
Cross-Paradigm Interoperability Between Jadescript and Java

Giuseppe Petrosino1, Stefania Monica1 and Federico Bergenti2
1Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Reggio Emilia, Italy

2Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parma, Italy

Keywords: Agent-Oriented Programming, Jadescript, JADE.

Abstract: Jadescript is a recent language for practical agent-oriented programming that aims at easing the development of
multi-agent systems for real-world applications. Normally, these applications require extensive and structured
reuse of existing software modules, which are commonly developed using object-oriented or legacy technolo-
gies. Jadescript has been originally designed to ease the translation to Java and, as such, it natively eases the
interoperability with Java, and therefore, with mainstream and legacy technologies. This paper overviews the
features that have been recently added to Jadescript to support effective two-way interoperability with Java.
Moreover, this paper thoroughly discusses the main ideas behind such features by framing them in a compari-
son with related work, and by outlining possible directions for further developments.

1 INTRODUCTION

Programming language interoperability is a key as-
pect of modern software development because it al-
lows software components written in various lan-
guages to interact and share data. It provides several
advantages when designing a new system or extend-
ing the functionality of existing systems, like platform
adaptation and code reuse. The rewriting of code in a
new language to solve previously addressed subprob-
lems is cumbersome, and it represents an obstacle to
the adoption of new languages. Moreover, languages
that operate at a higher level of abstraction often pay
inherent costs, e.g., in terms of worse run-time per-
formance. The interoperability with languages at a
lower level of abstraction, which can better express
the details of their low level of abstraction, can mit-
igate such issues. As a matter of fact, it is gener-
ally accepted that the most appropriate programming
language is different for each situation. This is be-
cause each language can represent better, or worse,
certain aspects of the addressed problems and of the
programs that are proposed as their solutions.

Jadescript (Bergenti and Petrosino, 2018; Bergenti
et al., 2018; Bergenti et al., 2020) is an Agent-
Oriented Programming (AOP) language. Its main ab-
stractions derive from agent technology, and therefore
it can be used effectively to model software systems
around software agents. Jadescript agents are based
on JADE (Bellifemine et al., 2005), a Java frame-

work with a long history (Bergenti et al., 2020) in the
development and administration of Multi-Agent Sys-
tems (MAS). JADE is considered the de facto refer-
ence implementation of the Foundation for Intelligent
Physical Agents (FIPA) specifications. Jadescript is
designed to be translated to Java, it is supported by
a static type system, and it adopts an event-driven
programming style. Jadescript provides language fa-
cilities to define agents, agent behaviours, and com-
munication ontologies with a syntax inspired from
agent pseudocode. The development of Jadescript,
and of its companion development tools, has re-
cently reached maturity with several advanced fea-
tures (Petrosino and Bergenti, 2019; Petrosino et al.,
2021; Petrosino et al., 2022b) that make it a com-
plete tool to program MASs. However, the develop-
ment of agent-based software to address real-world
problems, like the ones encountered in industrial ap-
plications of agents (Bergenti et al., 2015), requires
Jadescript agents to interact with existing software.
This is required to deal with legacy systems, for
which agents-based approaches have been success-
fully applied (Genesereth and Ketchpel, 1994), to cre-
ate graphical interfaces to improve the interactions
with users, or to access external software or hard-
ware (Iotti et al., 2020). One approach that is read-
ily available to achieve Jadescript-Java interoperabil-
ity uses the interaction capabilities of agents and the
fact that both Jadescript and JADE agents are FIPA
agents. Thanks to this, they can use standardized

Petrosino, G., Monica, S. and Bergenti, F.
Cross-Paradigm Interoperability Between Jadescript and Java.
DOI: 10.5220/0011619300003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 1, pages 165-172
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

165



speech acts and shared ontologies to communicate
and coordinate. Therefore, the interaction between
Jadescript agents and Java objects can be achieved at
the agent level by designing specific JADE agents to
act as mediators or wrappers of Java objects. Such
an approach remains valid, but some drawbacks in
common situations are easily identified. One draw-
back is that the construction of mediator agents to
let Jadescript agents execute simple procedures writ-
ten in Java might constitute a development cost that
does not scale well to large projects. Moreover, this
approach adds considerable runtime overhead to the
execution of the target procedures, making Jadescript
agents unavoidably slow. On the other hand, the in-
troduction of a dedicated interoperability support in
Jadescript, together with a specific Java API, can sig-
nificantly simplify the development process for the
discussed scenarios. The main contribution of this
paper is to discuss the recent changes introduced in
Jadescript to let agents easily interact with existing
code written in Java.

All the presented features introduced in Jadescript
to support effective interoperability with Java were
designed to satisfy a set of specific requirements.
First, the features should not excessively increase the
complexity of the language. For example, from a syn-
tactical perspective, most of the features are limited
to the introduction of the native modifier, which can
be prepended to some of the constructs already avail-
able in the language. The use of this modifier changes
the meaning of the modified constructs in ways that
are discussed in Sect. 2. Second, the design of each
feature should attempt to minimize the amount of ad-
ditional Java and Jadescript code required to achieve
interoperability. Unfortunately, this glue code cannot
be null in many cases, mostly because of the relevant
differences between the two languages.

This paper introduces all the presented features in
Sect. 2, which is followed by a discussion and a com-
parison with similar features of other AOP languages
in Sect. 3. After a brief discussion of the main pos-
sibilities to further improve the presented interoper-
abiltiy features, Sect. 4 concludes the paper.

2 JADESCRIPT-JAVA
INTEROPERABILITY

This section describes the design of the proposed sup-
port for the interoperability between Jadescript and
Java. As briefly discussed earlier, the possibility for
Jadescript to effectively interface the Java virtual ma-
chine and its libraries is of paramount importance to
promote reuse of existing software modules.

2.1 Jadescript and Java Data Types

A recent paper (Petrosino et al., 2022a) provides a de-
tailed description of the Jadescript type system, and it
highlights that the data types adopted for Jadescript
are peculiar for several reasons. Actually, Jadescript
is an AOP language, and its data types considers
abstractions that are strongly related to agents and
MASs. Jadescript does not adopt the Object-Oriented
Programming (OOP) paradigm, and the language
purposely lacks the abstractions needed to manipulate
classes and objects. In addition, Jadescript is a very
high-level language, and its data types are part of the
means that it provides to deal with data at the adopted
high level of abstraction. Finally, Jadescript is de-
signed to target JADE, which makes the language–
and its data types–designed to work with the abstrac-
tions standardized by FIPA and adopted by JADE.

One of the main consequences of these peculiari-
ties of the Jadescript type system is that a one-to-one
relationship between Jadescript data types and Java
data types is not possible. Such a relationship is a
characteristic that several mainstream programming
languages, e.g, Kotlin and Groovy, provide to offer
a direct support for interoperability with Java. Its ab-
sence constrains the way the two languages can share
data when some code written in either one of them
reuses the code written in the other, and it ultimately
causes two major problems. First, note that Jadescript
is designed to be translated to Java, and therefore each
one of its data types has a corresponding represen-
tation in Java, either as a primitive data type, or as
a class or an interface. However, this might not be
the case in the future, which is the first of the two
problems. Actually, the growing number of features
provided by Jadescript for agent programming might
require the introduction of new data types that might
not be properly represented in Java, and that, there-
fore, would be erased during the compilation pro-
cess. Second, Jadescript is not an OOP language, and
therefore no objects are available to Jadescript pro-
grammers, which causes the second problem because
not all Java data types can be properly mirrored by
Jadescript counterparts. In order to target both these
problems, Jadescript provides the features described
below to create Jadescript values in Java and to con-
vert values from a Java data type to a Jadescript data
type in a simple and effective way.

The set of interoperability features that has been
recently added to Jadescript are not limited to changes
in the language. Three sets of new utilities de-
signed to write Java code intended to interoperate
with Jadescript code are provided in the Jadescript
runtime support, as described below.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

166



First, to assist the conversion of values from Java
data types to Jadescript, the Jadescript class, in-
cluded in the Jadescript runtime support, exposes a set
of overloaded public static methods named valueOf.
Such methods take one parameter each, and they re-
turn, after applying suitable conversions, values com-
patible with Jadescript.

Second, in addition to the valueOf methods, the
Jadescript class provides a set of methods called
asX , where X is the name of one of the built-in
Jadescript data types, e.g., asInteger, asDuration,
and asPerformative. Each one of these methods
accepts a parameter of type Object, and it returns,
in Java, the conversions performed by the as oper-
ator in Jadescript. For example, expression "PT1S"
as duration in Jadescript converts the text literal
"PT1S", formatted according the ISO 8601 standard,
to a duration representing a duration of one second.
The same operation can be performed in Java by
invoking Jadescript.asDuration("PT1S"). Note
that not all conversions from Java values to
Jadescript values are possible, and when an in-
valid conversion is attempted, an exception of type
ConversionException is thrown.

Third, some Jadescript data types (duration,
timestamp, and performative) have Java coun-
terparts represented by classes provided by the
Jadescript runtime support. These classes pro-
vide methods to create values and execute
operations on the corresponding data types
in Java. For example, the Java expression
n.plus(Jadescript.asDuration("PT1M")) pro-
duces a Jadescript timestamp that represents the time
instant that follow n after one minute.

Finally, note that, when using the Jadescript-Java
interoperability features described in the remaining of
this paper, the conversion of a value from a Jadescript
data type to a Java data type is automatic and com-
pletely handled by the compiler. Instead, the conver-
sion of a value from a Java data type to a Jadescript
data type is not automatic, and it requires dedicated
glue code. However, when using an interoperability
feature from Java code, the use values of the correct
Jadescript data type is always enforced at compile-
time, with the notable exception of native expressions
and statements described in Sect. 2.

2.2 Creating Jadescript Agents in Java

Jadescript is supported by a set of tools designed to fa-
cilitate the development of agents. One of these tools
is a plug-in for the Eclipse IDE that provides a devel-
opment environment with useful features, e.g., syntax
highlighting. The plug-in also includes a wizard that

1 module music
2

3 agent MusicDownloader uses ontology Music
4 on create with title as text,
5 artist as text do
6 activate BuyTrack(artist , title)

Listing 1: An example of a toy Jadescript agent.

assists programmers to configure and launch JADE
platforms and containers (Bellifemine et al., 2007)
populated with the agents written in Jadescript. An-
other way to launch Jadescript agents is via the com-
mand line (Caire et al., 2010) by specifying a Java
class generated by the Jadescript compiler for each
one of the desired agents together with respective
start-up arguments. However, in several applications,
it is necessary to start containers and agents in Java. A
set of new facilities provided of the Jadescript runtime
support simplifies the usage in Java of agents written
in Jadescript.

Remember that a JADE platform is composed of
several connected containers. Each platform has ex-
actly one main container, and several peripheral con-
tainers. All peripheral containers register to the main
container at start-up by specifying the network ad-
dress and the port of the main container. A, main or
peripheral, container can be created in Java using the
Jadescript class by invoking the public static meth-
ods named newMainContainer or newContainer,
respectively. These methods accept the network ad-
dress and the port of the main container together
with a platform identifier. Both methods return a
ContainerController instance, which can be used,
e.g., to create agents or to destroy the container.

For each agent defined in Jadescript, the com-
piler generates a Java class with the same name
that provides a static method to create and initialize
the agent. This method accepts as parameters: the
ContainerController instance of the container in
which the agent will be created, a string that is used
as the local name of the agent, and one parameter for
each one of the parameters required by the on create
event handler of the Jadescript agent.

For example, consider the MusicDownloader
agent in Listing 1, whose primary job is to update a
music library with a track (if missing in the library)
specified at start-up by stating the title and the name
of the artist.

The code in Listing 1 is just an example to illus-
trate the creation of agents from Java code, so the
BuyTrack behaviour is omitted. Starting from this
agent definition, the Jadescript compiler generates the
Java class music.MusicDownloader, which contains
a static method named create. This method accepts

Cross-Paradigm Interoperability Between Jadescript and Java

167



1 public class MusicDownloaderMain{
2 public static void main(String[] args){
3 ContainerController mainContainer=
4 Jadescript.newMainContainer();
5 JadescriptAgentController downloader=
6 music.MusicDownloader.create(
7 mainContainer ,
8 "downloader",
9 "Johann Sebastian Bach",

10 "Cello Suite No.1, Prelude");
11 }
12 }

Listing 2: The creation of a main container and a Jadescript
agent in Java.

a ContainerController instance, the agent local
name, and two additional strings, one for the track ti-
tle and one for the artist name. This method returns a
JadescriptAgentController instance, which pro-
vides a thread-safe interface to the created agent that
can be used to issue lifecycle commands (e.g., to shut-
down and remove itself from the platform) or to notify
native events to the agent. Listing 2 shows an example
of the use of the generated class from Java.

2.3 Native Events

Jadescript adopts an event-driven programming style.
Agents and behaviours can include several event han-
dlers that define how to react to various external (i.e.,
messages from other agents) or internal (i.e., changes
of the internal state, failures, and exceptions) events.
Native events are an additional kind of event recently
introduced in the language. A Jadescript agent can
listen to native events through its active behaviours,
when they contain an applicable native event handler.
The details about received native events are reported
at runtime by predicates or atomic propositions, and
the programmer can use ontology declarations to de-
fine schemas for them. The syntax for a native event
handler (here referred as NEHandler) is:
⟨NEHandler⟩ ::= ‘on’ ‘native’ ⟨Pattern⟩?

(
‘when’ ⟨Expr⟩

)
?

‘do’ ⟨CodeBlock⟩

where Pattern is an optional pattern (Petrosino and
Bergenti, 2019) for the predicate or the proposition
describing the event, Expr after the when keyword is
a boolean expression expressing additional precondi-
tions, and CodeBlock is a section of procedural code
that defines what to do when a matching event is se-
lected for handling.

In the current version of Jadescript, na-
tive events can be notified only from Java
code by using the method named emit on a
JadescriptAgentController instance. This
method accepts one proposition, which can be

defined in Jadescript using proposition and
predicate declarations in ontologies. Note that the
Java code written to create containers and agents
is executed on a different thread than the ones
on which JADE (and consequentially, Jadescript)
agents execute. However, events notified through a
JadescriptAgentController instance are pushed
at the end of a queue internal to the agent, in a
thread-safe way. Actually, the mechanism that is used
to push an event to an agent is based on the Object
to Agent (O2A) facility (Bellifemine et al., 2007) that
JADE provides to safely interact with agents.

2.4 Use of Java Methods in Jadescript

This subsection describes a set of features that is pro-
vided to directly access methods written in Java from
Jadescript. To achieve this, two new constructs are in-
troduced in the language, namely the do native state-
ment, and the native expression.

The syntax of a do native statement (here re-
ferred as DNStatement) is:
⟨DNStatement⟩ ::= ‘do’ ‘native’ ⟨MetID⟩

(
‘with’ ⟨ArgList⟩

)
?

where Expr is an expression, Expr:Text is an ex-
pression evaluating to a text value, Identifier is
a Jadescript identifier, and ArgList is a comma-
separated list of expressions. This statement can be
used to invoke a Java static method identified by
MetID, with the arguments enumerated in the ArgList.
The method is resolved at compile time if MetID is a
Java fully qualified name expressed as a sequence of
identifiers separated by dots. In this case, the com-
piler can check the existence of the Java method in
the environment and the conformance of the types of
the arguments. On the contrary, if MetID is an ex-
pression evaluating to a text value, the method is re-
solved at runtime, using the obtained text as the fully
qualified name of the requested method. Java meth-
ods resolved at runtime are invoked in the generated
code using the Java Reflection API. In this second
case, the compiler does not check the conformance
of the types of the arguments, and a Jadescript excep-
tion (Petrosino et al., 2022b) is thrown if the types
of the arguments are not compatible with the param-
eters of any of the resolved methods. Note that, in
both mentioned cases, as mentioned in Sect. 1 and
Sect. 2, all data types used in the signature of the re-
quested method must be compatible with Jadescript
data types. Moreover, note that the do native con-
struct is a statement, and therefore it cannot be used as
an expression. This also means that the value returned
by the Java method is discarded after the execution of
the statement, and any data type is accepted as valid
return type for the method, void included. Intuitively,

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

168



this is the main difference between do native state-
ments and native expressions, because the methods
invoked by native expressions are required to return
a value of a Jadescript-compatible type.

A native expression can be used as part of any
expression, e.g., as an operand of a binary opera-
tion. The syntax of a native expression, referred as
NExpr, is the following:
⟨NExpr⟩ ::= ‘native’ ⟨MetID⟩

(
‘(’⟨ArgList⟩‘)’

)
?
(
‘as’ ⟨Type⟩

)
?

where MetID follows the same syntactic rules used
in the do native statement, and similarly, MetID can
be used to specify the resolution mode (compile-time
versus runtime) of the method. For compile-time res-
olutions, the compiler checks, in addition to the con-
formance of the argument types to the parameter types
of the resolved method, the compatibility between the
Java return type of the method and the expected type
of the expression. In this case, the as clause with
the Type specification is optional. For runtime res-
olution, however, the compiler cannot infer the type
of the expression because no information about the
invoked method is provided at compile-time. In this
case, the as clause is mandatory and the data type of
the value returned by the method must conform to the
type specified by Type, or an exception is thrown.

2.5 Native Ontology Concepts

Jadescript (communication) ontologies are abstrac-
tions provided to let programmers define a set of en-
tities that are of primary importance for agent com-
munication. As a matter of fact, ontologies can be
used to ensure that agents share the same interpreta-
tion of the contents of exchanged messages. Agents
can explicitly use one or more ontologies. When they
use ontologies, they can create values of the entities
declared in the used ontologies, manipulate those val-
ues, and use them as contents of messages. One of
the main abstractions provided by ontologies are con-
cepts. Concepts are entities with a structure defined in
terms of properties, and they can be used as terms of
other entities like other concepts, or, e.g., predicates
to express logical facts about them, and agent actions
to refer to actions that agents can perform.

The support for Jadescript-Java interoperability
presented in this paper introduces a new type of ontol-
ogy declaration, which is a different flavor of concept
and it is called native concept. Native concepts are
concepts whose concrete implementation is defined
by the programmer in Java. To create a native con-
cept, the Jadescript programmer needs to declare it as
an ordinary concept in an ontology declaration, but
prepending the native keyword to it. By doing this,
the compiler generates a Java abstract class with the

same name of the concept, and it includes a partial
implementation of it. In particular, for each property
declared in the concept, two abstract methods, namely
a setter method and a getter method, are included.

When using native concepts, the programmer is
supposed to write a concrete Java class that extends
the generated abstract class with the additional re-
quirement of including a constructor with no param-
eters in the concrete class. This is important be-
cause, when a concept is deserialized from the con-
tent of a message, its constructor with no parameters
is invoked by the receiving agent before automatically
populating the properties of the concept using the set-
ter methods. After the concrete class is defined, the
programmer can bind it to the ontology declaration by
invoking the public static method named bindNative
of the Jadescript class.

The adopted approach to support native concepts
in Jadescript has several advantages. First, the pro-
grammer is guided in the definition of the concrete
class by the Jadescript and Java compilers, ensur-
ing that the programmer writes Java code that is us-
able from Jadescript. Second, each execution envi-
ronment can have its own concrete implementation of
a native concept, while, at the same time, preserv-
ing the details of the concept that are essential for
message exchange. For example, consider a MAS
composed of several agents executing in two con-
nected containers, one on a desktop computer, the
other on an Android smartphone. These agents can
talk about abstract windows sharing a common inter-
pretation of the graphical interface, which is only con-
cerned with properties like its title and its graphical
components. However, when an agent on the desktop
chooses to construct a window visible to the user, a
JFrame instance from the Swing library is shown. At
the same time, when an agent on the Android smart-
phone chooses to show a window, an Android activity
is started and activated.

2.6 Native Functions and Procedures

Jadescript agent and behaviour declarations include
several event handlers, properties, procedures, and
functions. In particular, these last two constructs can
be used to define parameterized sections of procedu-
ral code (possibly, with side effects). The main differ-
ences among these two constructs is that functions are
supposed to return a value, so they have a return type
known at compile time, and they can be applied as
part of expressions. Instead, procedures are supposed
not to return a value, and they can be executed only by
means of the do statement. Jadescript allows the dec-
laration of top-level functions and procedures, which

Cross-Paradigm Interoperability Between Jadescript and Java

169



1 module examples.math
2

3 native function sqrt(x as real) as real

Listing 3: Declaration of a native function.

ensures that they can be part of a module instead of
being internal to a specific agent or behaviour dec-
laration. Top-level functions and procedures can be
used from anywhere inside the module, or they can
be imported into other source files outside the module
by using import declarations.

Top-level functions and procedures have been re-
cently extended with the possibility of implementing
them in Java, using an approach similar to native con-
cepts described previously. Native function and pro-
cedure declarations are syntactically similar to ordi-
nary top-level functions and procedures. The only
differences are that they are introduced by the native
keyword, and they have no body (and, consequently,
no do keyword at the end of their header). For exam-
ple, Listing 3 shows the declaration of a native func-
tion named sqrt that accepts one real parameter and
computes one real value.

For each native function and procedure declara-
tion, the Jadescript compiler generates a Java inter-
face with the same name and a single Java abstract
method. The abstract method has a parameter for
each one of the parameters declared in the Jadescript
native counterpart, and an additional first parame-
ter of type InvokerAgent named invokerAgent.
This reference provides a façade that allows per-
forming operations on behalf of the agent, e.g.,
to write messages to the container message log,
to shut the agent down, or to activate or deacti-
vate behaviours. Actually, the availability of the
invokerAgent argument is the one of the main ad-
vantages of using native functions and procedures in-
stead of native expressions and statements. Note that
an InvokerAgent instance is substantially different
from the JadescriptAgentController instance de-
scribed in Sect. 2. The former represents the agent
from an internal perspective, i.e., it is the agent who
called the native function or the native procedure, and
it is used to perform operations within the Java thread
of the agent. The latter, instead, is a proxy for the
agent intended to control the agent from the outside,
to issue commands, or to notify events from (possi-
bly) another Java thread.

In order to use a native function or procedure, the
programmer is supposed to create a concrete imple-
mentation of the generated interface. For example,
Listing 4 shows a simple implementation of the na-
tive function declared in Listing 3. Note that the im-
plementation class that provides the bodies of native

1 public class SqrtImpl
2 implements examples.math.sqrt {
3 public Double sqrt(InvokerAgent
4 invokerAgent , Double x) {
5 return Math.sqrt(x);
6 }
7 }

Listing 4: Implementation of the native function sqrt.

functions and procedures must be bound at runtime
by means of the method named bindNative available
in the Jadescript class, similarly to the mechanism
avaiable for native concepts.

3 RELATED WORK

Jadescript is not the first AOP language that provides
support for interoperability with Java. As a mat-
ter of fact, several AOP languages are designed to
work within Java-based environments. One language
that shares relevant similarities with Jadescript, espe-
cially in the architecture of its main implementation,
is SARL (Rodriguez et al., 2014; Feraud and Galland,
2017). SARL is an AOP language based on Xtend,
which is a Java dialect that is tightly integrated with
Xtext, which is a tool that is used by the current im-
plementation of the Jadescript compiler. Thanks to
this design choice, SARL code can readily use code
defined in Java or in Xtend. The SARL programmer
can easily access fields, invoke constructors, and in-
voke instance and static methods with the common
dot notation. SARL, through its features inherited
by Xtend, also provides OOP abstractions to directly
define classes, interfaces, enumerations, and annota-
tions. This approach allows writing code that is easily
interoperable with Java code, and this is possible ul-
timately because SARL adopts both AOP and OOP
paradigms. Jadescript was designed not to be an OOP
language, and therefore it cannot enjoy the benefits of
immediate interoperability with Java like SARL does.

Jason (Bordini and Hübner, 2006) is an
AgentSpeak(L) (Rao, 1996) interpreter written
in Java. AgentSpeak(L) provides a way to express
agent programs based on the Belief-Desire-Intention
(BDI) agent architecture, which equips agents
with practical reasoning abilities. Jason extends
AgentSpeak(L) with several additions, e.g., plan
failure handling, and agent communication based on
speech acts. Moreover, it implements the underlying
BDI agent architecture in Java, offering programmers
the possibility to customize the architecture by
extending Java classes.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

170



The interpreter loop is at the core of the Jason
agent architecture. The loop is composed of steps
to which parts of the reasoning process of the agent
are delegated. Almost all parts of the loop can be cus-
tomized (Bordini et al., 2007) by extending the Agent
class and overriding the corresponding Java methods.
Moreover, the environment the agents are situated in
is implemented in Java using a specific API to imple-
ment environments and to provide sensing capabili-
ties to agents. Finally, the body of Jason plans are se-
quences of private actions and of updates to the belief
base or to the set of goals to be achieved by the agent.
The list of actions that can be executed, and the effects
of these actions, is defined by the environment or by
internal actions, which are instances of Java classes
that implement the InternalAction interface.

ASTRA (Dhaon and Collier, 2014; Collier et al.,
2015) is an implementation of AgentSpeak(L) ex-
tended with teleo-reactive programming capabilities
and support for encapsulated rules. ASTRA intro-
duces a specific abstraction for interoperability with
Java called module. A module is a direct mapping
of a Java object into a namespace of agent actions
and sensors. Each action and sensor corresponds to
a Java method annotated with @ACTION and @SENSOR
in the user-defined module class, which extends the
ASTRA class Module. The module code can ac-
cess and modify the internal state of the agent by
means of the inherited field agent. For example,
an action or a sensor implemented in Java can use
agent.beliefs().addBelief(b) to update the be-
lief base of the agent with the addition of a new belief
b. At the beginning of each interpreter cycle, all the
sensor methods of each used module are invoked to
give them the opportunity to change the belief base or
to emit appropriate events. Instead, actions are in-
voked explicitly within ASTRA plans by means of
the ubiquitous dot notation. ASTRA modules are
designed for reusability and their usage is expressed
with statements in the body of an agent declaration.

An abstraction similar to Jason environments or
ASTRA modules is absent in Jadescript because
Jadescript provides no abstraction to explicitly model
an environment. However, the sensing and acting
abilities provided by them and by Jason internal ac-
tions can be easily defined in terms of the native state-
ments, expressions, events, functions, and procedures
discussed in Sec. 2.

4 CONCLUSION

Software agents provide a unique opportunity to pro-
mote reusability and adaptability of quality soft-

ware (Bergenti and Huhns, 2004). However, this de-
sirable result cannot be effectively achieved without a
means to enable smooth interactions between agents
and other pieces of software developed in using main-
stream, or even legacy, technologies. For this reason,
an AOP language that aspires to be used for the devel-
opment of real-world agent-based solutions needs to
provide an effective support for interoperability with
mainstream languages like Java. This paper presented
and discussed the main additions to Jadescript to sup-
port interoperability with Java, highlighting the im-
portance of such additions and comparing their de-
sign with similar supports provided by other AOP lan-
guages, namely SARL, Jason, and ASTRA.

The set of discussed features can be further de-
veloped and improved in the future. For example,
Jadescript does not currently provide a support to cus-
tomize parts of the internal agent architecture, like
Jason and several other AOP languages do. The
prospect of this support is secondary to additional
work that might be addressed in future versions of
Jadescript. In particular, future work might address
the definition of the subtyping and inheritance mech-
anisms to reuse agent and behaviour definitions. This
improvement to the language does not seem particu-
larly involved because Jadescript is designed to trans-
late these definitions to Java classes. In addition, the
Jadescript runtime support could provide the facili-
ties to let programmers extend these classes to di-
rectly customize the architectural details of a class of
agents or behaviours. This improvement of the lan-
guage would allow the injection of custom code in the
various phases of the agent and behaviour lifecycles.
Moreover, it would provide the ability to change the
default implementations of the core mechanisms of
the agents, e.g., the behaviour scheduling algorithm
or the algorithm that puts inbound messages into the
private message inbox of the agent.

Finally, it is worth noting that additional dis-
cussions on interoperability features are expected if
Jadescript would target other platforms than the Java
virtual machine in the future. The interoperability
features presented in this paper are general enough to
easily support such a prospect, ensuring that the syn-
tax and the semantics of the interoperability features
would remain the same from the Jadescript side, inde-
pendently of the target platform. However, other lan-
guages and platforms could inspire new ideas for in-
teroperability features or present unforeseen require-
ments and constraints.

Cross-Paradigm Interoperability Between Jadescript and Java

171



ACKNOWLEDGEMENTS

This work was partially supported by the Italian Min-
istry of University and Research under the PRIN 2020
grant 2020TL3X8X for the project Typeful Language
Adaptation for Dynamic, Interacting and Evolving
Systems (T-LADIES).

REFERENCES

Bellifemine, F., Bergenti, F., Caire, G., and Poggi, A.
(2005). JADE–A Java Agent DEvelopment Frame-
work. In Multi-Agent Programming, volume 25 of
Multiagent Systems, Artificial Societies, and Simu-
lated Organizations, pages 125–147. Springer.

Bellifemine, F., Caire, G., and Greenwood, D. (2007). De-
veloping Multi-Agent Systems with JADE. Wiley Se-
ries in Agent Technology. John Wiley & Sons.

Bergenti, F., Caire, G., and Gotta, D. (2015). Large-scale
network and service management with WANTS. In
Industrial Agents: Emerging Applications of Software
Agents in Industry, pages 231–246. Elsevier.

Bergenti, F., Caire, G., Monica, S., and Poggi, A. (2020).
The first twenty years of agent-based software devel-
opment with JADE. Autonomous Agents and Multi-
Agent Systems, 34(36).

Bergenti, F. and Huhns, M. N. (2004). On the use of agents
as components of software systems. In Methodologies
and Software Engineering for Agent Systems, pages
19–31. Springer.

Bergenti, F., Monica, S., and Petrosino, G. (2018). A script-
ing language for practical agent-oriented program-
ming. In Proceedings of the 8th ACM SIGPLAN Inter-
national Workshop on Programming Based on Actors,
Agents, and Decentralized Control (AGERE 2018) at
ACM SIGPLAN Conference Systems, Programming,
Languages and Applications: Software for Humanity
(SPLASH 2018), pages 62–71. ACM.

Bergenti, F. and Petrosino, G. (2018). Overview of a script-
ing language for JADE-based multi-agent systems. In
Proceedings of the 19th Workshop “From Objects to
Agents” (WOA 2018), volume 2215 of CEUR Work-
shop Proceedings, pages 57–62. RWTH Aachen.

Bordini, R. H. and Hübner, J. F. (2006). BDI agent pro-
gramming in AgentSpeak using Jason. In Proceedings
of the 6th International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA 2005), vol-
ume 3900 of Lecture Notes in Artificial Intelligence.
Springer.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007).
Programming multi-agent systems in AgentSpeak us-
ing Jason. Wiley Series in Agent Technology. John
Wiley & Sons.

Caire, G., Bellifemine, F., Trucco, T., and Rimassa, G.
(2010). Jade Administrator’s Guide. Available at
jade.tilab.com.

Collier, R. W., Russell, S., and Lillis, D. (2015). Re-
flecting on agent programming with AgentSpeak(L).

In Lecture Notes in Computer Science, volume 9387.
Springer.

Dhaon, A. and Collier, R. (2014). Multiple inheritance
in AgentSpeak(L)-style programming languages. In
Proceedings of the 4th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents,
and Decentralized Control (AGERE 2014) at ACM
SIGPLAN Conference Systems, Programming, Lan-
guages and Applications: Software for Humanity
(SPLASH 2014).

Feraud, M. and Galland, S. (2017). First comparison
of SARL to other agent-programming languages and
frameworks. In Proceedings of the 8th International
Conference on Ambient Systems, Networks and Tech-
nologies (ANT 2017) and of the 7th International Con-
ference on Sustainable Energy Information Technol-
ogy (SEIT 2017), volume 109 of Procedia Computer
Science. Elsevier.

Genesereth, M. R. and Ketchpel, S. P. (1994). Software
agents. Communications of the ACM, 37(7):48–55.

Iotti, E., Petrosino, G., Monica, S., and Bergenti, F.
(2020). Exploratory experiments on programming au-
tonomous robots in Jadescript. In Proceedings of the
1st Workshop on Agents and Robots for Reliable Engi-
neered Autonomy (AREA 2020) at the European Con-
ference on Artificial Intelligence (ECAI 2020), volume
319 of Electronic Proceedings in Theoretical Com-
puter Science. Open Publishing Association.

Petrosino, G. and Bergenti, F. (2019). Extending message
handlers with pattern matching in the Jadescript pro-
gramming language. In Proceedings of the 20th Work-
shop “From Objects to Agents” (WOA 2019), volume
2404 of CEUR Workshop Proceedings, pages 113–
118. RWTH Aachen.

Petrosino, G., Iotti, E., Monica, S., and Bergenti, F. (2021).
Prototypes of productivity tools for the Jadescript pro-
gramming language. In Proceedings of the 22nd Work-
shop “From Objects to Agents” (WOA 2021), volume
2963 of CEUR Workshop Proceedings, pages 14–28.
RWTH Aachen.

Petrosino, G., Iotti, E., Monica, S., and Bergenti, F. (2022a).
A description of the Jadescript type system. In Pro-
ceedings of the 3rd International Conference on Dis-
tributed Artificial Intelligence (DAI 2022), volume
13170 of Lecture Notes in Computer Science, pages
206–220. Springer.

Petrosino, G., Monica, S., and Bergenti, F. (2022b). Robust
software agents with the jadescript programming lan-
guage. In Proceedings of the 23rd Workshop “From
Objects to Agents” (WOA 2022), CEUR Workshop
Proceedings. RWTH Aachen.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out
in a logical computable language. In MAAMAW 1996:
Agents Breaking Away, pages 42–55. Springer.

Rodriguez, S., Gaud, N., and Galland, S. (2014). SARL:
A general-purpose agent-oriented programming lan-
guage. In Proceedings of the IEEE/WIC/ACM Inter-
national Joint Conferences of Web Intelligence (WI
2014) and Intelligent Agent Technologies (IAT 2014),
volume 3, pages 103–110. IEEE.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

172


