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Abstract: The Canadian Armed Forces (CAF) uses ammunition of various types for both training and operations. We in-
troduce a Discrete-Event Simulation (DES) model, named Future Event Ammunition Stockpile Tool (FEAST),
to explore issues regarding anticipated stockpile drawdown and resupply. Schedules for military training and
operations and associated ammunition demands are stochastically defined as inputs to FEAST, as are budgets,
various reorder policies and other inventory management parameters. Outputs of FEAST enable statistical
characterization of various performance attributes, including anticipated fulfillment of demands and costs over
time. FEAST is designed to be flexibly used by practitioners to answer “what if” type questions. This paper
provides an overview of FEAST and illustrates a simplified scenario where a single nature of ammunition is
required to simultaneously fulfill demands from several training types and military missions, for which several
resupply options are to be explored.

1 INTRODUCTION

1.1 Background

Live ammunition is foundational for projecting mil-
itary power and it is used by modern militaries in
the context of Force Generation (FG) (i.e., military
training at individual and collective levels) and Force
Employment (FE) (i.e., during employment of mili-
tary forces in operational theatres). Adequate stocks
of ammunition are required to meet future demands,
which generally are only partially known. Procure-
ment of ammunition supply to meet this demand is
complicated by many factors: long procurement lead
times (of months to years), high costs, technological
obsolescence, finite shelf life, limited industry pro-
duction capacity, and stringent storage requirements
which limits storage capacity. Mindful of these un-
certainties and complicating factors, stockpiles of am-
munition help to ensure adequate fulfillment of am-
munition requirements over time by creating a buffer
between the receipt of incoming supplies and the al-
location of these supplies to meet demands. In so
doing, the costs of maintaining stockpile levels, as
well as management and storage constraints, must
also be balanced with risks associated with falling
below stock level thresholds. Taken together within
a dynamic system with multiple stakeholders that

changes over time all of these issues make it chal-
lenging for practitioners to understand and commu-
nicate the marginal impacts of changing conditions,
support decision making, and set new performance
targets, management policies, or forward plans.

To help improve the management of ammuni-
tion, the Centre for Operational Research and Anal-
ysis (CORA), part of Defence Research and Develop-
ment Canada (DRDC), undertook to aid the Depart-
ment of National Defence (DND) and the Canadian
Armed Forces (CAF) with determining the need for
various ammunition types (i.e., natures) and address
stockpiling questions pertinent to particular fleets and
across the force structure where approximately 400
various natures are used. To support this we designed
a stockpile simulation tool, which is named Future
Event Ammunition Stockpile Tool (FEAST).

FEAST is a Discrete-Event Simulation (DES) tool
that aims to be flexible and general, with parameters
being described by probability distributions where ap-
propriate, allowing both demand and supply to be
stochastic processes. Prices, including penalties for
stockout, are incorporated and parameters can change
over time. For example, annual budgets can be set,
and demands and procurement can be defined in time
windows. FEAST intentionally has limited analysis
features built-in to keep focused scope, and outputs
sufficiently rich data for subsequent post-processing
and analysis.
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1.2 Outline

This paper contains four more sections and one ap-
pendix. Section 2 provides an outline of the stock-
piling problem, related work, and the implementation
of FEAST, which touches upon the DES modelling
paradigm, the main assumptions and modeling fea-
tures, and the inputs and outputs. Section 3 intro-
duces a notional case study pertinent to a segment of
the CAF which has been simplified, altered and re-
stricted to a single ammunition nature for purposes of
presentation herein. For example, demand has been
modified from a subset of FG and FE requirements.
Section 4 includes a discussion on practical consid-
erations for usage of the tool, limitations and some
aspects under development. Concluding comments
are made in Section 5. Finally two verification cases
are presented in the Appendix for which the simu-
lated output can be compared to the expected annual
steady-state demand for ammunition.

2 THE FUTURE EVENT
AMMUNITION STOCKPILE
TOOL

FEAST is driven in a “black box” manner by specify-
ing inputs. Here we sketch some approaches to stock-
piling and introduce the key features and elements of
FEAST.

2.1 Approaches to Stockpiling

Approximate Dynamic Programming (ADP) is a
widely used approach for operational research ques-
tions involving sequential decisions under uncer-
tainty. ADP has been applied to help optimize in-
ventory management policies (Powell, 2009) and to
address a variety of other challenges facing the mil-
itary (Rempel and Cai, 2021). At its core, ADP is
a discrete-time approach where the state of the sys-
tem transitions under a decision based on observed
information and there is a cost/reward associated with
how decisions play out. With these elements ADP
attempts to find functions, or policies, that optimally
map the k-th state to the k-th decision. In terms of
stockpiling, the state encodes the stockpile, the infor-
mation is the (generally stochastic) demand over the
time period, the decision is the amount of ammuni-
tion to purchase in that time step, and the costs are
ordering, storage, and stockout penalty (real or vir-
tual) costs. While ADP is a powerful and general
framework, demand is required as an input, a suit-
able time step size selected, and constraints on good

policies to be searched for imposed. Here we will
be focusing on more primary concerns, considering
a rolling-horizon approach (Powell, 2009) to gener-
ate demand and ask “what if” questions, leaving opti-
mization concerns and approaches that further exploit
these elements for future work.

For ammunition stockpiling, more pedestrian ap-
proaches are often taken due to the numerous con-
straints, complicating factors, and unknowns in-
volved. For example, one complicating factor is
that a national stockpile is not a single reserve,
but is partitioned into several sub-stockpiles, includ-
ing those reserved for ongoing operations, train-
ing, war contingency, experiments and disposal (see
page 77 of (Brown, 2008)). Additionally, stock-
piles are physically partitioned and located in differ-
ent places geographically, e.g., at continental hold-
ings, off-continent support hubs, and deployed bases
(Bacot, 2009). Another complicating factor is man-
ufacturer stockpiles awaiting sale and partner stock-
piles are “potential” stockpiles as they are extant but
there may be limited visibility into, and uncertainty
ability to draw from, these sources and it is difficult
to model such situations. Ref. (Guy, 2010) discusses
a number of issues for strategic stockpiling in a North
Atlantic Treaty Organization (NATO) context that can
pose severe modelling challenges. One issue, for
example, is that “engagements may not follow pre-
conceived doctrine”. This issue can result from the
evolution of asymmetric warfare capabilities and em-
ployment approaches, to include “overkill” weapons,
where precision or battle decisive munitions to engage
unmounted opponents may undercut existing battle
assumptions. A recent example of this is the use of
drones in Ukraine as loitering weapons, for recon-
naissance, and to improve artillery precision (see, for
example, Ref. (Vershinin, 2022)).

Since stockpiles sit between ammunition supply
and ammunition demand, these two fundamental as-
pects are often treated separately in the construction
of models. However, with FEAST we enable the
modeling of both aspects together.

To determine the demand there are two ap-
proaches used by NATO members, the Target Ori-
ented Methodology (TOM) and the Level of Effort
(LoE) methodology (Andrews and Hurley, 2004; Guy,
2010). TOM requires a precise list of targets, a list
of the targeting platforms, as well as probability of
single shot or multiple shot kills. As such TOM can
be onerous to work with and validity depends an the
adequacy of the lists and success models. On the
other hand LoE takes an intensity level, which sets
a usage rate, and duration to determine demand—
where the number of days at given intensity, multi-
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plied by the usage rates for the intensity levels, pro-
vides the overall demand. The overall demand for a
scenario mixture that falls under mandated capability
informs stockpiling questions, and procurement con-
straints will be contrasted with the expected demands.

We take an approach that is similar to LoE, in that
we look at demands over time, but we explicitly in-
clude supply side concerns in order to include time
dynamics and consider the full stockpile problem. We
chose this approach in order to capture the essence of
the stockpile problem, allowing “what if” questions
to be asked.

2.2 Approach: Discrete-Event
Simulation

The general stockpile problem, with interacting
stockpiles which sit between a (stochastic) demand
and a (stochastic) supply, can be modeled as a
Stochastic Proccess (SP), which in turn can be sim-
ulated using DES (Nance, 1996).

Systems that can be modelled such that they are
characterized by a state that changes at discrete times
can be simulated by a DES, where future events
are stored in a future event set and one moves be-
tween these events. An “event” denotes a process
that changes the state and, in general, events can
place other events on the future event set making
the approach powerful (as this allows recursion the
DES paradigm is Turing-complete). A DES initial-
izes events on the future event set and takes the first
event from the set, changing state and jumping be-
tween events on the set until no more events are left in
the set. When multiple events occur at the same time
a priority associated with the event dictates which is
computed first. Note that SPs can be implemented by
DES, as a SP is constructed from a collection of ran-
dom variables and instances of the SP can be created
by using an event set.

See Section 14.5 of (Devroye, 1998) for complex-
ity analysis of DES for various special cases; here,
regarding computational burden, we simply note that
large jumps can occur in time, and computations only
occur at state changes, and so DES can be computa-
tionally efficient if the system can be modelled by a
limited number of events. Below, in Section 2.3, we
will describe the modelling choices FEAST makes to
maintain a measure of efficiency.

2.3 Demand Modelling Choice in
FEAST

DES can be highly effective, if one can model one’s
scenario with a limited number of events. For stock-

piling there are two main types of events: resupply
(i.e., orders) and demand. Resupply events, which in-
troduce new ammunition into a stockpile, are essen-
tially infrequent impulse events and therefore are well
suited to DES. Demand on the other hand is, gen-
erally, a sub-daily event which, if modelled on this
scale, would lead to voluminous events.

As future demand is often poorly understood and
a high resolution demand model is generally not sup-
ported by evidence or rational considerations we con-
sider a simplified, yet flexible, approach. We model
demand as a train of impulses, where demand over a
duration is concentrated to the start of sub-intervals.
In the simplest case, the total demand for a full FG or
FE activity is placed at the start of the interval. When
an activity spans multiple years, and when placing
the demand only at the start of the interval does not
make sense (e.g., one is interested in annual bud-
gets), FEAST allows the duration of an activity to
be broken down into sub-intervals by setting an inter-
val attribute (e.g., a five-year operation with demand
changing annually). Setting this interval allows us to
increase the modelling fidelity and time resolution,
as evidence allows and needs dictate, at a computa-
tional cost. Currently fixed or random intervals can
be set to define sub-demands. In principle, FEAST
can be extended to allow additional modelling op-
tions such as Markov-Modulated Poisson Processes
(Ghanmi, 2016), which transitions between periods of
differing operational tempo, each of which are char-
acterized by an intensity level modelled by a Poisson
process.

2.4 Overview of FEAST

FEAST captures the essence of the stockpile prob-
lem as follows. Vignettes describe activities that have
a demand for ammunition. Ammunition demand is
filled from stockpiles. Stockpiles can hold various
types of ammunition. As discussed later, depending
on the scenario to be modelled, stockpiles can be re-
lated to one another other by encoding the relation-
ships between them. Stockpiles are filled via orders
and reorders. Orders and reorders can take place at
fixed intervals, at fixed instants in time, or they can be
triggered based on stockpile levels. Order and reorder
quantities can be set as inputs or determined based on
a predetermined logic that takes into account various
factors such as stock levels and orders awaiting ar-
rival. Lead times can also be associated with orders
and reorders.

Annual purchase budgets can be set. Order costs
are tracked and are constrained by these purchase
budgets. As such, orders and reorders will not oc-
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cur once the annual budget is reached. Ammunition
storage costs and subjective penalty costs associated
with the occurrence of each stockout (and the amount
of demand that is unfulfilled each time a stockout oc-
curs) are also tracked, but they are not constrained by
a budget. This design decision is based on order costs
being a key discretionary variable, while storage costs
are more soft as facilities and staffing are mandated by
CAF guidance while penalties are virtual costs used to
quantify costs of stockout risk.

Over the course of a FEAST simulation statis-
tics describing the state of the system and its vari-
ous stockpiles are tracked over time, this includes the
tracking of information about stock levels, stockouts,
costs, and the ability of each stockpile to meet de-
mand.

Time is modelled in terms of days and uniform
years (i.e., no leap years). The time horizon to sim-
ulate over is provided as an input, and the user can
optionally prescribe a burn-in duration to remove the
effect of initial conditions on steady-state simulation
results. See the Appendix for more information about
burn-in.

A key design choice in FEAST is to allow use
of probability distributions to describe input param-
eters, where appropriate. For example, the duration
of a vignette, the quantity of ammunition demanded,
and lead times for ammunition delivery can be pre-
scribed by setting a scalar or by selecting a Discrete
Choice, Poisson, Triangular, Program Evaluation and
Review Technique (PERT), or Uniform distribution
and setting the associated parameters. FEAST is de-
signed to facilitate extending to more distributions, as
required. Where appropriate parameters can be set
so as only to apply to particular temporal windows.
Using these temporal windows the nature of demand,
ordering parameters, and budgets can be prescribed to
change over time.

To facilitate “what if” questions the essential el-
ements are associated with a variation identifier, al-
lowing differing scenarios to be bundled and simu-
lated together to facilitate analysis, documentation,
and archiving results. To improve precision the num-
ber of replications (per variation) is set (see the Ap-
pendix for some discussion related to precision). No-
tably, by running many replications the probability
distribution of various situations can be captured—
allowing risks to be quantified and assessed.

After running the DES, variations and replications
data can be saved for analysis and visualization, as
discussed in Section 2.6 below.

FEAST is written in Python, and makes use of
Pandas package. Figure 1 presents the algorithm
that underlies the FEAST simulation engine in pseu-

docode.

FEAST High Level Flow
for each variation:

reset_random_numbers
read_scenario_information
for each replication:

### Setup EventSet
initialize EventSet
push demand events
push budget reset events
push compute statistics events

....
### Process EventSet:
while EventSet is not empty:

pop events and process
save data

Figure 1: Pseudocode of FEAST logic.

2.5 Inputs and Essential Elements

Inputs to set up FEAST are collected in a Microsoft
Excel file with ten worksheets: Parameters, Stats,
Stockpiles, InitialStock, Vignettes, Orders, Reorders,
Pricing, Budget, and Events. Parameters and Stats
worksheets contain simulation control parameters,
while the rest specify details about the scenario being
modeled. Across many of these sheets individual en-
tries can be associated with a variation identifier. Re-
garding variations, it is possible to indicate that some
parameters are specific to a particular single variation
and others apply to all variations.

The Parameters worksheet specifies parameters
that pertain to the simulation itself such as the time
period to simulate over, burn-in period, the number of
replications, and setting a random seed to allow re-
producibility of results. Files and flags can also be
specified to control the ingestion of certain input data
into the simulation engine and where to save simula-
tion results.

The Stats worksheet contains flags to control the
generation of diagnostic plots when the simulation
runs, for sanity checking and initial exploratory ef-
forts. The statistics collected and plotted are mini-
mal and instead post-processing of saved output (Sec-
tion 2.6) is relied on for analysis proper.

In the Stockpiles worksheet stockpiles are given a
unique identifier and associated with a list of appli-
cable ammunition natures and capacity levels. Each
stockpile can also be associated with a backup stock-
pile to indicate where to draw stock if the stockpile
becomes empty. “Next” stockpiles can also be spec-
ified, with the fraction moving to the next stockpiles
set (if these do not sum to one loss occurs, in this way,
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for example, uncertain refurbishment can be mod-
elled). An expiry time is set which determines when
ammunition should move to the next stockpiles.

The InitialStock worksheet sets the initial stock-
pile levels, with an expiry set for movement to next
stockpiles.

The Vignettes worksheet describes the demand for
ammunition. Vignettes are given unique identifiers,
are associated with a stockpile, and have a number
of attributes that determine the demand. In terms of
localizing in time, an annual frequency is set, a date
range for the initial start, and a time range over which
demand can occur which allows a demand to apply
for part of a simulated time frame. The duration of
a vignette instance is also set, as is an interval which
breaks the demand into a chain of sub-demands (see
Section 2.3 above for discussion on details). To de-
termine the level of demand a quantity of ammunition
is set by type. To determine the level of demand as-
sociated with a vignette the quantity of ammunition
is specified using a set value or one of the probability
distributions included in FEAST.

Orders and Reorders worksheets describe resup-
ply. They are very similar, both with associated lead
times and time ranges over which they apply. The dis-
tinction is that orders occur at specified points in time
(which may be described via probability distribution)
while reorders are made based on stockpile level. Or-
ders describe their time localization similar to Vi-
gnettes, with an annual frequency, a date range for
in year occurrence. To determine how much to order
a threshold, target, and quantity are provided which
interact to determine the quantity ordered. These can
interact in intricate ways and a full discussion is out
of scope, but simple cases are easily described. To or-
der a set number only the quantity is set, or order up
to a quantity only the target is set, to order only if the
stockpile is below a given level the threshold is set as
well as the quantity, etc. Additionally, a strategy is
set which can be either the level or the position (the
level plus any ordered, but not yet received, ammu-
nition). This strategy can modify the order amounts
and timings (e.g., a reorder may be triggered when
level is considered, but position could keep the stock-
pile above the set threshold for reorder).

Pricing is broken up into three types: order, stor-
age, and stockout penalties. Order costs are associ-
ated with placing an order (or reorder) and can have
both a per unit cost and a flat cost associated with
them. They are borne when an order is made. In con-
trast, storage costs are daily per unit costs which ac-
crue over time. Penalty costs are borne when a stock-
out occurs. As with ordering costs, they can also have
a per unit cost and a flat cost associated with them.

Like orders, reorders and vignettes, the time range
over which each cost applies can also be specified.

Order and reorder costs have a Budget which ap-
plies to them (the budget can be set to be unlimited
for the unconstrained case). Once an annual budget
is exhausted any orders that would have happened are
prevented from occurring. Budgets also have a time
range over which they apply.

The final worksheet is Events. It enables the
user to specify events to model special situations or
circumstances. The properties for specifying these
events include variation, event type (e.g., demand,
order, add to stockpile), ammunition type, ammuni-
tion quantity, associated stockpile, time of event, lead
time, and cost. An example use of the Events work-
sheet is for specifying orders that at have been placed
but not yet received when the simulation starts.

2.6 Outputs and Post-Processing

By design, FEAST only provides limited visualiza-
tion capability of the results. Instead, FEAST outputs
data as Microsoft Excel and comma separated values
(i.e., .csv) files for post-processing and analysis. Data
for every variation and replication including demand,
stock levels and costs can be saved. The aim is to cre-
ate a separation of concerns where FEAST performs
stockpile simulations while analysis and visualization
is done externally. An initial set of post-processing
scripts were developed by the authors. These scripts
span the following domains of interest and have been
used in the next section to visualize results from a
simplified case study.
Demand: Characterization of the demand by indi-
vidual vignette, vignette category, or collection across
vignettes.

Inventory Levels: Representation of stock levels
over time, when stockouts occur, and stock shortage
quantities.

Supply Versus Demand: Characterizations to indi-
cate how well stockpiles and supply replenishment
logic meet ammunition demands.

Costs: Distribution of cost by individual categories
(e.g., storage, acquisition, stockout penalties) or over-
all.

3 CASE STUDY

This section presents a case study to illustrate some
basic functionalities of FEAST. Of note, this case
study is notional and is not representative of a current
CAF ammunition.
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3.1 Objective

The objective of this case study is to illustrate how
FEAST could be used to help a practitioner explore
and identify “good’ combinations of order quantities
and order frequencies for a single type of ammunition
and in accordance with approximated FG and FE de-
mands. As such, the impact of applying various com-
binations of order quantity and frequency on supply
vs demand performance, inventory levels and cost is
to be assessed.

3.2 Inputs and Assumptions

Ammunition: Single, notionally “Type A”.

Initial Stock: 1,800 units.

Storage Capacity: Maximum storage capacity of
2,500 units for Ammunition Type A.

Acquisition Strategy: It is assumed that the only
strategy available is “Periodic Strategy”, i.e., replen-
ishment occurs at fixed intervals (up to a quantity).

Order Frequency: Orders can be placed at regular
intervals of 3, 6, 12, 18 or 24 months. Note that the
orders are equally spaced throughout the year (with
the first order on April 1st, the start of CAFs fiscal
year).

Order Quantity: Order quantities are varied be-
tween 0 and 1,500 per year (incrementing by 100),
but constrained such that storage capacity is not ex-
ceeded. The quantity per year corresponds to an an-
nualized quantity, i.e., total quantity ordered in a year.
For example, if the frequency is 6 months, which cor-
responds to two orders per year, and if the annualized
quantity is 1,500, then it means that up to 750 will be
ordered twice a year.

Lead Times: When orders are placed, they will be
received between one and three months later, based
on a uniform distribution.

Variations: Given the assumed possibilities for or-
dering frequencies and the quantities, a total of 80
variations are considered. A subset of the variations
are listed in Table 1. Each variation corresponds to
a specific combination of a frequency and an annual-
ized quantity. For example, in Variation 16, up to 375
units would be ordered four times a year.

Approximated Costs: The estimated costs by cate-
gory used in this notional example are as follows:

• Acquisition – $10,000 fixed cost per order, $75.00
per unit.

• Storage – $0.05 per unit per day.

Table 1: Subset of the 80 variations (combinations of order
frequency and quantity considered).

Variation Frequency Quantity

1 3 months 0
2 3 months 100
... ... ... ...
15 3 months 1400
16 3 months 1500
17 6 months 0
18 6 months 100
... ... ...
79 24 months 1400
80 24 months 1500

• Shortage – $150.00 per unit that is not fed from
inventory.

Demand: The demand for Ammunition Type A is
driven by 13 FG and 4 FE activities. Table 2 con-
tains the list of vignettes used in this case study. The
rows in white and grey represent the FG and FE ac-
tivities, respectively. For instance, “Ex Group 1” is an
exercise that occurs once or twice a year (with likeli-
hood of 0.8 and 0.2), anytime between beginning of
February (Day 32) and end of November (Day 335),
and lasts two weeks. For this exercise, the quan-
tity of ammunition used varies between 45 and 180
units. Recall that five probability distributions are im-
plemented in FEAST, i.e., Discrete Choice, Uniform,
Poisson, Triangular and PERT, which can be used,
when appropriate, to specify the input parameters in
the model.

Simulation Parameters: A total of 1,000 replica-
tions are to be executed for each variation. Each repli-
cation has a 10 year duration.

3.3 Results

3.3.1 Demand Characterization

The demand for Ammunition Type A, driven by FG
and FE activities, are not consistent from year to year.
It is important to understand how these cumulative de-
mands can vary from one year to the next. FEAST
collects data allowing the breakdown of demand by
individual vignette. Mindful of these facts, distribu-
tions of the estimated annual demand due to FG and
FE are computed from simulation results and shown
in Figure 2. Each plot contains a Probability Distribu-
tion Function (PDF) and an overlapping Cumulative
Distribution Function (CDF). On each CDF the 80%
level is demarcated, indicating that in 80% of simu-
lated cases the demand is less than the correspond-
ing amount. Results also indicate that the average
demands for FG, FE and FG+FE are approximately
1234, 74 and 1308 units, respectively. These results
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Table 2: Input parameters for Ammunition Type A demand for FG (unshaded rows) and FE (grey-shaded rows).

Name Frequency (per year) When Quantity Duration (in days)

Ex Group 1 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(45;90;180) 14
Ex Group 2 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(45;90;150) 14
Ex Group 3 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(30;60;120) 14
Ex Group 4 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(10;50;100) 14
Ex Group 5 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(45;60;90) 14
Ex Group 6 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(15;100;180) 14
Ex Group 7 0.125 UNIFORM(32;335) TRIANGULAR(20;30;40) 14
Ex Group 8 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(10;90;250) 14
Ex Group 9 0.5 UNIFORM(32;335) TRIANGULAR(30;90;135) 14
Ex Group 10 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(120;280;450) 14
Ex Group 11 0.125 UNIFORM(32;335) TRIANGULAR(10;20;30) 14
Ex Group 12 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(25;50;75) 14
Ex Group 13 DISCRETE(1:0.8, 2:0.2) UNIFORM(32;335) TRIANGULAR(40;50;60) 14
Op Type 1 DISCRETE(1:0.8, 2:0.2) UNIFORM(274;305) TRIANGULAR(10;25;62) TRIANGULAR(50;60;70)
Op Type 2 POISSON(0.1) UNIFORM(1;365) TRIANGULAR(30;48;65) TRIANGULAR(360;1080;1800)
Op Type 3 POISSON(0.125) UNIFORM(1;365) TRIANGULAR(40;80;200) TRIANGULAR(150;180;270)
Op Type 4 POISSON(0.125) UNIFORM(1;365) TRIANGULAR(20;60;100) TRIANGULAR(60;260;720)

confirm that the majority of demand is generated from
FG (exercises) and that the annualized order quantity
should probably be greater than 1308.
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Figure 2: Distribution of the demand per year for FG (top)
and FE (bottom).

3.3.2 Stock Level

A question often of interest to inventory management
practitioners is “How long can we expect the current
stock to last under various circumstances?” For exam-
ple, if no orders were made, how long would it take
before the stockpile is emptied? Figure 3 addresses
this question. It shows the CDF computed to illustrate
the likelihood that the stockpile will be emptied after
various time durations if no replenishment orders are
made. From this plot it is expected that with an initial
stock of 1,800 units, it would take between 253 and

686 days (indicated by dashed vertical lines) to reach
a stockout.
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Figure 3: Stockout time of occurrence (1,000 replications).

To accompany Figure 3, Figure 4 depicts the evo-
lution in the distributions of stock level over time.
Shown are the median level, 10th-90th percentile lev-
els, and the 25th-75th percentile levels at each time
instant. (The latter of these percentile measures are
known as the first and third quartiles, Q1 and Q3, re-
spectively.)
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Figure 4: Stockpile level over time if no orders were made.
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Another aspect of interest is how stock levels are
expected to vary if replenishment orders are placed.
Graphs like Figure 4 can be produced for each varia-
tion, where in this case individual variation represents
a unique combination of order frequency and order
quantity. Alternately, a visualization that aggregates
expected results across all variations can be produced
as shown in Figure 5 where each “+” marker repre-
sents the result from a particular variation. The “+”
marker at the bottom left of the plot corresponds to
Variation 1 while the one at the top right corresponds
to Variation 80. The contours in this plot facilitate the
characterization of average stock levels across all 80
variations in a single graph.
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Figure 5: Contour plot showing the average number of am-
munition on-hand per day for all 80 variations.

3.3.3 Supply vs Demand Performance

An ability to assess how well the ammunition sup-
plies are expected to meet the demand is important
if the long term performance of a particular stock-
piling scheme is to be determined. An associated
question posed by an inventory management practi-
tioner might be: “If implemented, how well do each
of the potential combinations of order quantity and or-
der frequency meet the estimated demand?” Several
performance measures can be considered to address
this question. One measure is the fraction of activi-
ties (i.e., exercises and operations) for which all de-
mands could be fulfilled from available stock. A sec-
ond measure is the fraction of simulation time over
which there are no ammunition shortfalls. An exam-
ple result showing the latter measure is presented in
Figure 6. Again, in this contour plot, the “+” mark-
ers represent the 80 variations. For illustrative pur-
poses white annotations are added to variations with
a fraction above 0.95. There are 16 variations in this
notional case study associated with a level above this
threshold.
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Figure 6: Contour plot showing the fraction of time without
shortage for all 80 variations.

3.3.4 Cost

When choosing a good combination of order quantity
and order frequency, costs can be an important fac-
tor. As discussed earlier, the cost can be characterized
by various types in FEAST, i.e., storage cost, order-
ing cost and penalty cost. The user can drill-down or
aggregate-up to better understand the costs associated
with the combinations. Here we focus only on “real
costs” which are represented as the summation of or-
dering and storage costs. The average annual average
real costs for Variations 1 through 80 are shown in
Figure 7. As shown in this figure, the most expensive
variations (with costs greater than $150,000 per year)
are 14, 15, 16, 31 and 32.
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Figure 7: Contour plot of the real costs (storage and order-
ing) for all 80 variations.

3.3.5 Cost vs Performance

The graphs and statistics shown thus far for our case
study are descriptive in nature, i.e., they illustrate
some of the basic information that can be gleaned
from FEAST. However, they can also aid in the pro-
vision of more in-depth analyses and provide insights
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to support decision-making.
For example, assume that an average annual bud-

get of $120,000 is specified for Ammunition Type A,
and that the desired fraction of time without shortage
is set at 0.95. Figure 8 graphs real costs as a function
of the fraction of time without shortage. The markers
in this plot represent the variations tested in our case
study. The green-shaded area, delimited by Cost ≤
$120,000 and Time Without Shortage ≥ 95%, corre-
sponds to the region where both criteria are satisfied.
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Figure 8: Scatter plot of the costs as a function of time with-
out shortage for all 80 variations.

Such graphs provide a basis for quickly compar-
ing variations and help to demarcate good options that
could be investigated in more detail. For our test case,
two viable variations exist within the shaded region
of Figure 8, i.e., Variation 45 (12 month ordering in-
terval and annualized order quantity of 1,200 units)
and Variation 61 (18 month ordering interval and an-
nualized order quantity of 1,200 units). These could
be further explored by an interested inventory man-
agement practitioner before one is selected for imple-
mentation.

3.3.6 Further Analysis

Once promising options like Variations 45 and 61 are
identified from Figure 8, more specific analysis can
be conducted. For example, from Figure 7, the av-
erage annual real costs for Variations 45 and 61 are
$118,187 and $114,757, respectively. Figure 9 illus-
trates the distribution of these annual real costs for the
two variations. Also shown in Figure 9 are the 25th a
75th percentiles of these cost distributions. From this
graph Variation 61 appears to be the less expensive of
the two options, with its median being located outside
of the region encompassing the 25-75th percentiles of
Variation 45.

For purposes of further investigation, Figure 10
shows the distribution of annual storage costs for each
of the two variations. Although the shapes of the dis-
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Figure 9: Violin plots comparing the distribution of the av-
erage yearly costs for storage and ordering over the 1,000
replications for Variations 45 and 61.

tributions are slightly different, the storage costs for
both variations appear to be quite similar.
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Figure 10: Violin plots comparing the distribution of the
average yearly costs for storage over the 1,000 replications
for Variations 45 and 61.

Figure 11 illustrates the distribution of average an-
nual ordering costs for both variations. Visual assess-
ment leads to the conclusion that significant differ-
ences in the real costs for the two variations results
from differences in ordering costs. This can be ex-
plained from by the fact that there is a nontrivial fixed
cost associated with each order regardless of the order
quantity, and more orders are made with Variation 45
than with Variation 61.

88,000 90,000 92,000 94,000 96,000 98,000 100,000
Average Costs for Ordering per Year (in $)

Variation 45

Frequency:
Every 12 Months

Qty (annualized):
1,200 units

Variation 61

Frequency:
Every 18 Months

Qty (annualized):
1,200 units

Figure 11: Violin plots comparing the distribution of the
average yearly costs for ordering over the 1,000 replications
for Variations 45 and 61.

The notional case study in this section illus-
trates some of the functionalities of FEAST, how-
ever FEAST has additional features not demonstrated
here (see Section 2). A practitioner is afforded rather
wide flexibility to rerun the simulation with differ-
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ing dynamics or alternate parameter settings. For ex-
ample additional budget constraints could be added,
additional logic could be introduced to represent the
behavior of multiple stockpiles, and other ammuni-
tion natures could be incorporated. Additional post-
processing scripts can also be composed.

4 LIMITATIONS AND
EXTENSIONS

A key limitation of FEAST is elements are consid-
ered independently, so common constraints or possi-
ble ammunition substitutions are not accounted for.
For example, artillery ammunition is complex (Pond
and Pittman, 2020) and is comprised of four compo-
nents (fuse, primer, propellant, and projectile)—all of
which are required and so cannot be modelled as inde-
pendent. Likewise, possible concurrency constraints
on operations are not imposed by FEAST despite
Canada’s defence policy explicitly providing concur-
rency expectations (Department of National Defence,
2017).

Incorporation of dependencies such as dependent
components, substitutional relationships, priorities on
usage, considering natures from a capabilities lens,
etc. are complex concerns that would be difficult
to incorporate in FEAST’s inherently independent
framework. Despite this difficulty some progress can
be made. For example, FEAST has been built such
that demands can be externally generated and used as
input to FEAST. This feature enables concurrency
constraints to be imposed by an external, specialized,
program, and we will be exploring ingesting opera-
tion schedules generated by Force Structure Readi-
ness Assessment (FSRA), a Monte Carlo tool that in-
corporates CAF’s FE and platform deployment con-
straints (Dobias et al., 2019).

Contrariwise to FEAST ingesting demand gener-
ated elsewhere, demand generated by FEAST can be
used to feed other tools. For example, by binning
FEAST output, the demand on discrete time periods
could be used as input for an ADP model for the pur-
pose of generating improved ordering policies. While
stockpile capacity constraints and order lead times
make the simple unconstrained, immediate delivery
ADP formalism for stockpiles (Powell, 2009) inap-
propriate one can incorporate these factors and mod-
ify the formalism appropriately.

As the event set is fundamental to DES we re-
mark on potential efficiency gains. FEAST leverages
Python’s heapq (Python documentation, 2022) to im-
plement the event set as a priority queue, which has
O(log(n)) insert and remove costs. Note that sorting

n numbers can be achieved by inserting and removing
into an event set; as sorting has known O(n log(n))
bound this suggests that improved insert or remove
costs may be achievable. Indeed, pairing heaps (Fred-
man et al., 1986) have theoretical O(1) insert costs
and retain O(log(n)) removal costs and thus achieve
the efficiency bound in a tighter fashion. Importantly,
pairing heaps and related rank pairing heaps are em-
pirically demonstrated to be efficient in practice, even
under adversarial testing (Stasko and Vitter, 1987;
Fredman, 1999). As heaps are abstract data structures
where implementation is hidden behind an interface,
switching the implementation is feasible in FEAST
with minimal changes to the code required.

Profiling results indicate Pandas and Python book
keeping operations, such as iterating through vi-
gnettes and copying objects, are dominant costs and
the event set contributes little to the total cost. For
example, insert and remove off the event set made
up roughly 5% of the computational costs of the in-
ner simulate module, for the scenarios we consider
here. For context regarding computational speed, to-
tal computations run on an order of minutes, for 1,000
replications of our single variant scenarios. The evi-
dence suggests mild efficiency gains can be achieved
by moving to a pairing heap implementation, and that
this gain will make up a larger fraction of the to-
tal if some refactoring of the Python code is made
to reduce costly approaches—for example, one ini-
tial trial change to reduce copying objects reduces
FEASTs bookkeeping costs such that the event set
makes closer to 10% of the total cost. As such, tri-
aling pairing heap or related heaps (Haeupler et al.,
2009; Stasko and Vitter, 1987) in FEAST, in combi-
nation with judicious code changes in FEAST itself,
constitutes practical follow on work that we will con-
sider in more detail.

5 CONCLUSION

FEAST is a DES model developed by DRDC CORA
to help practitioners within DND and the CAF ex-
plore questions regarding the supply, demand and re-
plenishment dynamics associated with ammunition.
The FEAST simulation engine has been implemented
in the Python programming language. Inputs and
outputs are managed using Microsoft Excel and flat
comma separated value files. Stochastic demands for
ammunition are generated from lists of potential mil-
itary exercises and operations. Ordering and resupply
policies, which also incorporate stochastic variables,
are specified as inputs. Supply versus demand, tem-
poral dynamics and financial considerations can be
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explored with FEAST. The tool is flexible allowing
the user to quickly answer “what if” type questions.
In this paper, we provided an overview of FEAST and
demonstrated certain functionalities by way of a no-
tional case study consisting of independent demands
for the same type of ammunition from 13 military ex-
ercises and 4 military operations. The case study ex-
plored 80 resupply options, several of which were vi-
sualized and highlighted via post-processing of sim-
ulation outputs. Areas for extension and improve-
ment of FEAST include adding features so that: am-
munition substitutions and compositional dependen-
cies can be modelled; outputs from other Monte Carlo
models used by DND and the CAF can be ingested as
FEAST inputs; and improvements to computational
performance can be realized.
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APPENDIX

Appendix A: Verification in Steady-State

FEAST is highly flexible. The flexibility is required
to allow general “what if” questions to be asked which
is achieved at the cost of added complexity: as a re-
sult FEAST is approximately 1,500 lines of Python
code. As FEAST is intended to inform decisions, ver-
ification is important to increase confidence that the
implementation works as intended. We consider var-
ious test cases to check features and critically assess
results. Here we present two related test cases.

Given the FG and FE vignettes to be simulated,
we can determine the expected annual demand under
steady-state conditions (i.e., distributions describing
frequencies, durations, and quantities are static over
time). For stochastically varying vignettes we note
that the expectation is simply the annual frequency
multiplied by the average quantity. An added nuance
occurs for “Op Type 2”, which, unlike other vignettes,
has multiple demands occurring over the operation.
In such cases, the overall demand is Q̄dD̄/Ie, where
Q̄ is the average quantity demanded per interval, D̄
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is the average duration, and I is the sub-demand in-
terval. This holds, as demand in FEAST is modelled
as impulses that occur at the start of a demand period
and so dD̄/Ie is the expected number of demands for
a vignette that has sub-intervals.

Another nuance in determining the expected an-
nual demand is that there are a mixture of stochasti-
cally occurring vignette demands, as well as vignettes
that occur with a fixed frequency of 1 out of X years.
For example, “Ex Group 7” has a fixed frequency of
0.125, or once every 8 years. The code is structured
such that, after an optional burn-in period, time starts
at zero, and so fixed frequency vignettes will occur in
the first year and reoccur every X years.

From the parameters in Table 2, supplemented
with “Op Type 2” having an interval of 360 days, we
can calculated the expected demand. As FEAST is
a DES implementation of a SP we know that, in re-
gions with fixed parameters, ergodicity holds and the
average annual demand generated by the simulation
should match the calculated average. We can estimate
the standard error of the mean (SEM) as σ/

√
R, where

σ is the standard deviation of the measure (demand
here) and R is the number of replication-years.

We determine two cases to use as verification
cases. For both we first burn-in the simulation for five
years before collecting statistics to ensure that there
are no initial condition artifacts, as the vignette with
the longest duration (“Op Type 2”) can be up to al-
most five years long. In particular, note that we can-
not start the simulation with a vignette in progress and
therefore near t = 0 ergodicity does not hold; once
t > Dmax, where Dmax is the longest vignette duration,
ergodicity holds. After this burn-in we then consider:
1) a one year simulated period (where we know all
fixed frequency vignettes will be active) where we de-
termine an expected annual demand of 1383.40, and
2) an “infinite” year simulated period (where the fixed
frequency vignettes will present their overall annual
average, i.e., 1/X) where we determine an expected
annual demand of 1306.68.

We fix R = 10,000, so in case 1 we consider
10,000 replications and simulate for one year and in
case 2 we consider one replication and simulate for
10,000 years. For case 1 we find that the average de-
mand is 1383.4± 1.9, where we use the SEM to de-
termine precision. This has excellent agreement with
the expected value we calculate (1383.40), where the
strong agreement (better than estimated precision)
can be attributed to the fixed frequency vignettes re-
ducing error over a purely stochastic case. For case
2 we find that the average demand is 1307.7± 2.0.
This also has excellent agreement with our calcu-
lated expected value (1306.68), and we attribute the

agreement within estimated precision to 1) the large
time interval indistinguishability between a fixed fre-
quency event where events occur once every X years
and a stochastic (Bernoulli) process and 2) small ex-
pected correlation between samples, and so we expect
the SEM to be descriptive of the observed precision.

While verification that the average annual demand
simulated by FEAST is equal to the expected value is
a simple test, it is a statistically exact one and there-
fore a strong test.
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