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Abstract: This work presents an integrated recommendation system capable of providing support in healthcare critical
environments such as Intensive Care Units or Stroke Care Units using Machine Learning techniques. The
system can manage several patients by reading monitoring hemodynamic data in real-time, presenting current
death risk probability, and showing recommendations that would reduce such probability and, in some cases,
avoid death. This system introduces a novel method to produce recommendations based on genetic models
and supervised machine learning. The interface is built upon a web application where clinicians can evaluate
recommendations and straightforwardly provide feedback.

1 INTRODUCTION

Stroke is one of the leading death causes in the world.
It is a cerebrovascular disease that can produce death
and long-term severe disabilities (Wang et al., 2016).
There are two stroke sub-types: hemorrhagic and is-
chaemic. Hemorrhagic strokes are caused by a ves-
sel rupture, while ischaemic strokes are provoked
by blood clots occluding brain arteries (Alexopoulos
et al., 1999). According to the World Health Orga-
nization (WHO), 6.2 million people pass away ev-
ery day by strokes, the second main cause of death
worldwide and the third prominent cause of disability
(World Health Organization, 2018).

On the other hand, Artificial Intelligence (AI)
based applications are exponentially growing nowa-
days, used in many areas such as marketing, trans-
portation, agriculture, education, medicine, etc. Re-
garding medicine and healthcare, it is stated in (Jiang
et al., 2017) that clinicians might be replaced by AI
systems at some point, although this will not happen
in the short term. However, AI-based recommenda-
tion systems are gaining trust as assistance methods
to clinicians to help them make better decisions and,
therefore, improve the possible outcome of the patient
(Asan et al., 2020).

In this work, we propose a real-time recommen-
dation system that can be used in an Intensive Care
Unit (ICU) or a stroke care unit, designed to reduce

the death risk probability and, in some cases, avoid
death. Our framework has been conceived for patients
admitted to the hospital within the first 48 hours after
suffering a stroke attack. The AI behind our system
uses hemodynamic data to produce a death prediction
model along with a real-time recommendation system
that can predict current exitus (death) risk and recom-
mend new possible patients’ states that would not lead
to exitus. These “states” are presented as recommen-
dations to the clinicians in the form of possible hemo-
dynamic values for the patient that should potentially
reduce the exitus risk. Obviously, the clinic staff must
carefully examine and validate this new state.

To build the predictive model, the AI module is
fed with data collected from a Philips PIIC iX mon-
itoring center installed in the stroke care unit of the
Hospital Universitario La Princesa since 2017, where
around 800 patients have been successfully moni-
tored. Patients’ data have been stored in a semi-
structured SQL Database so it can be pre-processed,
modeled, and read in real-time by this recommenda-
tion system. This paper focuses on describing the rec-
ommendation system as a high-level application de-
ployed at the stroke care unit mentioned above. Intrin-
sic technical details about the predictive model defi-
nition are detailed in (Garcı́a-Terriza et al., 2021).

The paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 presents the high-
level architecture and design of the recommendation
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system. Next, Section 4 illustrates the simulations
performed to test our hypotheses and shows the re-
sults obtained for different patients. Finally, Section
5 draws some conclusions and introduces future work.

2 RELATED WORK

There is an increasing amount of research work where
diverse artificial intelligence techniques and models
are considered in critical health environments, assist-
ing clinicians in evaluating the current health status of
the patient or recommending possible treatments, tak-
ing into account the patient’s history. In the following,
we mention some relevant contributions.

(Moghadam et al., 2020) aim to predict hypo-
tension events using a Logistic Regression model in
an ICU environment. With a minimum of 5 minutes
of physiological data monitoring, the system outputs
the eventual risk of a hypo-tension crisis in the short
term. In (Nemati et al., 2018), the authors developed a
framework based on artificial intelligence to predict a
sepsis crisis event in advance from 4 to 12 hours. Us-
ing real-time monitoring from several hospitals and
a Weilbull-Cox proportional hazard model, they ob-
tained an accuracy between 56% and 72%, depend-
ing on the temporal window and the experiment. In
the same line, (Lukaszewski et al., 2008) attempted to
predict sepsis in patients who received surgery and
were admitted to ICU afterward. Using data from
daily blood analysis and PCR markers from 92 pa-
tients, they trained a neural network model, obtaining
an average accuracy of 83% in a range from 1 to 4
days before clinical diagnosis.

Closer to our research, other studies try not only to
predict critical events but also to provide or offer rec-
ommendations to clinicians. To compare and analyze
the current state of the art with our approach, we have
included Table 1, where similar works regarding rec-
ommendation systems in ICU environments are pre-
sented. The comparison has been performed taking
into account four main aspects: (i) the system is de-
ployed in ICU, (ii) the current health status of the pa-
tient is an input to the system, (iii) the system has
real-time capabilities, and finally, (iv) the technique
or algorithm used in the study.

As Table 1 shows, (Utomo et al., 2019) train
a Bayesian model using Reinforcement Learning to
predict the best treatment for the patient in the ICU.
The resulting model is used in real-time in ICU us-
ing patient monitoring data as input for the system.
(Neloy et al., 2019) perform classifications of criti-
cal patients in ICU by using association rule mining
and K-Nearest Neighbors to reduce patient mortal-

ity risk. As the system is deployed on a Cloud en-
vironment, the system is capable of being retrained
while the system is running and replacing the previ-
ous model with the new one. In (Chen et al., 2016),
the authors propose an approach capable of provid-
ing recommendations based on the Electronic Medi-
cal Record (EMR) upon the patient’s admission. Rec-
ommendations are not based on the ongoing status of
the patient nor their current health status but their his-
torical record. (Masud et al., ) recommend medica-
tions for critical care patients by using the first 24
hours of monitoring data and comparing them with
the historical patient database. This work produces,
therefore, a one-shot recommendation. (Varatharajah
et al., 2020) propose a recommendation system based
on reinforcement learning to support the clinical man-
agement of COVID-19 patients. The system predicts
the severity of the COVID-19-infected patients and
then helps with their treatment. Finally, (Thong et al.,
2015) aim to diagnose patients’ disease from given
symptoms. They have used intuitionistic fuzzy sets
and a recommendation system to achieve such a pur-
pose, improving standalone methods of state of the
art.

Our work proposes a real-time recommendation
system capable of predicting current death risk and
providing recommendations that would reduce such
risk. We achieve that using (i) real-time data mon-
itored by the patient, (ii) a trained machine learning
model, and (iii) a genetic algorithm. In terms of ca-
pability to track and advance the health status of the
patient, our study, along with (Utomo et al., 2019),
and (Neloy et al., 2019), are the most complete sys-
tems as they are capable not only of operating in an
ICU environment but also to read patient’s monitoring
data in real time and provide recommendations about
the control variables, each one on its corresponding
area. The rest of the works presented lack this real-
time component which is fundamental to assist the
clinicians at every moment while the patient is admit-
ted to the hospital. Another relevant advantage of our
method is the minimum required time to produce rec-
ommendations or diagnoses. While (Masud et al., )
require patient monitoring for the first 24 hours, our
work, on the contrary, needs a minimum monitoring
time of 2 minutes and a half. Finally, previous works
have not addressed the complex process of dealing
with real-time continuous hemodynamic signals that
present artifacts and produce vast data. At the same
time, our recommendation system can manage hemo-
dynamic data from hospitalized patients.
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Table 1: Definition of hemodynamic variables used. The acronyms used are: RL (Reinforcement Learning), KNN (K-Nearest
Neighbors), DM (Data Mining), NB (Naive Bayes), FL (Fuzzy Logic), RF (Random Forest), and GA (Genetic Algorithm).

Reference System in ICU Patient’s data ingestion Real-time Algorithm
Utomo et al. Yes Yes Yes RL
Neloy et al. Yes Yes Yes KNN
Chen et al. No No No (one-shot) DM + NB

Masud et al. Yes Yes (24h) No KNN
Varatharajah et al. No No No (one-shot) RL

Thong et al. No No No FL
Our Work Yes Yes Yes RF + GA

3 SYSTEM ARCHITECTURE
AND DESIGN

The recommendation system presented in this work
uses a death risk model based on machine learning
techniques that have been proved to predict patients’
exitus probability with an F-Score performance above
98%, tested within the first 48 hours after patient’s ad-
mission (Garcı́a-Terriza et al., 2021). It is capable of
predicting current death risks in real time for every
patient who is being monitored. Our method uses a
genetic algorithm to find the pseudo-optimal state of
the patient’s hemodynamic system, reducing the ex-
itus risk. The genetic algorithm evaluates different
states through a patient in-silico model defined with
machine learning techniques described in the follow-
ing subsections. And the last part of the recommenda-
tion system is the presentation to the clinicians, which
is done through a web interface where clinicians may
review the current patient’s status, the death risk, and
the recommendations, so the death risk is reduced.

Figure 1 depicts our system architecture. Firstly,
hemodynamic data is consumed by the recommenda-
tion system, which is connected to a SQL Database
where the monitoring center Philips PIIC iX stores
patients’ monitored data in real time. Secondly, the
recommendation system publishes a web interface
with two main purposes. On the one hand, it pro-
vides clinicians with an interface to add static vari-
ables of the patient. On the other hand, a visual in-
terface shows current risks and recommendations for
each patient admitted to the stroke care unit. These
components are detailed in the following subsections.

3.1 Model

As mentioned before, the recommendation system
uses a machine learning model to predict the patient’s
current death risk based on the patient’s hemody-
namic variables at that moment. The machine learn-
ing model has been trained from the patient’s hemo-

Figure 1: High-level system architecture.

dynamic data and static features. The set of Hemo-
dynamic variables are described in Table 2, whereas
the static features are shown in Table 3. The categori-
cal input variables were coded as numerical variables,
so the model input is suitable for machine learning
and deep learning algorithms. Hemodynamic data
may present inaccurate measurements as it is gath-
ered from sensors. Hence data is preprocessed before
using it for training/testing or production purposes.

Preprocessing is compounded of three stages: (1)
missing values filling, (2) outlier values removal, and
(3) standardization. The first stage substitutes missing
values (null values) with the mean of that same pa-
tient and variable. The second stage replaces values
by the mean when those values are greater or equal
to four times the standard deviation. Finally, the third
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preprocessing stage consists of applying the Z-Score
standardization to the input values of the model. This
last stage is especially relevant as variables compre-
hend different orders of magnitude, which might lead
to sub-optimal training.

Algorithm selection is one of the key points of the
study. One of our objectives was to find the best type
of machine learning or deep-learning algorithm for
this problem. We aim to predict the patient’s exitus
based on the pair of hemodynamic data and static fea-
tures. These were the algorithms tested:

• Logistic Regression

• Naive Bayes

• Support Vector Machines (SVM-SVC)

• Tree-based algorithms: Decision Trees (CART),
Random Forests, and Gradient Boosting Trees

• Distance-based algorithms: K-Nearest Neigh-
bors, Dynamic Time Warping + 1-NN.

• Multi-Layer Perceptron Neural Network

• Deep Neural networks: 1D Convolutional Neural
Network (CNN 1-D), Long-Short Term Memory
(LSTM)

Out of all these algorithms, the ones that per-
formed the best were the tree-based algorithms, fol-
lowed by the Deep Neural Networks. The final algo-
rithm chosen, and the one used in this recommenda-
tion system was the Gradient Boosting Trees, which
performed the highest F1-Score, a 98.5%. Every
training and testing procedure was done using the K-
Fold cross-validation method with K=5 to avoid over-
fitting and independent results from training and test-
ing datasets.

As input data used in this work involves a partic-
ularly relevant time component, time windows while
training models became a bottom-line condition. Af-
ter training a large variety of models within different
time windows, we found the approach of training one
model for each hour since the patient’s admission as
the most feasible on both computational and perfor-
mance aspects. Thus, every model would be most ac-
curate in its specific time window.

For further details of the data preprocessing, train-
ing/testing process, and results, see (Garcı́a-Terriza
et al., 2021).

3.2 Recommendation Algorithm

The most challenging part of the system was finding
the patient’s clinical state to minimize the death risk
probability. As described in Table 2, seven hemody-
namic variables are continuously monitored and are
candidates to be adjusted, so the patient’s exitus odds

are reduced. Hence, our system must search for valid
combinations, from a clinical point of view, of those
seven physiologically relevant variables that would
not lead to a patient’s exitus in a short-term period.
The number of combinations of seven numerical vari-
ables is not computationally feasible in near-real-time
situations, so we figured out an algorithm to search
the solutions space and find possible values for each
patient. To this end, we have designed a genetic
algorithm-based method that offers possible combi-
nations that meet the clinical requirements.

A genetic individual is comprised of the seven
hemodynamic variables monitored from the patient
and loaded in the exitus risk model. The initial popu-
lation is created by producing random values for each
variable in every individual. Random values genera-
tion is controlled within their respective physiological
limits. For instance, it makes no sense to generate an
individual composed of cardiac frequency above 220
bpm (beats per minute) or oxygen saturation level less
than 80% or greater than 100%. These conditions are
also fulfilled at the gene mutation phase. The most
relevant part of a genetic algorithm is often the fitness
function, which must evaluate individuals objectively
and quantify them. In our case, the fitness function is
defined as the combination of probabilities from sev-
eral exitus models since we have computed different
models for different temporal monitoring windows.
Altogether provide a probability that must be mini-
mized and ensure that, according to all the models,
the individual has a p probability of becoming an exi-
tus defined as:

p =
n

∏
i=1

(1−mi) (1)

where mi is the death probability given by the i-
th death risk model between 0.0 and 1.0 and n is the
number of models (or temporal monitoring windows)
included in the system. As the genetic model tries to
maximize the fitness function, the death probabilities
are subtracted from 1.

Our genetic algorithm uses a one-point crossover
function, where a point between the seven variables
is randomly chosen for pairs of individuals so that the
left part of the first individual is merged with the right
part of the second individual. The right part of the
first individual is merged with the left part of the sec-
ond one, forming two children. Elitism is applied to
ensure that the best individuals are not lost between
generations by preserving a reduced group of the best
individuals after each generation.

All the individuals that have survived at the end
provide several states of the patient that, in turn, de-
fine a set of acceptable solutions to our problem, i.e., a
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Table 2: Definition of hemodynamic variables used.

Variable Abbreviation Type Role Description
Rhythm Estimation RE Categorical Input A Rhythm Indicator

VE VE Numerical Input Ventricular extra systole
CF CF Numerical Input Cardiac Frequency

Breathing Frequency BF Numerical Input Respiratory Rate
Perf Perf Numerical Input Pulmonary Perfusion

SpO2 SpO2 Numerical Input Oxygen Saturation
ST-II ST Numerical Input Syst. Time Interval Index

Table 3: Definition of patient’s static variables used.

Variable Abbreviation Type Role Description
Age Age Categorical Input Ischemic/Hemorrhagic

Gender Gender Categorical Input Male/Female
Monitoring time MT Numerical Input Monitoring observation number
Type of Stroke TS Categorical Input Ischemic/Hemorrhagic
Risk Prediction RP Numerical Output Exitus probability

Figure 2: Patient features input form.

combination of seven hemodynamic values that min-
imize the death probability of a patient in near-real-
time situations. These solutions generated by the sys-
tem are the recommendations offered to the clinicians
through the web interface.

3.3 Visual Interface

To end this Section, we will describe the web interface
and the defined action protocol for clinicians.

As mentioned in previous subsections, a set of
static variables is not available automatically. Thus,
they must be added to the system manually by clin-
icians every time a patient is admitted to the stroke
care unit. Figure 2 presents the web interface where
the patient’s age, gender, and stroke-subtype features
can be inserted. Age is limited to integer numbers be-
tween 20 and 100. Gender is delimited to biological
genders, male and female. The stroke type is catego-
rized into hemorrhagic, ischaemic, and stroke mim-
ics (this last one refers to events initially diagnosed
as ischaemic stroke with non-cerebrovascular causes).
In Figure 2, the number “9858406” identifies the pa-

tient’s MRN (Medical Record Number), which is au-
tomatically provided by the registration system.

Lastly, we have defined an action protocol for clin-
icians comprised of a set of repeating steps for every
patient. After an acute stroke, the patient is admitted
to the stroke care unit, where they are signed up in the
infirmary and begin to be monitored. The patient will
start showing up on the recommendation system web
interface, where the patient features must be inserted.
At this point, the clinicians must intervene and add the
patient’s features. Since this process is manual, the
clinicians must check the patient’s dashboard at least
once per day. Once features have been inserted, the
system will start providing the current risk and rec-
ommendations. Finally, when recommendations are
available, the clinician can analyze the suitability of
these recommendations from a medical point of view
and provide positive feedback. This feedback will be
used in the future to fine-tune the recommendation
systems and improve the clinician’s satisfaction.

4 EXPERIMENTS

Our experimental work has processed patients with
acute stroke monitored at the stroke unit of the Hospi-
tal Universitario de La Princesa (Madrid, Spain). In-
clusion criteria were: all patients with acute stroke
admitted to the stroke unit of the hospital and who
are susceptible to noninvasive multiparameter moni-
toring, according to the clinical protocols in force in
the aforementioned unit. Exclusion criteria were: pa-
tients admitted to the stroke unit for scheduled proce-
dures or other processes other than the acute phase of
stroke; no possibility of monitoring (technical prob-
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lems, damaged monitoring equipment, patient intol-
erance/agitation); loss of data due to error in patient
coding; poor quality of data recording.

In this section, we will first introduce experiments
from a technical and computational point of view, and
finally, we will present the system’s web interface.

Our experimental work has covered a broad spec-
trum of patient features (age, stroke type, and gender)
to validate the accuracy of the recommendation sys-
tem. However, due to space limits, we will present
cases of study aggregating by age ranges of 10 years,
combining with the two-stroke subtypes, ischaemic
and hemorrhagic. Another combination would be the
patient’s gender. Still, to keep the table size down, we
have decided to aggregate by mean, as there are no
relevant variations between genders.

All the experiments were run using the same ge-
netic model parameters and the same set of death risk
prediction models for every case. The initial popula-
tion is 20 individuals, the individual mutation proba-
bility is 20%, and the gene mutation probability, eval-
uated for each gene compounding the individual, is
10%. The cross probability between two individuals
is 50% using the one-point cross method, which is se-
lected randomly between the existing possible cross-
points. Finally, the genetic model is executed with
a maximum of 20 generations, defined after several
tests as sufficient to reach a stable solution. There is
elitism where the three best individuals are preserved
between generations.

Table 4 shows aggregated results from our exper-
iments for each age range and stroke sub-type (hem-
orrhagic and ischaemic). As it may be seen, the op-
timal solution found by the algorithm (i.e., the best
individual found) presents no exitus (death) risk like-
lihood in almost every case, according to the models
used in the genetic algorithm. As age rises, the ge-
netic algorithm takes more generations to find opti-
mal solutions, which seems reasonable as the exitus
risk grows proportionally with age. Therefore solu-
tions are harder to be found if they exist. The results
also show that the stroke sub-type is a relevant feature
of the study case, as exitus risk is higher in hemor-
rhagic cases than ischaemic, making it harder for the
algorithm to find optimal solutions. Typically, the op-
timal solution is found within the first five generations
when the patient is younger than 70 years or suffers
an ischaemic stroke.

In terms of computation, as individuals are not
compounded of a significant number of genes, the
population size is relatively reduced (20 individu-
als). Usually, optimal solutions are found within
the first five generations. Simulations are computed
fast enough to provide results in a short-term period

that offers the recommendation system near real-time
characteristics. As stated before, the solutions found
by the genetic algorithm are, at last, the recommenda-
tions provided to clinicians.

A web interface displays the formerly presented
results. The interface must provide information about
the patient’s current status, clinical recommendations
to improve such status, and a mechanism to send feed-
back about the recommendations. Figure 3 depicts the
all-patients dashboard where previous requirements
are satisfied. First, the static feature insertion process
required for every patient on admission may be spot-
ted in (1), stating ”Insert patient information”. Re-
garding the patient risk information, in (2) and (3),
the real-time exitus likelihood and the historical accu-
mulated exitus likelihood of the patient are displayed,
respectively. The main goal of showing the histori-
cal risk is to provide a statistical marker that can be
used to compare with the current risk and evaluate
the evolution of the patient. Next, to see the recom-
mendations generated for a patient by the system, the
clinician should click on (4). A drop-down appears
depicting a table where the last observation (5) and
recommendations (6) are displayed. Aiming to reduce
the number of recommendations, we decided to limit
it to 3 unique recommendations at maximum. When
the clinician considers the recommendation suitable
for medical criteria, the clinician must click on (7),
changing the icon’s color as shown in (8). Finally, if
the patient has been monitored for less time than the
predefined temporal window or the input monitoring
data are incomplete, the system shows a message in
the interface stating, ”Wait a few more seconds for
results”.

5 CONCLUSION AND FUTURE
WORK

This study has demonstrated that our recommenda-
tion system can diagnose death risk probability in
real-time for hospitalized patients and provide recom-
mendations in near real-time, which may be of as-
sistance to clinicians. Using genetic algorithms, we
have developed a model that can find suitable solu-
tions for each patient within a short period of time.
The system’s recommendations may help clinicians
decrease the outcomes of the stroke in ICUs or stroke
care units, and, in some cases, those recommenda-
tions may help save the patient’s life. In terms of ar-
chitecture design, this system is quite flexible as its
core is based on a bundled machine learning model,
which may be changed by a different model built
of almost any other underlying technology such as,
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Table 4: Experiments results.

Age Range Stroke sub-type Generations until best individual Average risk Best individual risk
[40,50) Ischaemic 2 0.29 % 0.0 %
[40,50) Hemorrhagic 3 0.41 % 0.0005 %
[50,60) Ischaemic 1 0.5 % 0.0 %
[50,60) Hemorrhagic 3 0.55 % 0.0001 %
[60,70) Ischaemic 2 0.748 % 0.0 %
[60,70) Hemorrhagic 3 0.0085 % 0.0001 %
[70,80) Ischaemic 4 0.5 % 0.04 %
[70,80) Hemorrhagic 20 36.3 % 34.1 %
[80,90) Ischaemic 3 0.32 % 0.075 %
[80,90) Hemorrhagic 20 33.8 % 26.5 %

Figure 3: Web patient dashboard view.

for instance, deep learning or reinforcement learn-
ing, without changing the overall architecture. This
could lead to enhancements in the model section in
the future, which is crucial to reduce outcomes and
mortality. Further improvements in architecture and
computation capabilities would imply implementing
the architecture on the (Public) Cloud, adding new
parts to the architecture, and decoupling some compo-
nents. A Cloud-based architecture would reduce the
maintenance load and make more accessible the auto-
mated deployment of new retrained models based on
the feedback and real-time results.

Our next step consists of deploying the recom-
mendation system in the stroke care unit of the Hos-
pital Universitario La Princesa. This installation com-
prises the connection to the production SQL Database
so that the system can read the patient’s hemodynamic
data in real-time and the web publishing within the
hospital networking systems. Furthermore, the clin-
ician feedback through the web must be stored on a

persistent device that should be easily accessible, so
reports are available. The clinician information will
be analyzed to improve the recommendation system
procedure by using clustering and segregation of the
different patient clusters.
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