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Abstract: The National Institute of Standards and Technology (NIST) released SP 800-22, which is a test suite for
evaluating pseudorandom number generators for cryptographic applications. The discrete Fourier transform
(DFT) test, which is one of the tests in NIST SP 800-22, was constructed to detect some periodic features of
input sequences. There was a crucial problem in the construction of the DFT test: its reference distribution
of the test statistic was not derived mathematically; instead, it was numerically estimated. Thus, the DFT
test was constructed under the assumption that the pseudorandom number generator (PRNG) used for the
estimation generated “truly” random numbers, which is a circular reasoning. Recently, Iwasaki (Iwasaki,
2020) performed a novel analysis to theoretically derive the correct reference distribution (without numerical
estimation). However, Iwasaki’s analysis relied on some heuristic assumptions.
In this paper, we present theoretical evidence for one of the assumptions. Let x0, · · · ,xn−1 be an n-bit input

sequence. Its Fourier coefficients are defined as F0, . . . ,Fn−1. Iwasaki assumed that ∑

n
2−1
j=0 |Fj|2 = n2/2. We

use a quantitative analysis to show that this holds when n is sufficiently large. We also verify that our analysis
is sufficiently accurate with numerical experiments.

1 INTRODUCTION

Random numbers are used in many applications, such
as cryptography and numerical simulations. However,
it is not easy to generate “truly” random sequences.
Pseudorandom number generators (PRNGs) generate
sequences by iterating a recurrence relation; there-
fore, the sequences are produced deterministically
and are not “truly” random. The binary “truly” ran-
dom sequence is defined as the sequence of random
variables that have a probability of exactly 1

2 of being
“0” or “1” and are mutually independent: We can
write an n-bit “truly” random sequence as ε0, . . . ,εn

iid∼
U({0,1}).

NIST SP 800-22 (Rukhin et al., 2010; Bassham III
et al., 2010) is a well-known statistical test suite
for evaluating pseudorandom number generators for
cryptographic applications. This test suite consists of
15 tests, and every test is a hypothesis test, where the
hypothesis is that the input sequence is truly random.
If this hypothesis is not rejected in any of the tests, it
is concluded that the input sequences are random.

The discrete Fourier transform (DFT) test in NIST
SP 800-22 is of interest to us. This test was con-
structed to detect periodic features in an input se-
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quence. It performs discrete Fourier transformation
on input sequences and constructs the test statistic
from the Fourier coefficients.

Kim et al. (Kim et al., 2003; Kim et al., 2004)
reported that the DFT test in the original NIST SP
800-22 (Rukhin et al., 2010) has a crucial theoretical
problem. They reported that the reference distribution
of the test statistic of the DFT test was erroneously de-
rived. Kim et al. numerically estimated the distribu-
tion of the test statistic with sequences generated with
a more accurate PRNG and proposed a new DFT test
with an estimated distribution. Hamano (Hamano,
2005) also performed an analysis on the distribution
of the Fourier coefficients in the original DFT test
and made the DFT test problems clearer; however,
the theoretical distribution of the test statistic was
not derived. In 2005, in response to these reports,
NIST revised the DFT test according to the report of
Kim et al. and published NIST SP 800-22 version
1.7. The DFT test has not been subsequently revised.
Pareschi et al. (Pareschi et al., 2012) reviewed the
DFT test included in NIST SP 800-22 version 1.7, and
they reported a more accurate numerical estimation
on the reference distribution of the DFT test than
that given by Kim et al. (Kim et al., 2003; Kim
et al., 2004). Okada and Umeno (Okada and Umeno,
2017) proposed another test based on discrete Fourier
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transformation that can avoid the problem, but they
failed to theoretically derive the reference distribution
of the original test statistic.

Iwasaki (Iwasaki, 2020) finally solved this long-
standing open problem of the DFT test with a novel
analysis on the joint probability density function of
the (square of the absolute value of) Fourier coeffi-
cients. However, Iwasaki’s analysis relied on some
heuristic assumptions.

In the following subsections, we describe the de-
tails of the procedure of the DFT test (Sect. 1.1) and
the problem of the DFT test (Sect. 1.2).

Then, we clarify our contribution in Sect. 1.3.

1.1 The DFT Test

We describe the details of the procedure of the origi-
nal DFT test (DFTToriginal) from 2001 (Rukhin et al.,
2010), which was released before the revision in 2005
(Bassham III et al., 2010). The focus of this test is
the peak heights in the discrete Fourier transformation
of the input sequence. The purpose of this test is to
check whether the input sequence periodic features
indicate a deviation from the assumption of random-
ness.

1. Throughout this paper, let n be an even inte-
ger. The input sequence is an n-bit sequence
ε0, · · · ,εn−1 ∈ {0,1}. The null hypothesis of this
test is that

ε0, · · · ,εn−1
iid∼U({0,1}). (1)

2. Convert the input sequence to x0, · · · ,xn−1, where

xi = 2εi−1 (i ∈ {0, . . . ,n−1}).

3. Apply a discrete Fourier transform (DFT)
to x0, · · · ,xn−1 to produce Fourier coefficients
{Fj}n−1

j=0 . The Fourier coefficient Fj and its real
and imaginary parts c j(X) and s j(X), respectively,
are defined as follows:

Fj :=
n−1

∑
k=0

xk exp
(

i
2πk j

n

)
. (2)

4. Compute {|Fj|}
n
2−1
j=0 . Note that {|Fj|}n−1

j= n
2

are not

of concern because |Fj|= |Fn− j| holds.

5. Set a threshold value T0.95 =
√

3n such that 95%
of {|Fj|}

n
2−1
j=0 are < T0.95, assuming that Eq. (1)

holds.
According to NIST SP800-22, 2

n |Fj|2 is consid-
ered to follow χ2

2, and T0.95 is defined by the

following equation.

P(|Fj|< T0.95) = P
(

2
n
|Fj|2 <

2
n

T 2
0.95

)
=

∫ 2
n T 2

0.95

0

1
2

e−
y
2 dy = 1− e−

T 2
0.95
n

:= 0.95

∴ T0.95 =
√
−n ln(0.05)≃

√
3n

As several researchers (Kim et al., 2004; Hamano,
2005) reported, it is obvious that T0.95 should be
set as T0.95 :=

√
−n ln(0.05) without approxima-

tion (T0.95 :=
√

3n). Thus, T0.95 :=
√
−n ln(0.05)

in the revised version of the DFT test (Bassham III
et al., 2010).

6. Count

N1 = #
{
|Fj|

∣∣∣ |Fj|< T0.95,0≤ j ≤ n
2
−1
}
.

If {|Fj|}
n
2−1
j=0 are mutually independent, then under

the assumption of Eq. (1), N1 can be considered
to follow B( n

2 ,0.95), where B is the binomial
distribution.
Since B(n, p) can be approximated as the normal
distribution N (np, np(1− p)) when n is suffi-
ciently large, we can approximate

N1 ∼N
(

0.95
n
2
,(0.95)(0.05)

n
2

)
under the assumption of Eq. (1).

7. Compute a test statistic

d =
N1−0.95 n

2√
(0.95)(0.05) n

2

.

The test statistic d follows N (0,1) when n is
sufficiently large, under the assumption of Eq. (1).

8. Compute the P-value; p = erfc
(
|d|√

2

)
.

If p < α, where α is the significance level of the
DFT test, then it is concluded that the sequence
is not random. NIST recommends α = 0.01
(Bassham III et al., 2010). If p≥ α, conclude that
the sequence is random.

Perform steps 1 to 7 for m sample sequences and
compute m P-values {p1, p2, . . . , pm}. Then, we per-
form second-level tests I and II to test the proportion
of sequences passing the tests and the uniformity of
the distribution of the P-values {p1, p2, . . . , pm}. See
(Bassham III et al., 2010) for the details.
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1.2 The Problem of the DFT Test

Kim et al. (Kim et al., 2004) and Hamano (Hamano,
2005) reported that

N1 does not follow N
(
0.95 n

2 ,(0.95)(0.05) n
2

)
,

and as a consequence, the test statistic d :=
N1−0.95 n

2√
(0.95)(0.05) n

2
does not follow N (0,1). Furthermore,

Kim et al. estimated that

N1 ∼N
(

0.95
n
2
,(0.95)(0.05)

n
4

)
(3)

and d := N1−0.95 n
2√

(0.95)(0.05) n
4
∼N (0,1) using a secure hash

generator (G-SHA1) (Bassham III et al., 2010) as
a PRNG. According to this result, DFTToriginal was
revised in (Bassham III et al., 2010). The present DFT
test, denoted as DFTTpresent, has not been revised.

Furthermore, Pareschi et al. reported that the
numerical estimation is not sufficiently accurate; they
numerically estimated that

N1 ∼N
(

0.95
n
2
,(0.95)(0.05)

n
3.8

)
, (4)

and d := N1−0.95 n
2√

(0.95)(0.05) n
3.8
∼ N (0,1). DFTTpresent and

DFTTpareschi are constructed based on numerical es-
timation using PRNGs. However, the randomness of
PRNGs are the target that should be evaluated with
a randomness test. Thus, these tests cannot be used
unless the reference distribution is mathematically
derived.

The crucial problem here is that the reference
distribution of N1 (or the test statistic d), Eqs. (3)
and (4), are derived by the numerical estimation with
some PRNG. The DFT test is constructed under the
assumption that the PRNG that is used for the es-
timation generates truly random numbers, which is
circular reasoning.

Iwasaki (Iwasaki, 2020) finally solved this prob-
lem. He derived the reference distribution of N1
(and d) theoretically (without the numerical estima-
tion with some PRNG), which is given as follows

N1 ∼N
(

0.95
n
2
,(0.95)(0.05)

n
3.79

)
,

and d := N1−0.95 n
2√

(0.95)(0.05) n
3.79
∼ N (0,1). This was re-

alized by a novel analysis of the joint probability
density function of the |Fj|s.

However, the analysis by (Iwasaki, 2020) was
based on several heuristic assumptions:

• Assumption 1: The value of V(N1) can be an-
alyzed in a sufficiently correct manner even if
we consider 2

n |F0|2 ∼ χ2
2 (χ-squared distribution

with 2 degrees of freedom, see Definition 2.2) for
sufficiently large n.
Note that 2

n |F0|2 ∼ χ2
1 correctly.

• Assumption 2: ∑

n
2−1
j=0 |Fj|2 = n2/2 holds.

Note that by Parseval’s theorem (see Lemma 2.6),

∑

n
2−1
j=0 |Fj|2 = 1

2 (n
2 + |F0|2−|Fn

2
|2), correctly.

• Assumption 3 (Iwasaki, 2020, Assumption 3.1):
Let y := (|F0|2, . . . , |Fn

2
− 1|2); then, y uniformly

distributes over the set

{y ∈ R
n
2−1 | yi ≥ 0, |y|2 = n2/2}.

This assumption is used on the premise that As-
sumption 2 holds.

1.3 Our Contribution

In this paper, we show that Assumption 2 above holds
when n is sufficiently large. We rephrase Assumption
2 as follows

• Assumption 2’: limn→∞ ∑

n
2−1
j=0 |Fj|2− n2

2 = 0,
and we give the rigorous proof of Assumption 2’.

As previously mentioned, we have
n
2−1

∑
j=0
|Fj|2 =

1
2
(n2 + |F0|2−|Fn

2
|2), (5)

by Parseval’s theorem. We analyze the distribution
of the term z := 2

n (|F0|2 − |Fn
2
|2) and show that it

follows N (0,4) when n is sufficiently large. Specif-
ically, we analyze the characteristic function of z,
denoted by φz(t), which satisfies that limn→∞ φz(t) =
exp(−8t2) and coincides with the characteristic func-
tion of N (0,4). Furthermore, we perform an experi-
ment and confirm that the empirical distribution of z
is close to N (0,4).

By the definition of z, we can rewrite Eq. (5) as
n
2−1

∑
j=0
|Fj|2 =

n2

2
(1+

1
n
· z).

As we prove that z ∼ N (0,4), we have z = O(1)
with overwhelming probability. Thus, we have

∑

n
2−1
j=0 |Fj|2 = n2

2 (1 + O( 1
n )), and we conclude that

limn→∞ ∑

n
2−1
j=0 |Fj|2− n2

2 = 0, which proves Assump-
tion 2’.

2 PRELIMINARIES

Vectors are in column form and are written using bold
lowercase letters, e.g., x. The i-th component of x will
be denoted by xi. For any s ∈ N, the set of the first s
nonnegative integers is denoted [s] = {0,1, . . . ,s−1}.

For any set X , U(X) denotes the uniform distri-
bution over the set X . For a random variable (or
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distribution) X , we denote the probability density
function (p.d.f.) and cumulative distribution function
(c.d.f.) by fX (·) and FX (·), respectively. We say that
X and Y are (statistically) independent if fXY (x,y) =
fX (x) fY (y), where fXY (x,y) denotes the joint proba-

bility function of X and Y . We denote X1, · · · ,Xn
iid∼D

if the random variables X1, · · · ,Xn are independent
and identically distributed (i.i.d.) according to the
distribution D . We denote the normal distribution
with mean µ and variance σ2 by N (µ,σ2).

For clarity, we describe the definitions of the char-
acteristic function, and χ-squared distribution.
Definition 2.1 (Characteristic Function). If X is a
random variable over R, then for 0 < t ∈ R, the
characteristic function of X is defined as

ϕX (t) = E [exp(itX)] .

Definition 2.2 (χ-squared Distribution χ2
p). Let p be

a degree of freedom. Let X1, · · · ,Xp
iid∼ N (0,1), then

the χ-squared distribution χ2
p is defined as ∑

p
i=1 X2

i .
The p.d.f. and c.d.f. of χ2

p are

fχ2
p
(x) =

1
2p/2Γ(p/2)

xp/2−1 exp(−x/2),

Fχ2
p
(x) =

γ( p
2 ,

x
2 )

Γ(p/2)
,

respectively. Specifically,

f
χ2

2
(x) =

1
2

exp(− x
2
),F

χ2
2
(x) =

γ( p
2 ,

x
2 )

Γ(p/2)

For clarity, we describe Parseval’s theorem and
give a proof to it in Lemma 2.6. For this proof, we use
the n-th root of unity and some useful characteristics
of it.
Definition 2.3 (n-th Root of Unity). For any n ∈ N
and k, j ∈ Z, we define

ω j := exp
(

i
2π j

n

)
, and

ωk, j := ω
k
j = exp

(
i
2πk j

n

)
,

both of which are an n-th root of unity.
Note that ωk, jωk, j = 1, and thus, ωk, j = ω

−1
k, j =

ωk,− j = ω−k, j holds for any k, j ∈ Z.
Fact 2.4. For any n ∈ N and j ∈ Z,

n−1

∑
k=0

ωk, j =
n−1

∑
k=0

exp
(

i
2πk j

n

)
=

{
n ( j = 0),
0 ( j ̸= 0).

Proof. Trivially, ∑
n−1
k=0 ωk,0 = n and ωn

j =

exp(2πi · jn) = 1 hold. Thus, we have

0 = ω
n
j −1

= (ω j−1)(ωn−1
j + · · ·+ω j +1)

= (ω j−1)
n−1

∑
k=0

ω
k
j

Hence, when j ̸= 0, i.e., when ω j ̸= 1, we have
∑

n−1
k=0 ωk

j = ∑
n−1
k=0 ωk, j = 0.

Corollary 2.5. ∀ j1, j2 ∈ Z such that j1 + j2 ̸= 0,
∑

n−1
k=0 ωk, j1ωk, j2 = 0.

Proof. Since ωk, j1ωk, j2 = ωk, j1+ j2 , the corollary fol-
lows from Fact 2.4.

Finally, we state Parseval’s theorem and give a
proof to it:
Lemma 2.6 (Parseval’s Theorem). For any n ∈ N
and j ∈ Z, let x0, · · · ,xn−1 be an n-bit input se-
quence, and let its Fourier coefficients be defined as
F0, . . . ,Fn−1, i.e., Fj := ∑

n−1
k=0 xkωk, j for j ∈ [n]. Then,

we have the following:

n−1

∑
j=0
|Fj|2 = n

n−1

∑
k=0

x2
k .

When n is even:
n
2−1

∑
j=0
|Fj|2 =

1
2
(n

n−1

∑
k=0

x2
k + |F0|2−|Fn

2
|2).

When n is odd:
n
2−1

∑
j=0
|Fj|2 =

1
2
(n

n−1

∑
k=0

x2
k + |F0|2).

Proof. For any n ∈ N and j ∈ Z, we have

n−1

∑
j=0
|Fj|2 =

n−1

∑
j=0

n−1

∑
k1=0

n−1

∑
k2=0

xk1xk2ωk1, jωk2, j

=
n−1

∑
j=0

(
n−1

∑
k=0

x2
k + ∑

k1 ̸=k2

xk1xk2ωk1−k2, j

)

=
n−1

∑
j=0

n−1

∑
k=0

x2
k + ∑

k1 ̸=k2

xk1xk2

n−1

∑
j=0

ωk1−k2, j

= n
n−1

∑
k=0

x2
k (∵ Corollary 2.5)

Thus, when n is even, we have
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n
n−1

∑
k=0

x2
k =

n−1

∑
j=0
|Fj|2

=

n
2−1

∑
j=0
|Fj|2 +

n−1

∑
j= n

2

|Fj|2

= |F0|2 + |Fn
2
|2 +

n
2−1

∑
j=1
|Fj|2 +

n−1

∑
j= n

2+1
|Fj|2

∴

n
2−1

∑
j=1
|Fj|2 =

1
2
(n

n−1

∑
k=0

x2
k −|F0|2−|Fn

2
|2)

Similarly, when n is odd, we have

n
n−1

∑
k=0

x2
k =

n−1

∑
j=0
|Fj|2

=

n
2−1

∑
j=0
|Fj|2 +

n−1

∑
j= n

2+1
|Fj|2

= |F0|2 +
n
2−1

∑
j=1
|Fj|2 +

n−1

∑
j= n

2+1
|Fj|2

∴

n
2−1

∑
j=1
|Fj|2 =

1
2
(n

n−1

∑
k=0

x2
k −|F0|2)

3 OUR ANALYSIS

Our goal of this section is to give a proof of Assump-
tion 2’ stated in Sect. 1.3, which can be obtained as
Corollary 3.4. For the proof, we show in Theorem 3.3
that 2

n (|F0|2−|Fn
2
|2)∼N (0,4) when n is sufficiently

large.

3.1 Building Blocks

We show some useful facts related to the random
variable x∼U({−1,1}). These facts are used for the
proof of Theorem 3.3.

We first show that for x1,x2,x3
iid∼ U({−1,1}),

X := x1x2 and Y := x1x3 are mutually independent.
For general independent random variables x1,x2,x3,
X := x1x2 and Y := x1x3 are not necessarily mutually
independent since both are composed of the common
random variable x1. Interestingly, X and Y are mutu-
ally independent when x1,x2,x3

iid∼U({−1,1}).

Fact 3.1. Let x1,x2,x3
iid∼ U({−1,1}) and X =

x1x2,Y = x1x3, then X ,Y iid∼U({−1,1}).

Proof. We can show that fXY (x,y) = fX (x) fY (y), i.e.,

X and Y are mutually independent, as follows:

fXY (x,y) = P[x1x2 = x,x1x3 = y]

=



1
4 (x,y) = (1,1)

(: (x1,x2,x3) = (1,1,1),(−1,−1,−1))
1
4 (x,y) = (1,−1)

(: (x1,x2,x3) = (1,1,−1),(−1,−1,1))
1
4 (x,y) = (−1,1)

(: (x1,x2,x3) = (1,−1,1),(−1,1,−1))
1
4 (x,y) = (−1,−1)

(: (x1,x2,x3) = (1,−1,−1),(−1,1,1))

fX (x) = P[x1x2 = x]

=

{
1
2 x = 1 (: (x1,x2) = (1,1),(−1,−1))
1
2 x =−1 (: (x1,x2) = (1,−1),(−1,1))

fY (y) = P[x2x3 = y]

=

{
1
2 y = 1 (: (x2,x3) = (1,1),(−1,−1))
1
2 y =−1 (: (x2,x3) = (1,−1),(−1,1))

fX (x) fY (y) = P[x1x2 = x]P[x1x3 = y]

=


1
4 (x,y) = (1,1)
1
4 (x,y) = (1,−1)
1
4 (x,y) = (−1,1)
1
4 (x,y) = (−1,−1)

Fact 3.2. For x ←↩ U({−1,1}) and constant C, we
have

E[exp(iC · x)] = exp(−iC)+ exp(iC)

2
= cosC

3.2 Proof of Assumption 2’

We analyze the distribution of 2
n (|F0|2− |Fn

2
|2), and

then we give a proof of Assumption 2’, which was
stated in Sect. 1.3.

Let us define y0 := 2
n |F0|2 and y n

2
:= 2

n |Fn
2
|2. Then,

we have

y0 =
2
n

(
n−1

∑
k=0

xk

)2

y n
2
=

2
n

(
n−1

∑
k=0

xk(−1)k

)2

Since x0, . . . ,xn−1
iid∼ U({−1,1}), we have E[xk] =

0,V(xk) = E[x2
k ] = 1 for any k ∈ [n]. Thus, by the
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central limit theorem, we have(
1√
n

n−1

∑
k=0

xk

)
n→∞∼ N (0,1), and

1
n
|F0|2 =

(
1√
n

n−1

∑
k=0

xk

)2
n→∞∼ χ

1
1,

where X n→∞∼ D means that the random variable X
follows the distribution D when n→ ∞. Addition-
ally, note that 1

n |F2
n
|2 =

(
1√
n ∑

n−1
k=0 xk(−1)k

)2
also

holds since xk(−1)ks for k ∈ [n] are i.i.d according to
U({−1,1}). However, it is not trivial to analyze the
distribution of y0− y n

2
= 2

n (|F0|2|−Fn
2
|2) since y0 and

y n
2

( 2
n (|F0|2| and |Fn

2
|2) are not necessarily mutually

independent.

3.2.1 The Distribution of 2
n (|F0|2−|Fn

2
|2)

We analyze the asymptotic distribution of z := y0−
y n

2
:= 2

n (|F0|2|−Fn
2
|2) as follows:

Theorem 3.3. Let x0, · · · ,xn−1
iid∼ U({−1,1}), Fj :=

∑
n−1
k=0 xkωk, j for j ∈ [n], and z := 2

n (|F0|2 − |Fn
2
|2).

Then, we have limn→∞ φz(t) = exp(−8t2), i.e., z fol-
lows N (0,4) when n is sufficiently large.

Proof. By a routine calculation, we have

z := y0− y n
2

=
2
n

(n−1

∑
k=0

xk

)2

−

(
n−1

∑
k=0

xk(−1)k

)2


=
2
n

(
n−1

∑
k1=0

n−1

∑
k2=0

xk1xk2 −
n−1

∑
k1=0

n−1

∑
k2=0

xk1xk2(−1)k1+k2

)

=
2
n

(
n−1

∑
k1=0

n−1

∑
k2=0

(1− (−1)k1+k2)xk1xk2

)

=
2
n

(
n−1

∑
k1=0

n−1

∑
k2=0

δk1+k2xk1xk2

)
,

where we define δk := 1− (−1)k, which satisfies

δk =

{
2 k is odd,
0 k is even.

Then, we calculate the characteristic function of z as

follows:

φz(t)

= E

[
exp

(
it

2
n

(
n−1

∑
k1=0

n−1

∑
k2=0

δk1+k2xk1xk2

))]

= E

[
exp

(
it

4
n

n−1

∑
k1=1

k1−1

∑
k2=0

δk1+k2xk1xk2

)]

=
n−1

∏
k1=1

k1−1

∏
k2=0

E
[

exp
(

it
4
n

δk1+k2xk1xk2

)]
(∵ Fact 3.1)

=
n−1

∏
k1=1

k1−1

∏
k2=0

cos
(

t
4
n

δk1+k2

)
.(∵ Fact 3.2)

By using Taylor series expansion, we obtain

lnφy0(t)

=
n−1

∑
k1=1

k1−1

∑
k2=0

lncos
(

t
4
n

δk1+k2

)

=
n−1

∑
k1=1

k1−1

∑
k2=0

(−
8δ2

k1+k2
t2

n2 −
64δ4

k1+k2
t4

3n4 +O(1/n5))

=−8t2 +O(1/n2),

where we use the following fact:
n−1

∑
k1=1

k1−1

∑
k2=0

δ
2
k1+k2

=
1
2

(
n−1

∑
k1=0

n−1

∑
k2=0
−

n−1

∑
k1=k2=0

)
δ

2
k1+k2

=
1
2

(
n2

2
·4−0

)
= n2.

Therefore, we have

lim
n→∞

φy0(t) = exp(−8t2)

3.2.2 Proof of Assumption 2’

As stated in Sect. 1.3, a proof of Assumption 2’ can
be obtained as a corollary of Theorem 3.3
Corollary 3.4 (Proof of Assumption 2’). Let
x0, · · · ,xn−1

iid∼U({−1,1}), Fj := ∑
n−1
k=0 xkωk, j for j ∈

[n] and z := 2
n (|F0|2−|Fn

2
|2). Then, we have

lim
n→∞

n
2−1

∑
j=0
|Fj|2−

n2

2
= 0.

Proof. By Parseval’s theorem (Lemma 2.6), we have
n
2−1

∑
j=0
|Fj|2 =

1
2
(n2 + |F0|2−|Fn

2
|2)

=
n2

2
(1+

1
n
· z),
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where z := 2
n (|F0|2 − |Fn

2
|2). By Theorem 3.3, z ∼

N (0,4) holds when n→ ∞. Thus, we have z = O(1)
when n→ ∞, and the corollary follows.

3.2.3 Experimental Verification

We showed in Theorem 3.3 that z := 2
n (|F0|2−|Fn

2
|2)

distributes according to N (0,4) when n is sufficiently
large. We now empirically verify how accurately z
distributes according to N (0,4) when we set n =
100000. We generate 5000 sets of input sequences
x0, . . . ,xn−1

iid∼ U({−1,1}) by the default PRNG in
R (Comprehensive R Archive Network, 2022), and
then calculate 5000 samples of z. Fig. 1 shows the
empirical c.d.f. of the samples of z and the theoretical
c.d.f. of N (0,4). We can observe that they match
well, although not perfectly. It is sufficient to con-
clude that z = O(1), which is required for the proof of
Corollary 3.4.

Figure 1: Experimental verification of Theorem 3.3.

4 CONCLUSION

Iwasaki (Iwasaki, 2020) proposed a novel analysis to
solve the long-standing problem of the DFT test under
the 3 heuristic assumptions described in Sect. 1.2. In
this paper, we showed that Assumption 2, which is
also required for Assumption 3, holds when n is suf-
ficiently large. The rest of the heuristic assumptions
remain unproved, and they remain future work.
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