
Welcome to the Jungle:
A Conceptual Comparison of Reinforcement Learning Algorithms

Kenneth Schröder, Alexander Kastius and Rainer Schlosser
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Keywords: Reinforcement Learning, Markov Decision Problem, Conceptual Comparison, Recommendations.

Abstract: Reinforcement Learning (RL) has continuously risen in popularity in recent years. Consequently, multiple
RL algorithms and extensions have been developed for various use cases. This makes RL applicable to a
wide range of problems today. When searching for suitable RL algorithms to specific problems, the options
are overwhelming. Identifying the advantages and disadvantages of methods is difficult, as sources use
conflicting terminology, imply improvements to alternative algorithms without mathematical or empirical
proof, or provide incomplete information. As a result, there is the chance for engineers and researchers to
miss alternatives or perfect-fit algorithms for their specific problems. In this paper, we identify and explain
essential RL properties. Our discussion of different RL concepts allows to select, optimize, and compare RL
algorithms and their extensions, as well as reason about their performance.

1 INTRODUCTION

Many recent RL algorithms to solve Markov deci-
sion problems (MDP) include at least one unique
feature designed to improve performance under spe-
cific challenges. These challenges usually originate
from different properties of the decision process or
the statistical drawbacks of related optimization al-
gorithms. The corresponding publications often in-
clude performance comparisons to the related algo-
rithms but sometimes lack clear distinctions of the
advantages and disadvantages of solutions within this
field of research. In (Schulman et al., 2017) the au-
thors, for example, motivate in their introduction that
robustness of RL algorithms with respect to hyperpa-
rameters is desirable. The evaluation section of their
publication does not include any comparisons to other
algorithms in this aspect. In addition, research articles
often fail to include categorizations of their solutions
concerning other RL properties and capabilities.

Introductory material often only categorizes algo-
rithms sparsely or within the main RL families in-
stead of consistently outlining and explaining the dif-
ferences for various properties. In this paper, we dis-
cuss properties of modern RL approaches and outline
respective implications for capabilities of RL algo-
rithms, their variants, extensions, and families.

2 PROPERTIES DICTATED BY
THE PROCESS

The properties discussed in this section can be mostly
seen as algorithm properties which cannot be cho-
sen freely, but are predefined by the Markov process
which has to be solved. Further, value estimation and
policy optimization methods are discussed.

2.1 Model-Free & Model-Based RL

A popular distinction in RL is between model-free
and model-based algorithms. In contrast to standard
machine learning terminology, the term ”model” in
model-free or model-based does not refer to the train-
able algorithm but to a representation of the environ-
ment with knowledge beyond the observations. A
model like this can include state transition probabil-
ities, reward functions, or even optimal expected fu-
ture return values for the environment at training time.
Notably, this information does not necessarily have
to be available at evaluation time for model-based
RL algorithms. In self-play for example, the envi-
ronment model during training is defined by a clone
of the best version of the algorithm. At evaluation
time, the algorithm is expected to have learned a pol-
icy that generalizes from its training experience to be
able to handle other opponents. Model-based algo-

Schröder, K., Kastius, A. and Schlosser, R.
Welcome to the Jungle: A Conceptual Comparison of Reinforcement Learning Algorithms.
DOI: 10.5220/0011626700003396
In Proceedings of the 12th International Conference on Operations Research and Enterprise Systems (ICORES 2023), pages 143-150
ISBN: 978-989-758-627-9; ISSN: 2184-4372
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

143

rithms use such information to simulate the environ-
ment without executing actual steps or taking actions.
Some model-based algorithms do not use an envi-
ronment at all. Dynamic Programming, for example,
uses its knowledge about state transition probabilities
and rewards to build a table of exact expected future
rewards instead of stepping through an environment
and making observations. Environment models can
be learned or known by an RL algorithm. Another
popular model-based algorithm with a given model is
AlphaZero by DeepMind (Silver et al., 2017). Ac-
cording to (Achiam, 2018) model-based algorithms
can improve sample efficiency but tend to be harder
to implement and tune.

2.2 Policy Optimization & Value
Learning

The following subsections discuss several algorithms,
which consist of two categories, policy learning and
value learning methods. The later mentioned algo-
rithms DDPG, SAC, and REINFORCE are policy
learning methods. In those, a parametric represen-
tation of the mapping from state to action is available
and those parameters are adjusted to maximize the ex-
pected discounted reward of the policy (Sutton and
Barto, 2018). Many of those methods also incorpo-
rate value learning, which can also be used on its on
to derive policies. For value learning, the goal is to
develop an estimation of the expected discounted re-
ward given a certain action is performed in a certain
state. This value is called the Q-value, which leads to
Q-learning as large group of algorithms.

2.3 Finite & Infinite Horizon Problems

Whether a problem has a finite or an infinite horizon
has many implications on which RL algorithms are
applicable, on the objective functions of the usable
RL algorithms, and on which learning strategies can
be applied. The decisive factor behind all those impli-
cations is whether an algorithm follows a Monte Carlo
(MC) or Temporal Difference (TD) approach (Sutton
and Barto, 2018). This section introduces MC and TD
methods. Additionally, the core ideas behind TD(n),
TD(λ), and eligibility traces are examined.

The main features of MC methods are that they
are on-policy by design and only work on finite hori-
zon problems. The current policy plays the environ-
ment until a terminating state is reached, after which
the realized discounted returns for the episode are
calculated for each visited state. The realized dis-
counted returns for a state can vary significantly in-
between such trajectories, even under the same pol-

icy, because of stochastic environments or stochastic
policies. Such MC returns are used by some Policy
Gradient variants, like REINFORCE.

TD approaches do not need complete trajectories
or terminating states to be applied. Therefore, they
can be used on infinite horizon problems as well. The
core idea of TD methods is to define target values for
a value estimator V̂φ using some section of a trajec-
tory between the states st and st+n by summing the
realized rewards r (discounted by factor γ) and adding
an approximation of the expected future return of the
last state st+n using the current version of the value-
learner. The target value is calculated by Gφ

t:t+n :=
∑

t+n−1
t ′=t γt ′−t r(st ′+1|st ′ ,at ′)+ γnV̂φ(st+n) and the tem-

poral difference, also called approximation error is
given by Gφ

t:t+n− V̂φ(st) and is used to update V̂φ(st).
Using the current version of a value-estimator for an
update of the same estimator is called bootstrapping
in RL. Algorithms that use the temporal difference
over n steps like this are called n-step TD methods
or TD(n) algorithms. TD(n) for all n > 1 is automat-
ically on-policy learning, as the sequence of rewards
used for the network updates depends on the policy.
Therefore, the values learned by the value-learner re-
flect the values of states under the current policy (see
Section 3.1). TD(1) algorithms can be trained in an
off-policy or on-policy fashion, as single actions and
rewards are policy-independent. The off-policy up-
dates would be unbiased towards the current policy.
DQN is an example of an off-policy TD(1) algorithm,
while SARSA is an on-policy TD(1) method. Some
RL libraries like Tianshou (Weng et al., 2021) include
off-policy DQN algorithms with an n-step parameter.
RAINBOW uses similar updates with different tricks,
e.g. omitting off-policy exploration (see Section 3.2).
While MC methods have high variance and no bias
in their network updates, TD approaches have a low
variance. They only consider a few realized rewards
but add a significant bias towards their initial estima-
tions by the bootstrapping term. Increasing the num-
ber of steps in TD(n) makes the updates more similar
to MC updates, and bias decreases while variance in-
creases.

Because of the bias-variance tradeoff and differ-
ences in episode lengths, for example, the best n in
TD(n) is highly problem-specific. An approach called
TD(λ) tries to combine the advantages of all TD(n)
versions by creating a target value Gλ,φ

t that is combi-
nation of all possible TD(n) targets. TD(λ) can be ex-
plained and calculated from a forward or a backward
view, but both variants are mathematically equivalent
(Sutton and Barto, 2018).

The forward view combines all TD(n) targets

ICORES 2023 - 12th International Conference on Operations Research and Enterprise Systems

144

Gφ

t:t+n using an exponentially weighted moving av-
erage over all possible TD(n)’s and is defined by:
Gλ,φ

t = (1− λ) ·∑T−t−1
n=1 λn−1Gφ

t:t+n + λT−t−1Gt:T for
the finite horizon case. For infinite horizon problems,
this definition includes an infinite sum, which is ap-
proximated in practice using the truncated λ-return
(Sutton and Barto, 2018), which truncates the sum af-
ter many steps. Notably, for λ = 1 this formula re-
duces to the MC update Gt:T = G1,φ

t and for λ = 0 it
reduces to the TD(1) update Gt:t+1 = G0,φ

t for 00 = 1.
This forward version of TD(λ) can be described as an
MC method because it needs to wait until the end of
an episode before starting to compute the updates.

The backward view was introduced to overcome
this limitation. Instead of looking forward on the tra-
jectory to compute the network updates, it calculates
errors locally using TD(1). It passes this information
back to the previously visited states of the trajectory.
This means that if a high error is discovered at step t
of a trajectory, the state-values V̂φ(st ′) of the previous
states st ′ with t ′ < t are adjusted in the same direc-
tion as the local error. Not all of the states visited
previously are similarly responsible for the change
in the value of state st . The backward version of
TD(λ) uses eligibility traces to quantify the eligibil-
ity of past states for discovered state-value errors. In
practice, such an eligibility trace is a vector e contain-
ing decaying factors for each previously visited state
of the trajectory. Different decay strategies are possi-
ble, in which eligibility values of revisited states are
increased differently.

Similar to TD(n) with n > 1, TD(λ) is also an
on-policy approach and is theoretically incompatible
with off-policy techniques like replay buffers.

2.4 Countable & Uncountable State Sets

Uncountable state sets are found in many real-world
applications, i.e., at least one state parameter lives in
a continuous space. All of the table-based predeces-
sors of RL, like Dynamic Programming or tabular Q-
Learning, fail under uncountable state sets, as an infi-
nite amount of memory and time would be necessary
to compute all state-values (Sutton and Barto, 2018).
Those algorithms require a discretization of the state
space, which can limit the solution quality. RL algo-
rithms using neural networks as regression algorithms
can take continuous values of states as inputs and have
the ability to generalize over uncountable state sets af-
ter learning from a finite number of training samples.

2.5 Countable & Uncountable
Action Sets

Like uncountable state sets, uncountable action sets
are standard in continuous control tasks, where ac-
tions can be chosen from a continuous interval. Table-
based algorithms like Q-Learning that calculate state-
action values cannot be applied to problems with un-
countable action sets, as an infinite amount of mem-
ory and time would be required for calculations across
the whole table (Sutton and Barto, 2018).

On-policy (see Section 3.1) RL algorithms can
be trained under uncountable action sets by learning
the parameters to a parameterized distribution over a
range of actions. Training off-policy RL algorithms
under uncountable action sets incorporates new chal-
lenges. In regular off-policy RL, the policy network
is trained to reflect a discrete probability distribution
over the countable Q-values of each state. In the case
of uncountable action sets, the Q-value distribution
over the uncountable action set is neither fully ac-
cessible nor differentiable if the learner has trained to
output single values to state-action input pairs. Gen-
erally, constructing the value-learners under uncount-
able action sets to output parameters to parameter-
ized distributions is impossible, as the action values
follow an unknown, possibly non-differentiable dis-
tribution. Training with arbitrary distributions would
lead to bad state-value estimates1. Because of these
limitations, deterministic policies must be trained in
off-policy RL under uncountable action sets. DDPG
for example, takes advantage of the differentiability
of continuous actions output by deterministic poli-
cies (Lillicrap et al., 2015). The objective function
of DDPG is defined as: Jπ(θ) = Es∼D

[
Q̂φ (µθ(s)|s)

]
.

The policy parameters θ are trained to choose the Q-
value-maximizing actions for the state s ∼ D of the
state distribution D of the off-policy data. Gradients
of the policy network parameters are backpropagated
through the Q-learner Q̂φ, through the continuous ac-
tion policy output µθ(s) and into the policy network.
Gradient calculations like this would not be possible
for discrete actions.

Some algorithms take one further step further and
make it possible to learn stochastic policies under un-
countable action sets. One example of those algo-
rithms is SAC (Haarnoja et al., 2018b), which intro-
duces some beneficial additions which improve learn-
ing performance when compared to DDPG.

1In policy optimization for uncountable action sets, the
learned distribution does not have to accurately reflect the
distribution of the true Q-values, as it is not used to estimate
state-values.

Welcome to the Jungle: A Conceptual Comparison of Reinforcement Learning Algorithms

145

The objective of the SAC policy is given by:

Jπ(θ) = Es∼D

[
DKL

(
πθ (·|s)

∣∣∣∣∣∣∣∣eQ̂φ

πθ
(·|s)/Zφ(s)

)]
It contains a KL-divergence term, initially proposed
by (Haarnoja et al., 2018b), that aims at minimizing
the difference between the distribution of the policy
πθ in a state s and the distribution implied by the Q-
value estimations Q̂φ

πθ
(·|s). Zφ (s) is a normalization

term that does not contribute to the gradients and can
be ignored. Negating the remaining terms results in
the equivalent maximization objective:

J′π(θ) = Es∼D,a∼πθ

[
Q̂φ

πθ
(a|s)− logπθ (a|s)

]
(1)

This equation demonstrates, that SAC’s policy
is trained to maximize both the expected Q-
values, as well as its entropy H (πθ (·|s)) =
−Ea∼πθ

[logπθ (a|s)]. Although the Q-values in SAC
already contain an entropy coefficient, optimizing the
policy to maximize the Q-values would not guaran-
tee that the policy itself has high entropy. The pol-
icy might choose the Q-maximizing actions with 99%
probability density, i. e., a very low entropy, which is
why this entropy term is also necessary for the policy
objective.

A problem with the formulation in (1) is the ex-
pectation over the actions Es∼D,a∼πθ

, which depends
on the policy parameters θ (Achiam, 2018). No-
tably, with countable action sets, this is no prob-
lem. The expected value of the Q-values in a state
s can be calculated precisely using the finite sum
∑a∈A π(a|s) Q̂φ

πθ
(a|s). For uncountable action sets

there is usually no way to calculate the expectation
precisely. Instead, it is approximated using samples.
This leads to a high variance in the resulting gradi-
ents, which can be avoided by a reformulation of the
problem using the reparametrization trick, in which
the source of randomness is externalized. Using the
reparametrization trick, the objective can be further
rewritten, which exchanges the expectation over the
actions with an expectation over a random sample
from the standard normal distribution ε∼ N:

J′π(θ) = Es∼D,ε∼N
[
Q̂φ

πθ
(ã|s)− logπθ (ã|s)

]
,

where ã = f (ε,πθ (·|s)) . The reparametrization func-
tion f uses the policy network outputs to transform
this random sample from a standard normal distribu-
tion to the distribution defined by the policy network.
This is done by adding the mean and multiplying with
the variance produced by the policy network. This
separates sampling from the policy distribution and
reduces the variance of the computed gradients.

3 ALGORITHM PROPERTIES

Next, we categorize different aspects of RL algo-
rithms and discuss their learning dynamics.

3.1 On-Policy & Off-Policy RL

This subsection explores the differences between on-
policy and off-policy for value-learning RL algo-
rithms like DQN. Afterward, importance sampling
and its applications for off-policy learning in policy
optimization methods are discussed.

In value-learning, the difference between on-
policy and off-policy is best explained by the type of
state-action values learned. There are two main op-
tions for learning state-action values.

One possibility is learning the expected state-
action values of the current policy. For this case, in
each learning step, the Q-values reflect expected re-
turns under the current policy. This kind of policy
is optimized by repeatedly adjusting the parameters
slightly in a direction that minimizes the difference to
a target value and reevaluating the expected returns.
This is the main idea behind the Q-Learning vari-
ant SARSA. Algorithms like SARSA are called on-
policy, as the current policy needs to be used to collect
new experiences, and no outdated or unrelated data
can be utilized. This dependency on policy-related
actions is also reflected in the Q-value update func-
tion which uses the realized action in the Bellman ex-
pectation equation instead of an aggregation over all
the possible actions. Notably, not all algorithms that
learn values under the current policy are on-policy
methods. The critics in SAC learn Q-values of the
current policy in an off-policy way by inputting the
succeeding states (st+1) of the off-policy experience
into the current policy network. The result is a prob-
ability map over the actions that can be taken in st+1.
The value of state st+1 under the current policy can be
estimated as the sum of the Q-values in st+1 weighted
by the calculated distribution.

The second possibility to approach value-learning
is to learn the optimal state-action values achievable
in the environment and independent of the current pol-
icy. This is done by Deep Q-Learning (Mnih et al.,
2013). A deterministic policy is implicitly defined
by maximizing actions, and stochastic policies can be
formulated by applying temperature-regulated soft-
max over the state-action values. This is called off-
policy learning, as state-action values like this can
be learned using policy-unrelated experience from the
environment. While in some cases, the data is gen-
erated using a greedy version of the current policy,
completely policy-unrelated experience can be used,

ICORES 2023 - 12th International Conference on Operations Research and Enterprise Systems

146

for example, from a human player. All data points
can even be trained multiple times, as they are never
outdated w. r. t. the state-action-value definition.

The optimization objectives of pure policy opti-
mization methods are usually defined as maximizing
the expected future return when following the cur-
rent policy. Because of this, most pure policy opti-
mization algorithms are naturally on-policy methods.
During training, states and actions are sampled from
the current policy, and probabilities or actions are ad-
justed according to their realized or expected future
return. Without adjustments, using state samples from
the stationary state distribution of the current policy
is crucial. While it is technically possible to collect
policy-independent experience from the environment
and use the policy log probabilities of the chosen ac-
tions for policy updates, this optimization objective
would maximize the expected value under the wrong
state distribution. With this setting, the policy might
visit different states when performing independently
and achieve far-from-optimal expected future returns
under its state distribution.

One way to overcome this limitation and train a
policy optimization algorithm using data that was col-
lected from a different state distribution is importance
sampling (Sutton and Barto, 2018). The importance
sampling theorem states that the expected value of
any deterministic function f when drawing from a
distribution πθ is equal to the expected value of f
multiplied by the ratio of the two probabilities when
drawing from a distribution D.

In the RL setting, the expectations of the pol-
icy optimization objectives can not be calculated pre-
cisely and are approximated using a batch of sam-
ples. By applying the importance sampling equa-
tion, the expectation can be approximated with sam-
ples from an arbitrary, known state distribution. As
per the central limit theorem, the approximations with
both methods follow a normal distribution around the
actual expected value. Still, they can have signifi-
cant differences in variance if the two distributions
are very different (Sutton and Barto, 2018). Because
of this unreliability, to our knowledge, there are no
pure off-policy optimization algorithms Instead, some
Monte Carlo RL variants use importance sampling to
reduce simulation and calculation overhead for en-
vironments with long trajectories. For those cases,
simulating the realized rewards for just a single net-
work update is inefficient. Using importance sam-
pling, the latest trajectories can be reused for multiple
network updates if the policy does not change drasti-
cally within a few updates.

Actor-critic algorithms can be designed to oper-
ate on-policy or off-policy. The on-policy actor-critic

variants use a policy optimization objective similar
to pure policy optimization algorithms (Sutton and
Barto, 2018). In this case, the policy is improved
by altering the log probabilities of actions according
to their learned Q-values or advantage-values. Off-
policy actor-critic variants are possible by training the
policy to reflect the action distributions implicitly de-
fined by the learned Q-values. This is a valid objec-
tive, as the policy is trained to choose the Q-value-
maximizing action in every state.

The choice between on-policy and off-policy algo-
rithms primarily affects its sample efficiency and the
bias-variance tradeoff of the network updates (Fakoor
et al., 2020). On-policy algorithms need to consis-
tently generate new data using their current policy,
making them sample inefficient. Accordingly, they
are less suited for problems with high time complexity
environments. Off-policy algorithms can operate on
problems with arbitrarily generated experience, even
without direct access to the environment.

Off-policy algorithms tend to be harder to tune
than on-policy alternatives because of the significant
bias from old data and value-learner initializations
(Fujimoto et al., 2018).

3.2 Stochastic & Deterministic Policies

RL algorithms are designed to learn stochastic or de-
terministic policies. While most stochastic methods
can be evaluated deterministically by selecting the ac-
tions with the highest probabilities, there is no sophis-
ticated way of converting deterministic solutions to
stochastic variants other than applying ε-greedy ac-
tions or temperature-controlled softmax.

It could be argued, that deterministically choosing
the optimal action could outperform stochastic poli-
cies, as they tend to diverge from the optimal pol-
icy. In practice this does not hold, e.g., SAC out-
performs DDPG in its peak performance (Haarnoja
et al., 2018a). Also, there are problems with imper-
fect information that can only be reliably solved by
stochastic policies, as demonstrated by (Silver, 2015).

Stochastic policies have advantages over their de-
terministic alternatives in multi-player games, as op-
ponents can quickly adapt to deterministic playstyles.
A simple example of such a game is rock-paper-
scissors (Silver, 2015).

3.3 Exploration-Exploitation Tradeoff

The exploration-exploitation tradeoff is a dilemma
that not only occurs in RL but also in many decisions
in real life. When selecting a restaurant for dinner,
one can revisit a favorite restaurant or try a new one.

Welcome to the Jungle: A Conceptual Comparison of Reinforcement Learning Algorithms

147

By choosing the favorite restaurant, there is a high
likelihood of achieving the known satisfaction, but
without exploring other options, one will never know
whether there are even better alternatives. By only
exploring new restaurants, the pleasure will generally
be lower in expectation. The same concept applies to
RL as well. The agent needs to balance exploration
(for finding better solutions) with exploitation (to di-
rect exploration and to obtain optimal solutions).

Many different exploration-exploitation strategies
exist, including ε-greedy exploration, upper confi-
dence bounds exploration, Boltzmann exploration,
maximum entropy exploration, and noise-based ex-
ploration (Weng, 2020).

Upper confidence bounds exploration introduces
a notion of confidence to Q-value estimations. Ac-
tions are chosen based on the sum of each Q-value
and an individual uncertainty value. The uncertainty
value is inversely proportional to the number of times
an action was taken. The sum of a Q-value and its
uncertainty value represents a confidence bound of
that Q-value, i. e., Q-values of actions that have rarely
been trained have high uncertainty and could be much
larger in reality. Upper confidence bounds encour-
age exploration of rarely visited actions while con-
sidering their current Q-value estimation. In maxi-
mum entropy exploration, the agents’ objective func-
tions are extended by an entropy term that penalizes
the certainty of the learned policy. Algorithms like
SAC use this type of exploration. Some settings are
especially challenging for exploration to find better
solutions consistently. For example, very sparse or
deceptive rewards can be problematic, which is called
the hard exploration problem. (Weng, 2020) and (Mc-
Farlane, 2018) provide further information on explo-
ration challenges and possible solutions.

3.4 Hyperparameter & Robustness

In RL, hyperparameter sensitivity characterizes how
much an algorithm’s performance depends on care-
fully tuned hyperparameters and how much the hy-
perparameters need to be adjusted between different
problems. In other words, it describes the size of the
hyperparameter space that generally produces good
results. Many publications of new RL algorithms
mention hyperparameter sensitivity and claim or im-
ply improvements compared to previous work; e.g.,
(Haarnoja et al., 2018b; ?) note that their algorithm
SAC is less sensitive than DDPG. (Schulman et al.,
2017) also suggest in their publication of PPO that it
is less sensitive than other algorithms. These papers
fail to include concrete sensitivity analysis to support
their claims.

Other researchers have published work on hyper-
parameter tuning and sensitivity comparisons on spe-
cific RL tasks (Henderson et al., 2018; ?). Most em-
phasize the high sensitivity of all compared RL al-
gorithms and the lack of generally well-performing
configurations. These articles suggest a need for less
sensitive algorithms to be developed and for more re-
search on best-performing hyperparameters in differ-
ent settings.

Robustness is used as an antonym to hyperpa-
rameter sensitivity in some articles (Schulman et al.,
2017) to describe how successful an algorithm is
on various problems without hyperparameter tuning.
Most of the literature uses robustness as a measure of
how well a learned algorithm can handle differences
between its training and test environment (?). The
second definition of robustness is specifically impor-
tant for real-world applications that incorporate a shift
between training and testing environments.

Robustness of algorithms in RL can generally be
achieved in multiple ways. One option is to design
a distribution of environments and optimize the av-
erage performance of an agent on multiple environ-
ment samples from this distribution. A second op-
tion is to create an adversarial setup, where an ad-
versary is trained to adjust the environment such that
the agent’s performance drops. Hence, the agent con-
stantly trains on different environments. Such setups
are promising but not easy to implement. (Eysenbach
and Levine, 2021) show that maximum entropy RL al-
gorithms like SAC are robust to environment changes,
as the respective agents learn to recover from distur-
bances introduced by ”surprising” actions.

3.5 Learning Stability

The learning stability of an algorithm characterizes its
tendency to forget intermediate best-performing poli-
cies throughout training. This is sometimes referred
to as catastrophic forgetting in the literature (Géron,
2019), although catastrophic forgetting is also used in
the context of sequentially training a model on differ-
ent tasks (Kirkpatrick et al., 2017).

Learning instability in policy optimization algo-
rithms is mainly caused by noise in the gradient
estimations, producing destructive network updates.
Such noise is usually created by a high variance in the
gradient estimates. Therefore, learning stability can
be increased by choosing RL algorithms with low-
variance gradient estimators. Another option to pre-
vent destructive updates to the policy during training
is to limit the change of the policy in-between up-
dates, as done by PPO. A less sophisticated alterna-
tive with similar effects is to clip the gradient norms

ICORES 2023 - 12th International Conference on Operations Research and Enterprise Systems

148

before using them in network updates. This is called
gradient norm clipping. (Nikishin et al., 2018) pro-
pose to transfer stochastic weight averaging (SWA) to
the RL setting to increase learning stability. SWA has
improved generalization in supervised and unsuper-
vised learning and is based on averaging the weights
of the models collected during training.

4 SUMMARY &
RECOMMENDATIONS

This section summarizes the key takeaways for each
RL property discussed in the Section 2 and 3.

(i) Model-Free & Model-Based RL. The catego-
rization of model-free and model-based RL algo-
rithms indicates whether an algorithm learns or is
given additional knowledge of the environment be-
yond the observations. This allows simulations of the
environment and wider updates and exploration com-
pared to following one trajectory at a time. It can be
especially powerful if acting in the real environment is
expensive or an environment model is available any-
way. Model-free algorithms are more popular, and
model-based implementations are not supported by as
many frameworks because of the problem-specifics.

(ii) Policy Optimization & Value Learning Meth-
ods. For many problems, there is only one alterna-
tive. For all others, it depends on the complexity of a
problem’s value function, if it is easier to learn a value
function or directly search for the optimal policy.

(iii) Finite & Infinite Horizon Problems. Whether
a problem has a finite or infinite horizon has implica-
tions on which options for value estimations are ap-
plicable. MC methods only work with finite horizons,
as whole trajectories are necessary. MC targets for
value estimators have no bias but high variance, espe-
cially with extended episodes. TD methods are appli-
cable for finite & infinite horizons and allow tuning
the problem-specific tradeoff between bias and vari-
ance. TD(λ) combines all TD(n) updates and ideally
their problem-specific benefits and is technically an
on-policy method, as it includes MC estimates. Trun-
cating the infinite sum is possible for applying TD(λ)
to infinite horizon problems. Forward and backward
views can be used to calculate TD(λ) estimates. Usu-
ally, the backward view is applied with eligibility
traces, as it allows online updates of the estimator.

(iv) Countable & Uncountable State Sets. Tradi-
tional table-based methods can only operate on count-
able state sets. Neural networks can generalize to

continuous inputs with limited memory, making them
suitable for problems with uncountable state sets.

(v) Countable & Uncountable Action Sets. Table-
based algorithms are usually inapplicable for un-
countable action sets, but RL with neural networks
can be used. Most on-policy RL algorithms can han-
dle both countable and uncountable action sets. Off-
policy learning of uncountable action sets includes
additional challenges because the distribution type of
the action values of a state is unknown. TD methods’
state values cannot be calculated easily, and adding
another expected value over these distributions is re-
quired in the objectives. Using action samples and
the reparameterization trick, these expectations can be
approximated and gradients can be backpropagated
through the continuous actions into the policy net-
work. Learning stochastic policies under uncountable
action sets is also possible, as done by SAC.

(vi) On-Policy & Off-Policy RL. On-policy algo-
rithms need to be trained with experience of the lat-
est version of the policy. Off-policy alternatives can
use and re-use any experience acquired in an envi-
ronment. A significant advantage of off-policy algo-
rithms is sample efficiency, but they tend to be harder
to tune because of the bias-variance implications be-
tween the respective learning strategies. Learning val-
ues of states or state-action pairs under the current
policy is usually done on-policy, in which case, all
MC, TD(n), and TD(λ) methods can be used. SARSA
is an example that uses TD(1) calculations. Only the
TD(1) targets can be used if values under the current
policy are learned off-policy. The bootstrapped value
of the succeeding state can then be estimated by the
current policy’s probability distribution of that state
and the respective Q-values, as done by SAC. Actual
values within the environment are learned off-policy,
and the maximizing action is chosen for updates. One
example of such an algorithm is Deep Q-Learning.

Most policy optimization objectives are defined
over the stationary state distribution of the current
policy and therefore require on-policy training. Im-
portance sampling still allows for off-policy gradi-
ent calculations in policy optimization but can sig-
nificantly increase gradient approximation variance.
Consequently, it is only used in special cases, for ex-
ample, to execute a few consecutive network updates
with just one batch of data. PER is an extension that
can only be applied to off-policy algorithms.

(vii) Stochastic & Deterministic Policies. Some
problems with imperfect information can not be
solved by deterministic policies, in which case
stochastic alternatives are more powerful. Determin-
istic policies or deterministic evaluations of stochas-

Welcome to the Jungle: A Conceptual Comparison of Reinforcement Learning Algorithms

149

tic policies tend to have higher total expected returns
as only the best known actions are chosen. Stochas-
tic policies have benefits in exploration and in multi-
player games, where unpredictability is beneficial.

(viii) Exploration-Exploitation Tradeoff. The
exploration-exploitation trade-off is a natural
dilemma when not knowing whether an optimum is
reached in a decision process. Exploration is nec-
essary to discover better solutions, but exploitation
is needed for directed learning instead of random
wandering. Many different exploration strategies
exist, such as ε-greedy, stochastic exploration, max-
imum entropy exploration, upper confidence bounds
exploration, etc. Some problems are especially
challenging for exploration, for example, occurs in
environments with very sparse rewards.

(ix) Hyperparameter Sensitivity & Robustness.
The sensitivity of algorithms indicates how narrow
the usable ranges of hyperparameters are and how
well they can be trained on multiple problems with
the same configuration. Sensitivity is often mentioned
in the literature but rarely analyzed in detail. It is
highly problem-specific, which makes studying sen-
sitivity on multiple problems valuable. Algorithms
like PPO can make algorithms less sensitive by limit-
ing the incentives of drastic adjustments to the policy.
The ability of an algorithm to cope with changes be-
tween training and test environment is referred to as
robustness. It can be improved by training in multiple
environments, creating adversarial setups, or applying
maximum entropy RL.

(x) Learning Stability. The learning stability of an
algorithm is an indicator for its tendency to forget in-
termediate best-performing policies throughout train-
ing. Low variance gradient estimators help improve
algorithms’ stability, and methods like PPO’s objec-
tive function clipping can help prevent destructive up-
dates. Additional options include gradient norm clip-
ping and stochastic weight averaging.

5 CONCLUSION

To solve real-world problems with incomplete infor-
mation, RL is a promising approach as it only requires
a suitable reward function and no optimal data. Over
the training process, the model incrementally builds
better solutions by itself. Downsides of RL are the
opaque selection of algorithms and their extensions
as well as the more complicated tuning compared to
supervised learning. In this context, we sorted out

different RL algorithms’ properties and inferred help-
ful guidelines to decide under which circumstances to
apply which algorithm.

REFERENCES

Achiam, J. (2018). Spinning up in deep reinforcement
learning. URL: https://spinningup.openai.com/.

Eysenbach, B. and Levine, S. (2021). Maximum entropy
rl (provably) solves some robust rl problems. arXiv
preprint arXiv:2103.06257.

Fakoor, R., Chaudhari, P., and Smola, A. J. (2020). P3o:
Policy-on policy-off policy optimization. In Un-
certainty in Artificial Intelligence, pages 1017–1027.
PMLR.

Fujimoto, S. et al. (2018). Addressing function approxi-
mation error in actor-critic methods. In ICML, pages
1587–1596. PMLR.

Géron, A. (2019). Hands-on Machine Learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. ” O’Reilly
Media, Inc.”.

Haarnoja, T. et al. (2018a). Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905.

Haarnoja, T. et al. (2018b). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a
stochastic actor. In ICML, pages 1861–1870. PMLR.

Henderson, P. et al. (2018). Deep reinforcement learning
that matters. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1).

Kirkpatrick, J. et al. (2017). Overcoming catastrophic for-
getting in neural networks. Proceedings of the na-
tional academy of sciences, 114(13):3521–3526.

Lillicrap, T. P. et al. (2015). Continuous control
with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

McFarlane, R. (2018). A survey of exploration strategies in
reinforcement learning. McGill University.

Mnih, V. et al. (2013). Playing atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602.

Nikishin, E. et al. (2018). Improving stability in deep re-
inforcement learning with weight averaging. In Un-
certainty in artificial intelligence workshop on uncer-
tainty in Deep learning.

Schulman, J. et al. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Silver, D. (2015). Lectures on reinforcement learning.
URL: https://www.davidsilver.uk/teaching/.

Silver, D. et al. (2017). Mastering chess and shogi by self-
play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. MIT press.

Weng, J. et al. (2021). Tianshou: A highly modularized
deep reinforcement learning library. arXiv preprint
arXiv:2107.14171.

Weng, L. (2020). Exploration strategies in deep reinforce-
ment learning. URL: https://lilianweng.github.io/.

ICORES 2023 - 12th International Conference on Operations Research and Enterprise Systems

150

