 
transitional and dynamic activities. Conversely, SVM 
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Table 4: CA (%) for all the subjects corresponding to each investigated ML classifier for a population-based HAR system. 
The first column represents the testing subject ID (TSID). The cells highlighted in bold represent the classifier with the highest 
CA for each subject. 

TSID RF EAB ES DT KNN LDA SVM ANN
1 94,4 87,1 94,4 85,1 93,1 94,7 99,0 94,4
2 95,0 95,4 95,7 92,9 86,9 94,3 95,0 93,6
3 95,0 94,1 98,7 91,2 85,3 98,3 98,3 95,8
4 95,2 94,0 96,8 88,1 92,5 95,2 98,0 98,8 
5 96,2 94,1 95,5 92,0 86,0 94,1 97,2 96,9
6 93,6 87,1 94,0 84,1 82,8 92,7 93,6 92,7
7 92,2 75,7 81,8 71,3 84,5 79,1 95,3 80,4
8 75,3 77,1 83,5 69,7 86,6 89,2 80,5 80,5
9 98,2 93,8 97,5 93,5 86,2 92,0 95,6 85,5
10 100,0 97,5 99,2 95,5 88,9 99,6 99,2 98,8

Mean ± Std 93,5 ± 6,4 89,6 ± 7,3 93,7 ± 5,8 86,3 ± 8,6 87,3 ± 3,1 92,9 ± 5,4 95,2 ± 5,2 91,7 ± 6,7

 
is obtaining consistent MCA for static, dynamic, and 
transitional activities. Except for SVM, all the other 
investigated classifiers yielded a high 
misclassification rate for at least one of the activities. 
For example, ANN and LDA resulted in high MCA 
for all the activities, however, both classifiers 
misclassified WN activity with WS and/or WF. From 
these findings, it can be concluded that for a 
population-based HAR system, SVM provides better 
classification results in terms of overall and class-
wise MCA. 

While comparing the two configurations, it was 
discovered that the performance of the ML classifiers 
varies dramatically. Figure 4 illustrates the MCA for 
all classifiers examined in both configurations. 
Switching from a subject-specific HAR system to a 
population-based HAR system reduces the MCA for 
all ML classifiers except LDA. Although it is a well-
known fact that ML algorithms perform better when 
trained on big datasets, a drop in accuracy has been 
reported for a population-based HAR system. One 
possible reason for this phenomenon is the increased 
variance of the dataset owing to the inclusion of data 
from various subjects. Since every human has 
different movement patterns, it is challenging for the 
ML algorithm to capture the between-subject 
variation for any daily-life activity. Despite the higher 
between-subject variation, LDA and SVM performed 
consistently in terms of MCA for all subjects for both 
configurations. The difference between subject-
specific and population-based HAR systems is quite 
small in both circumstances. Further research should 
be done to determine how the number of individuals 
affects the performance of a population-based HAR 
system.  

Despite the results providing a basic 
understanding of the choice of ML classifier to design 
a HAR system with subject-specific and population-

based configuration, the limitations of the study are: 
(1) the utilized dataset should be increased further by 
including more number of subjects, (2) number of 
daily-life activities, more specifically, complex daily-
life activities should also be considered in future, (3) 
since the dataset has been recorded in a controlled 
environment thus the unstructured and uncontrolled 
daily-life activities may induce a higher variability in 
the results. 

5 CONCLUSIONS 

The study presented the comparison of classical and 
ensemble learning-based ML classifiers to design 
subject-specific and population-based HAR systems 
to classify diverse daily-life activities. The movement 
data were acquired using custom-designed IMU 
sensors from ten healthy participants for different 
static, dynamic and transitional activities. The results 
demonstrated that, for both subject-specific and 
population-based HAR systems, ES and SVM are the 
best ML classifiers in terms of overall MCA and 
class-wise performance. For the subject-specific 
HAR system, the results demonstrated that ES 
outperforms RF and all other investigated classifiers 
by obtaining higher overall and class-wise MCA. The 
ES and SVM-based proposed HAR systems can be 
used to recognize intricate daily-life activities for the 
development of a smart healthcare system. 
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