
SHOID: A Secure Herd of IoT Devices Firmware Update Protocol

Frédéric Ruellé a, Quentin Guellaën b and Arnaud Rosay c

STMicroelectronics, 11 Rue Pierre Félix Delarue, Le Mans, France

Keywords: Group of IoT Devices, Secure Firmware Update, Secure Group Communication, Device Management.

Abstract: The Internet Of Things (IoT) movement puts more and more objects on the field, which raises critical pro-
blems related to device management and security, especially for resource-constrained nodes. In this paper, we
propose a method for the devices to create self-organized groups autonomously. We demonstrate how we can
leverage this group concept to improve the robustness of a key device management procedure: the over-the-air
firmware update. Experiments have been conducted with micro-controller based objects addressing a typical
smart sensor use-case. Finally, ways of improvements arise and further study items are identified.

1 INTRODUCTION

Internet Of Things (IoT) is a major trend we can ob-
serve in almost all business areas. Bringing internet
connectivity to all sorts of traditional devices is rad-
ically changing the way the internet is accessed and
the way devices can be used. All these new connected
objects can exchange data and commands with remote
servers, also known as the cloud. As data exchanges
are not always initiated by an explicit user request,
security becomes a critical topic for the IoT. Hack-
ers can access such devices remotely to steal data,
use them as botnets to conduct other attacks like Dis-
tributed Denial Of Service attack, or misuse them in
various manners. The Mirai botnet is an example of
such attacks, and highlights the difficulty to thwart
them without appropriate procedures (Kambourakis
et al., 2017). Moreover, the number of attacks on IoT
devices is increasing (Demeter et al., 2019). There-
fore, IoT security is now a major topic that is also
dealt with by laws (Kelly, 2020; European Commis-
sion, 2022). Professionals do insist on the critical im-
portance of one procedure to secure IoT: the firmware
update (Adams, 2021). So, many security companies
and academics address this topic (ProvenRUN, 2022;
K.Zandberg et al., 2019).

In addition to this security aspect, we observe
the deployment of large fleets of resource-constrained
devices in the area of smart lighting, smart build-
ing, smart cities, smart industries, and smart health-

a https://orcid.org/0000-0002-4593-5032
b https://orcid.org/0000-0002-0372-072X
c https://orcid.org/0000-0001-5937-5331

care. Smart sensors have been defined some time ago
(B.F. Spencer et al., 2004), but the domain evolves
(Gervais-Ducouret, 2011). Nevertheless, the require-
ments for this class of devices are still the same: low
production cost, battery powered device operating for
years with low maintenance costs, limited data com-
munication rates. These economical constraints in-
duce strong technical constraints: limited memory
and computing capacity, necessity to operate in low
power modes with reduced data volumes. These re-
quirements are key to deploy such sensors, and leve-
rage all the benefits they bring: improved reactivity
to real-time events, cost-efficient infrastructures mon-
itoring and administration. Last but not least, due to
the criticity of the envisioned applications, security is
key, but must come at the lowest possible cost.

As the smart sensors of a same fleet share similar
characteristics and run the same use-cases, we leve-
rage these commonalities to improve the security of
a group of devices by defining a synchronized secure
firmware update procedure. Hence, we create a Se-
cure Herd Of IoT Devices (SHOID), bringing extra
security, but still meeting the economical and techni-
cal requirements listed above.

Our contribution applies to fleets of homogeneous
objects sharing the same hardware, firmware and ex-
changing data with a same cloud infrastructure. We
focus on the firmware distribution and validation by
the devices. First, we review some existing tech-
niques to create a secure group of IoT devices, and
provide a secure firmware update service. Secondly,
we propose an approach to group automatically and
autonomously IoT nodes on the field, and make the

Ruellé, F., Guellaën, Q. and Rosay, A.
SHOID: A Secure Herd of IoT Devices Firmware Update Protocol.
DOI: 10.5220/0011628000003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 373-380
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

373



firmware update more secure. Thirdly, we describe
the experimentation we conducted to validate these
concepts.

2 RELATED WORK

Securing IoT nodes is a well-known challenge and
many contributions propose some ways of doing it.
The most common measures, fully relying on the de-
vice hardware, are: disk encryption, cryptoproces-
sor, signed boot and encrypted boot (Johnston et al.,
2016). Our objective is to explore other solutions
based on device cooperation instead of working at sin-
gle device level.

2.1 Offload Security Measures to Edge
Nodes

IoT nodes security can be addressed by delegating
the security measures to some trusted network ele-
ments (Kuusijärvi et al., 2016). This approach con-
centrates the countermeasures in one place, and it be-
comes easy to upgrade these security functions. Ne-
vertheless, this adds extra nodes in the system. Be-
sides, the trusted Network Edge Device acts as an IoT
gateway or supervises an IoT gateway. This requires
significant computing power as the proposal is to use
virtualized security functions. Deploying such power-
ful edge nodes does not meet some economical con-
straints.

Security measures can be offloaded to edge nodes
with some Mobile Edge Computing nodes cooperat-
ing to share their defense resources and relax the bud-
get constraints in each device (Li et al., 2021). But
this requires extra components like the Cooperative
Defense Orchestrator and complex scheduling algo-
rithms. This approach, though lowering the cost per
node, introduces specific elements and complexity.

2.2 Group Cryptographic Keys

Using groups is a common practice in the IoT as
this enables convenient communication patterns like
broadcast and multicast. Securing group communi-
cations, for instance to maintain the confidentiality of
the exchanges, is key: encryption and hash algorithms
bring confidentiality and integrity (Vinayaga Sun-
daram et al., 2015). To do so, cryptographic group
keys are required.

A set of IoT nodes can agree on a group key (Ge-
bremichael et al., 2018). This method requires a gate-
way collecting some secret numbers provided by the

nodes joining the group. A benefit is that most of the
complex operations are computed by the gateway, not
the IoT devices. Nevertheless, this approach requires
a dedicated functionality in a gateway and a secure
communication channel between the gateway and the
nodes. Besides, at device level, even when using
some precomputed inputs from the gateway, the Ellip-
tic Curve Point Multiplication is required. The Ellip-
tic Curve Cryptography (ECC) induces performance
overheads in terms of time, memory, and bandwidth
penalty for authentication and encryption/decryption
in Wireless Sensor Network applications (Shah et al.,
2010).

An alternative to ECC is Advanced Encryption
Standard (AES) Galois Counter Mode (GCM), which
is suitable for IoT applications (Sung et al., 2018).
AES is lighter than ECC (Mota et al., 2017). Another
approach consists in using the block chain technol-
ogy (Chen et al., 2021). Block chain is distributed
and secure but involves additional infrastructure on
top of the IoT network. Multicast techniques can
also be used with symmetric keys, but specific actors
like Network Multicast Managers can lead to a single
point of failure issue as all elements do not play the
same role (Carlier et al., 2018).

2.3 Managing Groups of Devices

Various methods exist to handle groups of objects
from a communication and device management per-
spectives. Studies of secure IoT group communica-
tion state of the art are available, with a special focus
on commercial smart lighting (Park et al., 2019).

One can group devices by assigning a specific role
to one particular device (Park et al., 2018).

2.4 Firmware Update Methods

The secure firmware update of an IoT device is the
number one requirement to enhance IoT security.
A distributed firmware update architecture based on
the blockchain provides the following benefits: de-
centralization, transparency, irreversibility (Choi and
Lee, 2020). This solution implies the creation of
various blockchain nodes with specific roles. An-
other blockchain based firmware update solution can
use concepts like smart contracts, and gateways as
block-chain clients (Tsai et al., 2020). The Ethereum
blockchain platform can also be leveraged (Choi and
Lee, 2020). These methods induce costs, and may
require distribution incentives (Fukuda and Omote,
2021).

Studies depicting the landscape of firmware up-
date solutions for IoT devices insist on the importance

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

374



of designing a comprehensive approach to ensure the
integrity and an efficient management of the updating
process (J.L.Hernández-Ramos et al., 2020). Another
survey of the firmware update landscape provides a
prototype based on a client-server approach and lists
its challenges and the possible attacks (K.Zandberg
et al., 2019). This architecture from the Software
Updates for Internet of Things working group is de-
ployed by major cloud providers like Microsoft or
Amazon. Our contribution concerns this architecture.

2.5 Attacks

Many attacks against the firmware update procedure
exist: tampered firmware, firmware replay, offline de-
vice attack, firmware mismatch, flash memory loca-
tion mismatch, unexpected precursor image, reverse
engineering, resource exhaustion (K.Zandberg et al.,
2019).

The main silicon vendors provide device-level so-
lutions to implement a secure firmware update. They
usually offer software packages leveraging the hard-
ware capabilities of the microcontrollers (NXP, 2020;
STMicroelectronics, 2021b), so that low-end smart
sensors cannot be cloned at a reasonable cost.

Nevertheless, these techniques are not sufficient
when it comes to offline device attacks, denial of
service attacks, or even tampered firmware injection.
The dimension we leverage is the group, as we target
fleets of devices sharing similar hardware and soft-
ware capabilities, producing and processing similar
sets of data. This group concept is the starting point of
our contribution, enabling the definition of the secure
synchronized firmware update procedure.

3 FIRMWARE UPDATE FOR
DEVICE GROUPS

The IoT implies security challenges concerning the
device communication and the device management.
These challenges are particularly complex when it
comes to resource-constrained devices such as smart
sensors. We define a method for these devices to agree
on a common cryptographic key, without using com-
plex operations and specific infrastructures or dedi-
cated provisioning mechanisms. This cryptographic
key is the root of trust to define a protocol allow-
ing the devices to group themselves autonomously,
constituting self-organized groups of IoT nodes. The
synchronized firmware update leverages these groups,
enhancing the security of this key procedure in the
context defined below.

3.1 System Security Perimeter

Our primary target is to increase the security level of
a group of connected devices by making the firmware
update procedure more secure. We focus on logical
attacks exploiting the communication capabilities of
the IoT nodes. Still, a certain level of resistance to
physical attacks is required to prevent the leakage of
critical security assets from the devices. We use the
fortified solutions presented in 2.5 to secure the sys-
tem assets against electronic board level attacks. We
consider that the IoT nodes groups operate in multi-
cast networking, like in a smart-building context (Li
et al., 2013).

3.2 Group Key Creation

The devices to be grouped are homogeneous, imply-
ing that they come from the same vendor and run the
same firmware version. This assumption can be re-
laxed by authorizing devices from various vendors, as
long as they share enough commonalities evolving in
a consistent and synchronized manner. Indeed, the
group key creation mechanism relies on two assets:
a secret cryptographic key, and a firmware image or
a data image characterizing a set of devices. The se-
cret cryptographic key can be an Original Equipment
Manufacturer (OEM) key, provisioned for the needs
of device-level secure boot and secure firmware up-
date solutions (STMicroelectronics, 2021b). This key
ensures the confidentiality, authenticity and integrity
of the firmware images. It brings, by definition, a
common secret shared by all similar devices. This se-
crecy is a primary security property while the appli-
cation’s firmware image is a source of diversity. By
combining these two elements, we obtain an updat-
able common secret for the devices sharing these ar-
tifacts. Should an attacker purchase a same product
model, still he has no guarantee that the product has
been provisioned with the same OEM key and that it
contains the exact same firmware image and data. So,
we have both a strong secret, already provisioned for
the purpose of the secure boot, and some variability,
the firmware image, which brings a commonality be-
tween all the sensors of a same type. A secret key is
derived from these elements. This key is common to
a group of objects and evolves over the devices’ life-
time. No further provisioning is required, but we need
an algorithm processing these elements without requi-
ring too much computing power. The use of Hash and
Key Derivation Functions meets this objective.

All devices configured with the same OEM key
and the same firmware image obtain the same secret
key to protect their communications. It gives a ba-

SHOID: A Secure Herd of IoT Devices Firmware Update Protocol

375



sis to set up a group of IoT nodes communicating in
a secure manner. The devices must have the same
firmware image, but personalization is possible by
keeping out of the hash perimeter some specific mem-
ory sections.

3.3 Group Creation Protocol

Our contribution groups devices of a same kind, so
that they can cooperate to improve the security of
the group. Devices sharing a same OEM key and a
same firmware image compute a common secret key.
Besides, we use symmetric cryptography for perfor-
mances reasons. In this area, Authenticated Encryp-
tion with Associated Data algorithms combine au-
thentication and encryption to ensure source authen-
tication, as well as data integrity, in addition to con-
fidentiality. These techniques are interesting (Bellare
and Namprempre, 2000), and AES GCM is an effi-
cient solution for Cortex-M based devices (Driscoll,
2018; Koteshwara et al., 2019; Sovyn et al., 2020).
It generates two outputs: an encrypted version of the
data it processes, and a tag allowing to authenticate
this data. These properties ensure the confidentiality,
authenticity and integrity of the messages exchanged
between the IoT nodes sharing the same secret key.

This secret key is used to select the IoT devices
that can join a same group, without defining this
group a priori, and without any node playing a spe-
cific role. Devices deployed on the field create groups
autonomously. This self organizing network of IoT
nodes requires a common channel that devices use to
discover each other. This channel can be a multicast
channel to restrict the considered perimeter to a given
area. The way to define it depends on the deployment
model selected for the system. Several groups can use
the same common channel if they have different secret
keys. A common channel can be defined for a build-
ing or a district. Let’s take the example of a smart
building: all devices deployed in the building share
the same common channel. But, the connected ther-
mostats have a secret key while the smart light bulbs
share another secret key. Hence, autonomously, the
devices group themselves, and each time a new device
is commissioned it joins the proper group automati-
cally, without any supervisor overseeing the system.

The protocol to do so is a set of messages made of
two parts: a non-encrypted header (plain text) provid-
ing all the information required to use the payload,
and an encrypted and authenticated payload. AES
GCM may also use the clear header as Additional
Authenticated Data, so that the entire message is au-
thenticated. The encrypted payload carries the sen-
sitive information: the identifiers of the sender and

receiver of the message, a sequence number against
replay attacks, the value of the message and a signa-
ture to authenticate the sender. On message reception,
the device uses the clear header and the secret key to
perform the AES GCM decryption and the authenti-
cation tag verification. When processing the payload,
another level of verification is performed thanks to the
signature, to make sure the sender has not been imper-
sonated.

The group creation and update relies on two mes-
sages. On one hand, a HELLO message is sent by
a newcomer on the common channel. This message
indicates that the device is active and ready to re-
ceive notifications from group members. On the other
hand, the members of the group send a HELLO RE-
SPONSE message to the newcomer so he can dis-
cover them. As these messages are encrypted, only
the devices with the appropriate secret key can un-
derstand them. This is how the group is built and
maintained over time. These messages carry informa-
tion about their sender: its identifier and its personal
communication channel. Only the node owning the
personal channel posts on it, and the signature field
of the message ensures this. All other devices of the
group listen to this channel. This system uses a com-
mon channel to create and maintain the group, and a
device-specific channel, so that nodes can send spe-
cific information to the listeners.

A device that fails to perform its firmware update
while the rest of the group succeeds to do so is, by
construction, kicked out of the group. This descrip-
tion focuses on the principles to create the group and
skips the messages required for dealing with situa-
tions where a device becomes unreachable, out of or-
der, or replaced.

3.4 Synchronized Firmware Update

The group of devices is the foundation for improv-
ing the overall security of the fleet. The firmware up-
date is a critical operation for managing IoT nodes
and maintaining their security mechanisms up to date.
But, this feature offers an attack surface for DoS at-
tacks or malicious code injection attacks. In order to
address these issues, we define one group procedure:
the synchronized firmware update. This contribution
focuses on this sole procedure, but additional proce-
dures can be used to maintain the group’s validity over
time.

Concept. The synchronized firmware update con-
sists in two steps: first making sure all devices of
the group have received the same update request, then
electing a device that runs the update first to confirm

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

376



its validity. If the devices receiving the firmware up-
date request do not receive the update response mes-
sages from the other group members then the request
is discarded. The entire fleet must be updated at once
for the update request to be considered trustworthy.
As the group key is based on the firmware image, a
partial update of the fleet would result in breaking the
group. Some devices can be unreachable, due to sleep
mode, out of order state, or replacement. This might
create a security breach, so more refined heuristics are
required at deployment stage. To sum up, this system
prevents a hacker from targeting one single device: he
needs to find out the group members, and attack them
all in a synchronized manner. Moreover, the system
relies on group decisions, so hijacking one device is
not sufficient to control the decisions. To avoid a mis-
use of the group decisions, it is important to limit the
number of new devices joining the group simultane-
ously. This risk is managed by enabling device-level
protections to prevent devices cloning or counterfeit-
ing.

When this synchronized request is received, a de-
vice is elected to run the firmware update first. This
device plays the role of a scout, and must confirm
the update success before the group carries on with
the update. This lowers the risks of incorrect update,
without involving any supervision. No operator is
needed to select a test device before propagating the
firmware update to the entire fleet. All devices are
addressed at once, and they handle the update them-
selves. For an attacker, it is very complicated to guess
who is going to be chosen as the scout. While the
test device performs its update, the other devices put
their own update procedures on hold, but they can
still receive commands and run their use-cases. Af-
ter a successful update, the test device confirms the
validity of the new firmware to the group. If this con-
firmation is not received within a guard period, then
the other devices discard the update request, black-
list the candidate firmware version, notify the cloud
of this erroneous update and of the faulty test device
that might run a malicious code, enter a silent period
where all subsequent firmware update requests are ig-
nored. Hence, the rest of the fleet is not updated, the
server is notified and can launch the appropriate coun-
termeasures. If the confirmation is received within the
guard period, then all the other devices of the group
proceed with the firmware update.

The procedure starts when an UPDATE RE-
QUEST message is received by each device, and
specifies the new firmware image to be installed. Each
node runs the algorithm 1 on top of the generic al-
gorithm 2. Once the firmware update has been com-
pleted successfully, the test device has a new firmware

image in place, so it generates a new group key.
Therefore, this device must recompute the previous
group key to send the confirmation messages before
the entire herd moves to the new firmware image and
its associated group key.

Threats Towards the Group Itself. An attacker
might try to break the group itself to circumvent the
synchronized firmware update procedure. Therefore,
the communications are protected (confidentiality, au-
thenticity and integrity) and replay attacks are pre-
vented by the use of messages sequence numbers.
Last but not least, device level protections and moni-
toring procedures are additional layers of security pre-
venting the hacker from hijacking a device, and using
it to dismantle the group.

Synchronized Firmware Update Benefits. A first
benefit concerns the maintenance of the fleet. The
fleet owner does not need to maintain explicitly a list
of his groups of devices. He can send a general up-
date request to deploy a new firmware version. The
devices are self-organized per groups and each group
elects a test device. This test device makes sure the
new firmware is correct (self-tests) before authoriz-
ing the update of the peers. If one device cannot
update for any reason, then it is automatically re-
moved from the group, as it cannot compute the new
group key, and this failure is reported to the server.
A second benefit concerns the security of the herd,
as an attacker needs to attack all devices of a group at
once. First, he needs to determine the group members.
Then, he must update the binary image he is using as
soon as a firmware version is blacklisted, and forge
a valid firmware image able to send the UPDATE
CONFIRMATION message. Infecting the other de-
vices of the group requires knowing the group, com-
puting the proper group key and forging the proper
acknowledgement message. Hence, the synchronized
firmware update procedure raises the bar for attack-
ers: code injection and DoS attacks are thwarted. Last
but not least, it brings an automatic device manage-
ment capability.

4 EXPERIMENTATION

IoT Node. We conducted experiments with micro-
controllers to verify the feasibility of the system
and its efficiency. We used STMicroelectronics’
STM32L4 Discovery kit IoT node B-L475E-IOT01A
(STMicroelectronics, 2021c) because it is representa-
tive of a mid-range connected sensor. It provides an
IEEE 802.11 (Wi-Fi) connectivity to establish a link

SHOID: A Secure Herd of IoT Devices Firmware Update Protocol

377



Algorithm 1: Synchronized Firmware Update.

The device is part of the group G
The Firmware Update Request R carries
firmware version R.erson=N+ 1

Function processUpdateRequest(R:
request):
erson← R.erson
nmber ← rndomnmber
create UPDATE RESPONSE message
with erson and nmber

start guard timer TG for group responses
for device in G do

send UPDATE RESPONSE to device
end
Wait for all responses to be received
if all responses received then

Stop guard timer TG
if my random number is the highest
one in G then

memorize that an update is in
progress with
UpdtenProgress flag

perform the firmware update
procedure

Reset()
else

Start guard timer TC for test
device confirmation

Wait for test device to send the
UPDATE CONFIRMATION
message

if UPDATE CONFIRMATION
received then

stop TC
perform the firmware update

procedure
Reset()

else
TC expires
Abort the synchronized

firmware update procedure
Notify the server that a

synchronized firmware
update procedure failed

else
Cancel the update procedure when
TG expires

Notify the server that an abnormal
update request has been received
and aborted

return

Algorithm 2: Device generic loop.

The device runs OEM Firmware N
The device has the OEM firmware key KOEM
Function Main():

initialization: compute the group key
Kcr and establish the group G if
needed

if UpdtenProgress flag is set then
validate the new firmware image
reset the UpdtenProgress flag
compute the former group key Kpre
create UPDATE CONFIRMATION
message using Kpre

for device in G do
send UPDATE CONFIRMATION

to device
end

end
while True do

do use-case processing
get message M
if M.type == UPDATE REQUEST
then

processUpdateRequest(M)
end

end
return

with a remote cloud server. Besides, it also provides
a Media Access Control address we can use as the
device identifier within the group. Many sensors are
available on this board so we can develop a realistic
use-case: a connected thermostat. On software side,
we implement our system on top of two STM32 pack-
ages (STMicroelectronics, 2021a; STMicroelectron-
ics, 2021b).

Results. The microcontroller takes 483 ms to com-
pute the group key, with Secure Hash Algorithm 256
bits, when running at 80 MHz with a 251 kB firmware
image in FLASH. With a group of n devices with
n= 4, the system generates 12 MQTT messages for
a total of around 1500 bytes exchanged over the net-
work. This is n× (n− 1) messages, so the number
of messages goes in O(n2) , showing that group size
matters. The duration to establish the HTTP connec-
tion to the update server, then download the 251 kB
firmware image and deem it is invalid is a few tens
of seconds. During this period, a Wi-Fi IoT Node is
in a TX state. According to a study of IoT power
consumption, an IoT node operating in this TX state
drains a current of 0.38 A from a 3.3 V power supply
(Guegan and Anne-Cécile, 2019). Therefore, skip-

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

378



ping these useless steps induces significant energy
savings. Besides, the update server processes only 1
instead of n connections. For a fleet of 4 devices, al-
most 750 kB of useless data transfer is saved. These
energy and bandwidth savings evolve in O(n), so
the result is worth the messaging overhead. The sys-
tem adds 10 kB of code in FLASH, for a reference
firmware size of 237 kB (sensor management code,
MQTT, TLS and device drivers libraries) and no ex-
tra RAM budget is required.

5 CONCLUSION

In this paper, we studied a way to group IoT de-
vices to strengthen the security of the firmware up-
date procedure. The method establishes a common
cryptographic key, and uses it to group IoT nodes.
This technique requires no compute-intensive pro-
cessing and no specific provisioning of the devices.
The secure group concept is used to create a syn-
chronized firmware update procedure. Besides, this
system requires very few server interactions as being
fully based on a device to device approach. This prop-
erty brings additional autonomy and robustness bene-
fits.

In future work, a more efficient device to de-
vice communication could be exploited to improve
power consumption and server independence, by us-
ing Long Range Wide Area Network (LoRaWAN) or
Bluetooth Mesh networking. Last but not least, we
may refine the heuristics to improve the system effi-
ciency: guard periods, unreachable devices manage-
ment, power saving impact on procedures.

ACKNOWLEDGEMENTS

The authors would like to thank Julien Montmasson
(ST Microelectronics) and Géraud Plagne (ST Micro-
electronics) for their valuable comments and sugges-
tions to improve this contribution. The authors would
also like to thank Eloise Cheval (ST Microelectron-
ics) for her thorough reviews of this paper.

REFERENCES

Adams, E. (2021). Protect your customers with a secure
iot updating process. https://blog.securityinnovation.
com/secure-iot-updating-process. Last checked on
Oct 05, 2022.

Bellare, M. and Namprempre, C. (2000). Authenticated en-
cryption: Relations among notions and analysis of the

generic composition paradigm. In Okamoto, T., ed-
itor, Advances in Cryptology — ASIACRYPT 2000,
pages 531–545, Berlin, Heidelberg. Springer Berlin
Heidelberg.

B.F. Spencer, J., Ruiz-Sandoval, M. E., and Kurata, N.
(2004). Smart sensing technology: Opportunities
and challenges. https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.88.3329&rep=rep1&type=pdf.
Last checked on Oct 05, 2022.

Carlier, M., Steenhaut, K., and Braeken, A. (2018).
Symmetric-key based security for multicast communi-
cation in wireless sensor networks. In 2018 4th Inter-
national Conference on Cloud Computing Technolo-
gies and Applications (Cloudtech).

Chen, C.-M., Deng, X., Gan, W., Chen, J., and Islam, S.
K. H. (2021). A secure blockchain-based group key
agreement protocol for iot. The Journal of Supercom-
puting, 77(8):9046–9068.

Choi, S. and Lee, J.-H. (2020). Blockchain-based dis-
tributed firmware update architecture for iot devices.
IEEE Access, 8:37518–37525.

Demeter, D., Preuss, M., and Yaroslav, S. (2019).
Iot: a malware story. https://securelist.com/
iot-a-malware-story/94451/. Last checked on Oct 05,
2022.

Driscoll, K. (2018). Lightweight crypto for lightweight un-
manned arial systems. In 2018 Integrated Communi-
cations, Navigation, Surveillance Conference (ICNS),
pages 1–15.

European Commission (2022). Cyber resilience act.
https://digital-strategy.ec.europa.eu/en/library/
cyber-resilience-act. Last checked on Oct 04, 2022.

Fukuda, T. and Omote, K. (2021). Efficient blockchain-
based iot firmware update considering distribution in-
centives. In 2021 IEEE Conference on Dependable
and Secure Computing (DSC), pages 1–8.

Gebremichael, T., Jennehag, U., and Gidlund, M. (2018).
Lightweight iot group key establishment scheme us-
ing one-way accumulator. In 2018 International Sym-
posium on Networks, Computers and Communica-
tions (ISNCC), pages 1–7.

Gervais-Ducouret, S. (2011). Next smart sensors genera-
tion. In 2011 IEEE Sensors Applications Symposium,
pages 193–196.

Guegan, L. and Anne-Cécile, O. (2019). Estimating the
end-to-end energy consumption of low-bandwidth.

J.L.Hernández-Ramos, G.Baldini, S.N.Matheu, and
A.Skarmeta (2020). Updating iot devices: challenges
and potential approaches. In 2020 Global Internet of
Things Summit (GIoTS).

Johnston, S. J., Scott, M., and Cox, S. J. (2016). Recom-
mendations for securing internet of things devices us-
ing commodity hardware. In 2016 IEEE 3rd World Fo-
rum on Internet of Things (WF-IoT), pages 307–310.

Kambourakis, G., Kolias, C., and Stavrou, A. (2017). The
mirai botnet and the iot zombie armies. In MILCOM
2017-2017 IEEE Military Communications Confer-
ence (MILCOM), pages 267–272. IEEE.

Kelly, R. (2020). H.r.1668 - iot cybersecurity improve-
ment act of 2020. https://www.congress.gov/bill/

SHOID: A Secure Herd of IoT Devices Firmware Update Protocol

379



116th-congress/house-bill/1668. Last checked on Oct
05, 2022.

Koteshwara, S., Das, A., and Parhi, K. K. (2019). Archi-
tecture optimization and performance comparison of
nonce-misuse-resistant authenticated encryption algo-
rithms. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 27(5):1053–1066.

Kuusijärvi, J., Savola, R., Savolainen, P., and Evesti, A.
(2016). Mitigating iot security threats with a trusted
network element. In 2016 11th International Con-
ference for Internet Technology and Secured Transac-
tions (ICITST), pages 260–265.

K.Zandberg, K.Schleiser, F.Acosta, H.Tschofenig, and
E.Baccelli (2019). Secure firmware updates for con-
strained iot devices using open standards: A reality
check.

Li, D., Aung, A., Sampalli, S., Williams, J., and Sanchez,
A. (2013). Privacy preservation scheme for multicast
communications in smart buildings of the smart grid.
Smart Grid and Renewable Energy, 4(4):313–324.

Li, H., Yang, C., Wang, L., Ansari, N., Tang, D., Huang,
X., Xu, Z., and Hu, D. (2021). A cooperative defense
framework against application-level ddos attacks on
mobile edge computing services. IEEE Transactions
on Mobile Computing. Publisher Copyright: IEEE.

Mota, A. V., Azam, S., Shanmugam, B., Yeo, K. C., and
Kannoorpatti, K. (2017). Comparative analysis of dif-
ferent techniques of encryption for secured data trans-
mission. In 2017 IEEE International Conference on
Power Control Signals and Instrumentation Engineer-
ing (ICPCSI).

NXP (2020). Lpc55s00 security solutions for iot.
https://www.nxp.com/docs/en/application-note/
AN12278.pdf. Last checked on Oct 05, 2022.

Park, E., Kim, K., and Kim, N. (2018). Group management
scheme to support robustness service in iot environ-
ment. volume 118, pages 1183–1194.

Park, J., Jung, M., and Rathgeb, E. P. (2019). Survey for se-
cure iot group communication. In 2019 IEEE Interna-
tional Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops), pages
1026–1031.

ProvenRUN (2022). Firmware update is a must, but needs
also to be secured. https://provenrun.com/products/
provenfota/. Last checked on Oct 05, 2022.

Shah, P. G., Huang, X., and Sharma, D. (2010). Analyti-
cal study of implementation issues of elliptical curve
cryptography for wireless sensor networks. In 2010
IEEE 24th International Conference on Advanced In-
formation Networking and Applications Workshops,
pages 589–592.

Sovyn, Y., Khoma, V., and Podpora, M. (2020). Compar-
ison of three cpu-core families for iot applications in
terms of security and performance of aes-gcm. IEEE
Internet of Things Journal, 7(1):339–348.

STMicroelectronics (2021a). Generic iot cloud soft-
ware expansion for stm32cube. https://www.st.com/
en/embedded-software/x-cube-cld-gen.html. Last
checked on Sep 05, 2021.

STMicroelectronics (2021b). Secure boot & secure
firmware update software expansion for stm32cube.
https://www.st.com/en/embedded-software/
x-cube-sbsfu.html. Last checked on Sep 05,
2021.

STMicroelectronics (2021c). STM32L4 discovery kit
iot node, low-power wireless, BLE, NFC, Sub-
GHz, Wi-Fi. https://www.st.com/en/evaluation-tools/
b-l475e-iot01a.html. Last checked on Sep 05, 2021.

Sung, B.-Y., Kim, K.-B., and Shin, K.-W. (2018). An aes-
gcm authenticated encryption crypto-core for iot secu-
rity. In 2018 International Conference on Electronics,
Information, and Communication (ICEIC), pages 1–3.

Tsai, M.-H., Hsu, Y.-C., and Lo, N.-W. (2020). An efficient
blockchain-based firmware update framework for iot
environment. In 2020 15th Asia Joint Conference on
Information Security (AsiaJCIS), pages 121–127.

Vinayaga Sundaram, B., M., R., M., P., and J., V. S.
(2015). Encryption and hash based security in inter-
net of things. In 2015 3rd International Conference
on Signal Processing, Communication and Network-
ing (ICSCN), pages 1–6.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

380


