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Abstract: Dimensionality reduction is a popular preprocessing and a widely used tool in data mining. Transparency,
which is usually achieved by means of explanations, is nowadays a widely accepted and crucial requirement
of machine learning based systems like classifiers and recommender systems. However, transparency of di-
mensionality reduction and other data mining tools have not been considered much yet, still it is crucial to
understand their behavior – in particular practitioners might want to understand why a specific sample got
mapped to a specific location. In order to (locally) understand the behavior of a given dimensionality reduc-
tion method, we introduce the abstract concept of contrasting explanations for dimensionality reduction, and
apply a realization of this concept to the specific application of explaining two dimensional data visualization.

1 INTRODUCTION

Transparency of machine learning (ML) based sys-
tem, applied in the real world, is nowadays a widely
accepted requirement – the importance of trans-
parency was also recognized by the policy makers
and therefore made its way into legal regulations like
the EU’s GDPR (parliament and council, 2016). A
popular way of achieving transparency is by means
of explanations (Molnar, 2019) which then gave rise
to the field of eXplainable AI (XAI) (Samek et al.,
2017; Tjoa and Guan, 2019). Although a lot of dif-
ferent explanation methodologies for ML based sys-
tems have been developed (Molnar, 2019; Tjoa and
Guan, 2019), it is important to realize that it is still
somewhat unclear what exactly makes up a good ex-
planation (Doshi-Velez and Kim, 2017; Offert, 2017).
Therefore one must carefully pick the right explana-
tion in the right situation, as there are (potentially)
different target users with different goals (Ribera and
Lapedriza, 2019) – e.g. ML engineers need expla-
nations that help them to improve the system, while
lay users need trust building explanations. Popu-
lar explanations methods (Molnar, 2019; Tjoa and
Guan, 2019) are feature relevance/importance meth-
ods (Fisher et al., 2018), and examples based meth-
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ods (Aamodt and Plaza., 1994) which use a set or
a single example for explaining the behavior of the
system. Instances of example based methods are
contrasting explanations like counterfactual explana-
tions (Wachter et al., 2017; Verma et al., 2020) and
prototypes & criticisms (Kim et al., 2016).

Dimensionality reduction methods are a popular
tool in data mining, e.g. for data visualization, an of-
ten used preprocessing in ML pipelines (Gisbrecht
and Hammer, 2015) and are also used for inspecting
trained models (Schulz et al., 2021; Lapuschkin et al.,
2019). Similar to other ML methods, dimensionality
reduction methods itself are not easy to understand –
i.e. a high-dimensional sample is “somehow” mapped
to a low-dimensional sample without providing any
explanation/reason of this mapping. A ML pipeline
can not be transparent if it contains non-transparent
preprocessings like dimensionality reduction, and a
proper and responsible use of data analysis tools such
as data visualization is not possible if the inner work-
ing of the tool is not understood. Therefore, we argue
that there is a need for understanding dimensionality
reduction methods – we aim to provide such an un-
derstanding by means of contrasting explanations.
Related Work. In the context of explaining di-
mensionality reduction, only little work exists so far.
Some approaches (Schulz and Hammer, 2015; Schulz
et al., 2014) aim to infer global feature importance for
a given data projection. Another work (Bibal et al.,
2020) estimates feature importance locally for a vicin-
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ity around a projected data point, using locally linear
models. A recent paper (Bardos et al., 2022) proposes
to use local feature importance explanations by com-
puting a local linear approximation for each reduced
dimension, extracting feature importances from the
weight vectors. Further, saliency map approaches
such as the layer-wise relevance propagation (LRP)
(Bach et al., 2015) could in principle be applied to a
parametric dimensionality reduction mapping in order
to obtain locally relevant features. However, these ap-
proaches do not provide contrasting explanations, in
which we are interested in this work.
Our Contributions. First, we make a conceptional
contribution by proposing a general formalization of
diverse counterfactual explanations for explaining di-
mensionality reduction methods. Second, we propose
concrete realizations of this concept for four popular
representatives of parametric dimensionality reduc-
tion method classes: PCA (linear mappings), SOM
(Kohonen, 1990) (topographic mappings), autoen-
coders (Goodfellow et al., 2016) (neural networks)
and parametric t-SNE (Van Der Maaten, 2009) (para-
metric extensions of neighbor embeddings). Finally,
we empirically evaluate them in the particular use-
case of two-dimensional data visualization.

The remainder of this work is structured as fol-
lows: First (Section 2) we review the necessary foun-
dations of dimensionality reduction and contrasting
explanations. Next (Section 3.1), we propose and
formalize diverse counterfactual explanations for ex-
plaining dimensionality reduction – we first propose a
general concept (Section 3.1), and then propose prac-
tical realizations for popular parametric dimensional-
ity reduction methods (Sections 3.2,3.3). We empiri-
cally evaluate our proposed explanations in Section 4
where we consider two-dimensional data visualiza-
tion as a popular application of dimensionality reduc-
tion. Finally, this work closes with a summary and
conclusion in Section 5.

2 FOUNDATIONS

2.1 Dimensionality Reduction

The common setting for dimensionality reduction
(DR) is that data ~xi, i = 1, . . . ,m are given in a high-
dimensional input space X – we will assume X = Rd

in the following. The goal is to project them to lower-
dimensional points~yi, i = 1, . . . ,m in Rd′ – where for
data visualization often d′ = 2 –, such that as much
structure as possible is preserved. The precise mathe-
matical formalization of the term “structure preserva-
tion” is then one of the key differences between differ-

ent DR methods in literature (Van Der Maaten et al.,
2009; Lee and Verleysen, 2007; Bunte et al., 2012).

One major view for grouping DR methods is
whether they provide an explicit function φ : X →Rd′

for projection, where the parameters of φ are adjusted
by the according DR method, or whether no such
functional form is assumed by the approach. The for-
mer methods are referred to as parametric and the lat-
ter ones as non-parametric (Van Der Maaten et al.,
2009; Gisbrecht and Hammer, 2015).

Since we require parametric mappings in our
work, we recap a few of the most popular parametric
DR approaches in the following. However, since there
do exist successful extensions for non-parametric ap-
proaches to also provide a parametric function, we
will consider one of them here as well. We will con-
sider these approaches again in our experiments.

2.1.1 Linear Methods

The most classical DR methods are based on a linear
functional form:

φ(~x) = A~x+~b (1)

where A ∈ Rd′×d and ~b ∈ Rd′ . Particular instances
are Principal Component Analysis (PCA), Linear Dis-
criminant Analysis (LDA) and also the mappings ob-
tained by metric learning approaches such as the
Large Margin Nearest Neighbor (LMNN) method
(Gisbrecht and Hammer, 2015). These constitute dif-
ferent cost function based approaches for estimating
the parameters of φ(·), but in the end result in such a
linear parametric mapping Eq. (1).

2.1.2 Topographic Mappings

A class of non-linear DR approaches is given by
topographic mappings such as the Self Organizing
Map (SOM) and the Generative Topographic Map-
ping (GTM). We consider the SOM as one repre-
sentative of this class of methods in the following.
The SOM (Kohonen, 1990) consists of a set of pro-
totypes ~p~z ∈ Rd which are mapped to an index set
I , φ : Rd → I – e.g. the prototypes are arranged as
a two-dimensional grid: I ⊂ N2. The dimensional-
ity reduction maps a given input~x to the index of the
closest prototype:

φ(~x) = argmin
~z∈I

‖~x−~p~z‖2. (2)

2.1.3 Autoencoder

An autoencoder (AE) fθ : Rd → Rd is a neural net-
work consisting of an encoder, mapping the input to
a smaller representation (also called the bottleneck)
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Figure 1: Illustration of the investigated topic: a ’high-dimensional’ data set (left, with an outlier marked as a star) is mapped
to two dimensions (middle), where the question ’why is the central point mapped here and not there’ is asked (indicated by
the arrow). Possible explanations are depicted (right).

and a decoder, mapping it back to the original in-
put (Goodfellow et al., 2016):

fθ(~x) = (decθ ◦ encθ)(~x), (3)

which are trained to optimize the reconstruction loss.
A (typically non-linear) dimensionality reduction φ(·)
based on this approach consists of the encoder map-
ping:

φ(~x) = encθ(~x) (4)

2.1.4 Neighbor Embeddings

The class of neighbor embedding methods constitutes
a set of non-parametric approaches that are consid-
ered as the most successful or state-of-the-art tech-
niques in many cases (Kobak and Berens, 2019; Becht
et al., 2019; Gisbrecht and Hammer, 2015). Instances
are the very popular t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) and Uniform Manifold Ap-
proximation and Projection for Dimension Reduction
(UMAP) approaches (Van der Maaten and Hinton,
2008; McInnes et al., 2018). In the following, we
consider t-SNE as a representative of this class of
methods and, among its parametric extensions (Van
Der Maaten, 2009; Gisbrecht et al., 2015), the ap-
proach Parametric t-SNE (Van Der Maaten, 2009).

Parametric t-SNE, uses a neural network fθ :
Rd → Rd′ for mapping a given input ~x to a lower-
dimensional domain:

φ(~x) = fθ(~x), (5)

with respect to the t-SNE cost function.
While there do exist more families of DR ap-

proaches, such as manifold embeddings (including
MVU and LLE) or discriminative/supervised DR, it
would exceed the scope of the present work to inves-
tigate all possible choices.

2.2 Contrasting Explanations

Contrasting explanations state a change to some fea-
tures of a given input such that the resulting data
point causes a different behavior of the system/model
than the original input does. Counterfactual explana-
tions (often just called counterfactuals) are the most
prominent instance of contrasting explanations (Mol-
nar, 2019). One can think of a counterfactual explana-
tion as a recommendation of actions that change the
model’s behavior/prediction. One reason why coun-
terfactual explanations are so popular is that there ex-
ists evidence that explanations used by humans are
often contrasting in nature (Byrne, 2019) – i.e. peo-
ple often ask questions like “What would have to be
different in order to observe a different outcome?”.
It was also shown that such questions are useful to
learn about an unknown functionality and exploit this
knowledge to achieve some goals (Kuhl et al., 2022a;
Kuhl et al., 2022b).

A prominent example for illustrating the concept
of a counterfactual explanation is the example of loan
application: Imagine you applied for a loan at a bank.
Now, the bank rejects your application and you would
like to know why. In particular, you would like to
know what would have to be different so that your
application would have been accepted. A possible
explanation might be that you would have been ac-
cepted if you had earned 500$ more per month and if
you had not had a second credit card.

Unfortunately, many explanation methods (in-
cluding counterfactual explanations) are lacking
uniqueness: Often there exists more than one possi-
ble & valid explanation – this is called “Rashomon
effect” (Molnar, 2019) – and in such cases, it is not
clear which or how many of the possible explanations
should be presented to the user. See Figure 2 where
we illustrate the concept of a counterfactual explana-
tion, including the existing of multiple possible and
valid counterfactuals. Most approaches ignore this
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Figure 2: “Rashomon effect”: Illustration of multiple pos-
sible counterfactual explanations~xcf of a given sample~xorig
for a binary classifier.

problem, however, there exist a few approaches that
propose to compute multiple diverse counterfactuals
to make the user aware that there exist different pos-
sible explanations (Rodriguez et al., 2021; Russell,
2019; Mothilal et al., 2020). In order to keep the ex-
planation (suggested changes) simple – i.e. we are
looking for low-complexity explanations that are easy
to understand – an obvious strategy is to look for a
small number of changes so that the resulting sample
(counterfactual) is similar/close to the original sam-
ple. This is aimed to be captured by Definition 1.

Definition 1 ((Closest) Counterfactual Explana-
tion (Wachter et al., 2017)). Assume a prediction
function (e.g. a classifier) h : Rd → Y is given. Com-
puting a counterfactual ~xcf ∈ Rd for a given input
~x ∈ Rd is phrased as an optimization problem:

argmin
~xcf∈Rd

`
(
h(~xcf),ycf

)
+C ·θ(~xcf,~x) (6)

where `(·) denotes a loss function, ~ycf the target pre-
diction, θ(·) a penalty for dissimilarity of ~xcf and ~x,
and C > 0 denotes the regularization strength.

The counterfactuals from Definition 1 are also
called closest counterfactuals because the optimiza-
tion problem Eq. (6) tries to find an explanation ~xcf
that is as close as possible to the original sample ~x.
However, other aspects like plausibility and action-
ability are ignored in Definition 1, but are covered in
other work (Looveren and Klaise, 2019; Artelt and
Hammer, 2020; Artelt and Hammer, 2021). In this
work, we refer to counterfactuals in the spirit of Def-
inition 1. Note that counterfactual explanations also
exist in the causality domain (Pearl, 2010). Here
the knowledge of a structural causal model (SCM),
describing the interaction of features, is assumed.
This work is not based in the causality domain and

we only consider counterfactual explanations as pro-
posed by (Wachter et al., 2017).

3 COUNTERFACTUAL
EXPLANATIONS OF
DIMENSIONALITY
REDUCTION

In this section, we propose counterfactual explana-
tions of dimensionality reduction – i.e. explaining
why a specific point was mapped to some location in-
stead of a requested different location. As it is the na-
ture of counterfactual explanations, the explanations
state how we have to (minimally) change the original
sample such that it gets mapped to some requested lo-
cation – see Figure 1 for an illustrative example.

We argue that this type of explanation is in partic-
ular very well suited for explaining data visualization
which is a common application of dimensionality re-
duction in data mining (Gisbrecht and Hammer, 2015;
Lee and Verleysen, 2007; Kaski and Peltonen, 2011)
– e.g. data is mapped to a two-dimensional space
which is then depicted in a scatter plot. For instance,
we could utilize such explanations to explain outliers
in the data visualization: I.e. explaining why a point
got mapped far away from the other points instead
of close to the other ones – a counterfactual expla-
nation states how to change the outlier such that it is
no longer an outlier in the visualization, which would
allow us to learn something about the particular rea-
sons why this point was flagged as an outlier in the
visualization. See Figure 3 for an illustrative exam-
ple where we explain anomalous pressure measure-
ments in a water distribution network: We consider
the hydraulically isolated “Area A” in the L-Town net-
work (Vrachimis et al., 2020) where 29 pressure sen-
sors are installed – we simulate a sensor failure (con-
stant added the original pressure value) in node n105.
We pick an outlier ~x (see left plot in Figure 3) and
compute a counterfactual explanation for each normal
data point as a target mapping – i.e. asking which sen-
sor measurements must be changed so that the over-
all measurement vector~xcf is mapped to the specified
location in the data visualization. When aggregating
all explanations by summing up and normalizing the
suggested changes for each sensor (see right plot in
Figure 3), we are able to identify the faulty sensors
and thereby “explain” the outlier.

Note that existing explanation methods for ex-
plaining dimensionality reduction methods, which
usually focus on feature importances (see Section 1),
can not provide such an explanation – i.e. answer-
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Figure 3: Explaining anomalous pressure measurements – Left: Two dimensional data visualization of 29-dimensional pres-
sure measurements; Right: Normalized amount of suggested changes per sensor – the faulty sensor is suggested to change the
most and is therefore correctly identified.

ing contrasting questions like “Why was the point
mapped here and not there”. This is because they only
highlight important features but do not suggest any
changes or magnitude of changes that would yield a
different (requested) mapping. However, as already
mentioned in Section 2.2, the Rashomon effect states
that there might exist many possible explanations why
a particular point was mapped far away from the oth-
ers – we therefore aim for a set of diverse counterfac-
tual explanations in order to learn the most about the
observed mapping and provide different possibilities
for actionable recourse.

First, we formalize the general concept of (di-
verse) counterfactual explanations of dimensionality
reduction in Section 3.1. Next, we consider some
popular parametric dimensionality reduction meth-
ods, and propose methods for efficiently computing
single counterfactuals (see Section 3.2) and diverse
counterfactuals (see Section 3.3).

3.1 General Modeling

We assume the DR method is given as a mapping

φ : Rd → Rd′ (7)

with d > d′.
A counterfactual explanation of a sample ~x ∈ Rd

is a sample ~xcf in the original domain (i.e. Rd) that
differs in a few features only from the given origi-
nal sample ~x, but is mapped to a requested location
~ycf ∈ Rd′ which is different from the mapping of the
original sample~x. We formalize this in Definition 2.
Definition 2 (Counterfactual Explanation of Di-
mensionality Reduction). For a given DR method
φ(·) Eq. (7), a counterfactual explanation ~xcf ∈
Rd ,~ycf ∈ Rd′ of a specific sample ~x ∈ Rd is given as

a solution to the following multi-criteria optimization
problem:

min
~xcf∈Rd

(
‖~x−~xcf‖0,‖φ(~xcf)−~ycf‖p

)
, (8)

where p defines the norm that is used. As
discussed in Section 2.2, there usually exists more
than one possible explanation (“Rashomon effect”) –
clearly this is the case for dimensionality reduction as
well because dimensionality reduction is a many-to-
one mapping (i.e. multiple points are mapped to the
same location). In this context, a set of diverse (i.e.
highly different) explanations would provide more in-
formation than a single explanation only. We there-
fore extend Definition 2 to a set of diverse counter-
factuals explanations instead of a single one:

Definition 3 (Diverse Counterfactual Explanations of
Dimensionality Reduction). For a given DR method
φ(·) Eq. (7), a set of diverse counterfactual explana-
tions {~xi

cf ∈Rd},~ycf ∈Rd′ of a specific sample~x ∈Rd

is given as a solution to the following multi-criteria
optimization problem:

min
{~xi

cf∈Rd}

(
‖~x−~xi

cf‖0,‖φ(~xi
cf)−~ycf‖p,ψ(~xi

cf,~x
j
cf)
)

(9)

where ψ : Rd×Rd → R+ denotes a function measur-
ing the pair-wise diversity of two given counterfactu-
als – i.e. returning a small value if the two counterfac-
tuals are very different and a larger value otherwise.

The term “diversity” itself is somewhat fuzzy and
different use-cases might require different definitions
of diverse counterfactuals. In this work we utilize a
very general definition of diversity, namely the num-
ber of overlapping features – i.e. diverse counterfac-
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tuals should not change the same features:

ψ(~x j
cf,~x

k
cf) =

d

∑
i=1

1
(
(~δ

j
cf)i 6= 0∧ (~δk

cf)i 6= 0
)

(10)

where ~δ
j
cf = ~x j

cf −~x and 1(·) denotes the indicator
function that returns 1 if the boolean expression is true
and 0 otherwise.

3.2 Method Specific Computation of a
Single Counterfactual

Hereinafter, we propose practical relaxations for com-
puting a single counterfactual explanation of dif-
ferent parametric dimensionality reduction methods
(see Definition 2). While Definition 2 does not make
any assumptions on the dimensionality reduction φ(·),
we now assume a parametric dimensionality reduc-
tion in order to get tractable optimization problems.

Note that in all cases, we approximate the 0-norm
with the 1-norm for measuring closeness between the
original sample~x and the counterfactual~xcf. Further-
more, we use p = 2, the 2-norm for measuring the
distance between the mapping of~xcf and the requested
mapping~ycf.

3.2.1 Linear Methods

In the case of linear mappings as defined in Sec-
tion 2.1.1, we phrase the computation of a single
counterfactual explanations as the following convex
quadratic program:

argmin
~xcf∈Rd

‖~x−~xcf‖1 +C ·ξ

s.t. ‖A~xcf +~b−~ycf‖2
2 ≤ ξ

ξ≥ 0

(11)

where C > 0 acts as a regularization strength balanc-
ing between the two objectives in Eq. (8) – the regu-
larization is necessary because it is numerically diffi-
cult (or even impossible) to find a counterfactual ~xcf
that yields the exact mapping φ(~xcf) =~ycf, we there-
fore have to specify how much difference we are will-
ing to tolerate. Note that convex quadratic programs
can be solved efficiently (Boyd and Vandenberghe,
2004).

3.2.2 Self Organizing Map

Similar to linear methods, we phrase the computa-
tion of a single counterfactual explanations for SOMs
(Section 2.1.2) as the following convex quadratic pro-
gram, which again can be solved efficiently using

standard solvers from convex optimization (Boyd and
Vandenberghe, 2004):

argmin
~xcf∈Rd

‖~x−~xcf‖1

s.t. ‖~xcf−~p~ycf‖
2
2 + ε≤ ‖~xcf−~p~z‖2

2 ∀~z ∈ I
(12)

where ε > 0 makes sure that the set of feasible solu-
tions is closed.

3.2.3 Autoencoder

For autoencoders (AEs) as discussed in Section 2.1.3,
we utilize the penalty method to merge the two objec-
tives from Eq. (8) into a single objective:

argmin
~xcf∈Rd

‖~x−~xcf‖1 +C · ‖encθ(~xcf)−~ycf‖2 (13)

where the hyperparameter C > 0 acts as a regulariza-
tion strength.

Assuming continuous differentiability of the en-
coder encθ(·), we can solve Eq. (13) using a gradient
based method. However, due to the non-linearity of
encθ(·), we might find a local optimum only.

3.2.4 Parametric t-SNE

Although the neural network fθ(·) of parametric t-
SNE (Section 2.1.4) is trained in a completely differ-
ent way compared to an autoencoder based dimen-
sionality reduction, the final modeling is the same
and consequently, everything from the case of autoen-
coder based DR applies here as well:

argmin
~xcf∈Rd

‖~x−~xcf‖1 +C · ‖ fθ(~xcf)−~ycf‖2 (14)

3.3 Computation of Diverse
Counterfactuals

In this section, we propose an algorithm for comput-
ing diverse counterfactual explanations (see Defini-
tion 3) of the four DR methods considered in the pre-
vious section.

Regarding the formalization of diversity Eq. (10),
instead of using Eq. (10) directly, we propose a more
stricter version in order to get a continuous func-
tion which then yields tractable optimization prob-
lems, similar to the ones we proposed in the pre-
vious section: In order to compute a set of diverse
counterfactuals instead of a single counterfactual, we
utilize our proposed methods for computing a sin-
gle counterfactual explanations from Section 3.2 and
extend these with a mechanism to forbid or punish
changes in black-listed features. We then first com-
pute a single counterfactual explanations using the
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Algorithm 1: Computation of Diverse Counterfactuals.
Input: Original input ~x, Target location ~ycf, k ≥ 1:
number of diverse counterfactuals, Dimensionality re-
duction φ(·)
Output: Set of diverse counterfactuals R = {~xi

cf}
1: F = {} . Initialize set of black-listed features
2: R = {} . Initialize set of diverse counterfactuals
3: for i = 1, . . . ,k do . Compute k diverse

counterfactuals
4: ~xi

cf = CFφ(~x,~ycf,F ) . Compute next
counterfactual

5: R = R ∪{~xi
cf}

6: F = F ∪{ j | (~xcf−~x) j 6= 0} . Update set of
black-listed features

7: end for

methodology proposed in Section 3.2 and then itera-
tively compute another counterfactual explanation but
black-listing all features that have been changed in the
previous counterfactuals – this procedure is illustrated
as pseudo-code in Algorithm 1.

Black-Listing Features. We assume we are given
an ordered set F of black-listed features. In case of
convex programs (e.g. linear methods and SOM), we
consider black-listed features F by means of an addi-
tional affine equality constraint:

M~xcf = ~m (15)

where M ∈ R|F |×d ,~m ∈ R|F | with

(M)i, j =

{
1 if (F )i = j
0 otherwise

(16)

and ~mk = (~x)(F )k
.

Whereas in all other cases (e.g. autoencoder
and parametric t-SNE), where we minimize a (non-
convex) cost function, we replace the counterfactual
~xcf in the optimization problem with an affine map-
ping undoing any potential changes in black-listed
features – i.e. black-listed features can be changed
but have no effect on the final counterfactual because
they are reset to their original value:

‖φ(M~xcf +~m)−~ycf‖2 (17)

where M ∈ Rd×d ,~m ∈ Rd with

(M)i, j =

{
1 if i = j and i 6∈ F
0 otherwise

(~m)i =

{
(~x)i if i ∈ F
0 otherwise

(18)

Note that in both cases, the complexity and type of
optimization problem does not change – e.g. convex
programs remain convex programs.

For convenience, we use CFφ(~x,~ycf,F ) to denote
the computation of a counterfactual (~xcf,~ycf) of a DR
method φ(·) at a given sample~x subject to a set F of
black-listed features.

4 EXPERIMENTS

We empirically evaluate our proposed explanation
methodology of DR methods on the specific use-case
of data visualization – i.e. dimensionality reduction
to two dimensions. All experiments are implemented
in Python and are publicly available on GitHub1.

4.1 Data

We run all our experiments on a set of different ML
benchmark data sets – all data sets are standardized:

Diabetes. The “Diabetes Data Set” (N/A, 1994) is
a labeled data set containing recordings from diabetes
patients. The data set contains 442 samples and 10
real valued scaled features in [−.2, .2] such as body
mass index, age in years and average blood pressure.
The labels are integers in [25,346] denoting a quan-
titative measure of disease progression one year after
baseline.

Breast Cancer. The “Breast Cancer Wisconsin (Di-
agnostic) Data Set” (William H. Wolberg, 1995) is
used for classifying breast cancer samples into benign
and malignant (i.e. binary classification). The data set
contains 569 samples and 30 numerical features such
as area, smoothness and compactness.

Toy. An an artificial, self created, toy data set con-
taining 500 ten dimensional samples. Each fea-
ture is distributed according to a normal distribution
whereby we choose a different random mean for each
feature - by this we can guarantee that, in contrast to
the other data sets, the features are independent of
each other. The binary labelling of the samples is
done by splitting the data into two clusters using k-
means.

4.2 Model Agnostic Algorithm for
Comparison

We compare Algorithm 1 to a general model agnos-
tic algorithm (ModelAgnos) for computing diverse

1https://github.com/HammerLabML/ContrastingExpl
anationDimRed
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counterfactual explanations where we select samples
from the training data set D that minimize a weighted
combination of Eq. (9) – i.e. we make use of the
penalty method to solve the multi-objective optimiza-
tion problem Eq. (9) without making any further as-
sumption on the dimensionality reduction φ(·):

min
{~xi

cf∈D}
C1 · ‖~x−~xi

cf‖1 +C2 · ‖φ(~xi
cf)−~ycf‖2+

C3 ·ψ(~xi
cf,~x

j
cf)

(19)

where C1,C2,C3 > 0 denote regularization coeffi-
cients that allow us to balance between the differ-
ent objectives, and ψ(·) is implemented as stated
in Eq. (10). By limiting the set of feasible solutions to
the training data set, we can guarantee plausibility of
the resulting counterfactual explanations – note that
plausibility of the counterfactuals generated by Algo-
rithm 1 can not be guaranteed.

4.3 Setup

For each data set and each of the four parametric
DR methods (PCA, Autoencoder, SOM, parametric
t-SNE) from Section 3.2, we fit the DR method to the
entire data set and compute for each sample in the data
set a set of three diverse counterfactual explanations
– we evaluate and compare the counterfactuals2 com-
puted by our proposed Algorithm 1 with those from
the model agnostic algorithm (see Section 4.2). For
the requested target location~ycf – recall that in a coun-
terfactual explanation we ask for a change that would
lead to a different specified mapping~ycf instead of the
original mapping~y – we consider two scenarios:

• Perturbations: Choose the mapping of the orig-
inal sample ~x after perturbing three random fea-
tures – the same type of perturbation is applied to
these three features.

• Without any perturbations: Choose the mapping
of a different sample (with a different label) from
the training data set as~ycf.

Regarding the perturbations, we consider the follow-
ing ones:

• Shift: A constant is added to the feature value.

• Gaussian: Gaussian noise is added to feature
value.

Note that we evaluate each perturbation separately.
Furthermore, note that these perturbations could be
interpreted as sensor failures and are therefore highly
relevant to practice.

2All hyperparameters (regularization strength) Ci ∀i are
set to 1.

4.4 Evaluation

For all experimental scenarios, we monitor and eval-
uate some quantitative measurements:

• CfSparse: Sparsity of the counterfactual explana-
tions – i.e. how many (percentage) of the avail-
able features are used in the explanation, smaller
values are better.

• CfDist: Euclidean distance between the mapping
of the counterfactual φ(~xcf) and the requested
mapping ~ycf – i.e. this can be interpreted as a
measurement of the error of counterfactual expla-
nations, smaller values are better.

• CfDiv: Diversity of the counterfactual explana-
tions – i.e. the number of overlapping features
between the diverse explanations (see Eq. (10) in
Section 3.1), smaller values are better.

For the scenarios where we apply a perturbation to
the original sample, we also record the recall of the
identified perturbed features in the counterfactual ex-
planations – i.e. checking if the used features in the
explanation coincide with the perturbed features. By
this, we try to measure the usefulness of our explana-
tions for identifying relevant features – however, since
dimensionality reduction is a many-to-one mapping,
we consider recall only because we do not expect to
observe a high precision due to the Rashomon effect.

Note that each experiment is repeated 100 times
in order to get statistically reliable estimates of the
quantitative measurements.

4.5 Results

The results of the scenario without any perturbations
– i.e. randomly selecting the target sample from the
training set – are shown in Table 1 and the results
of the scenarios with perturbations are shown in Ta-
bles 6,2 – note that, due to space constraints, the latter
one is put in the appendix.

We observe that Algorithm 1, on average, achieves
much sparser and more diverse explanations than the
mode agnostic algorithm (Section 4.2) does. Only in
case of SOM, the sparsity is often a bit worse than
those from the baseline – this might be due to numeri-
cal instabilities of the mathematical program Eq. (12).
In particular, while Algorithm 1 almost always yields
completely diverse explanations, the model agnos-
tic algorithm fails completely – this highlights the
strength of our proposed Algorithm 1 for computing
diverse explanations. Furthermore, both methods are
able to yield counterfactual explanations that are very
close to the requested target location. In most cases
Algorithm 1 yields counterfactuals that are closer to
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Table 1: Quantitative results: No perturbation – all numbers are rounded to two decimal places, best scores are highlighted in
bold-face.

DataSet CfSparse ↓ CfDiv ↓ CfDist ↓
Algo 1 ModelAgnos Algo 1 ModelAgnos Algo 1 ModelAgnos

L
in

ea
r Diabetes 0.21±0.0 0.55±0.0 0.0±0.0 7.07±0.86 0.2±0.2 1.33±0.39

Breast cancer 0.15±0.01 0.66±0.0 0.0±0.0 29.6±0.89 0.36±1.47 2.64±1.5
Toy 0.21±0.0 0.67±0.0 0.0±0.0 9.99±0.01 0.03±0.04 0.85±0.12

SO
M

Diabetes 0.88±0.02 0.61±0.01 0.0±0.0 9.63±21.16 0.01±0.15 3.2±2.73
Breast cancer 0.91±0.02 0.66±0.0 0.0±0.04 29.71±0.62 0.4±5.22 4.07±3.91

Toy 0.84±0.03 0.68±0.0 0.0±0.0 10.6±11.73 0.01±0.17 3.77±3.18

A
E

Diabetes 0.14±0.03 0.51±0.0 0.0±0.01 6.15±0.7 0.28±0.08 0.23±0.04
Breast cancer 0.03±0.01 0.65±0.0 0.0±0.05 28.95±0.92 0.36±0.16 0.31±0.12

Toy 0.14±0.03 0.67±0.0 0.0±0.02 9.98±0.02 0.3±0.09 0.18±0.02

t-
SN

E Diabetes 0.33±0.0 0.58±0.0 0.0±0.0 8.12±1.11 5.35±7.43 3.0±1.83
Breast cancer 0.32±0.01 0.67±0.0 0.23±4.74 29.86±0.17 8.52±11.59 4.32±2.16

Toy 0.33±0.0 0.67±0.0 0.0±0.0 10.0±0.0 1.92±0.81 1.06±0.21

the target location, only in case of parametric t-SNE
the model agnostic algorithm yields “better” coun-
terfactuals – however, in both cases the variance is
quite large which indicates instabilities of the learned
dimensionality reduction. Note that, since the three
evaluation metrics 4.4 are contradictory, it can be mis-
leading to evaluate the performance under each met-
ric separately without looking at the other metrics
at the same time – e.g. a method might yield very
sparse counterfactuals but their distance to the re-
questing mappings is very large. In order to compen-
sate the contradictory nature of the evaluation metrics,
we suggest to also consider a ranking over the three
metrics when assessing the performance of the two
proposed algorithms for computing counterfactuals –
we give such a ranking in Tables 3,4,5. According to
these rankings, Algorithm 1 outperforms the model
agnostic algorithm in many cases or is at at least as
good as the model agnostic method but never worse.
While the recall of the baseline is very good across all
DR methods and data sets, the recall of Algorithm 1
is often very good as well, however, there exist some
cases (in particular the breast cancer data set) where
the recall drops significantly compared to the model
agnostic algorithm.

5 CONCLUSION

In this work, we proposed the abstract concept of con-
trasting explanations for locally explaining dimen-
sionality reduction methods – we considered two-
dimensional data visualization as a popular example
application. In order to deal with the Rashomon ef-
fect – i.e. the fact that there exist more than one
possible and valid explanation – we considered a set
of diverse explanations instead of a single explana-
tion. Furthermore, we also proposed an implementa-

tion of this concept using counterfactual explanations
and proposed modelings and algorithms for efficiently
computing diverse counterfactual explanations of dif-
ferent parametric dimensionality reduction methods.
We empirically evaluated different aspects of our pro-
posed algorithms on different standard benchmark
data sets – we observe that our proposed methods con-
sistently yield good results.

Based on this initial work, there are a couple
of potential extensions and directions for future re-
search:

Depending on the domain and application, it
might be necessary to guarantee plausibility of the
counterfactuals – i.e. making sure that the counterfac-
tual~xcf is reasonable and plausible in the data domain.
Implausibility or a lack of realism of the counterfac-
tual ~xcf might hinder successful recourse in practice.
In this work, we ignored the aspect of plausibility and
it might happen that the computed counterfactuals~xcf
are not always realistic samples from the data domain
– only in case of our model agnostic algorithm (see
Section 4.2) we can guarantee plausibility because
we only consider samples from the training data set
D as potential counterfactuals ~xcf. In future work, a
first approach could be to add plausibility constraints
to our proposed modelings (see Section 3.1) like it
was done for counterfactual explanations of classi-
fiers (Artelt and Hammer, 2020; Artelt and Hammer,
2021; Looveren and Klaise, 2019).

Another crucial aspects of transparency & ex-
plainability is the human. In particular, quantitative
evaluation of algorithmic properties do not necessary
coincide with a human evaluation (Kuhl et al., 2022a).
Therefore we suggest to conduct a user-study to eval-
uate how “useful” our proposed explanation actually
are – in particular it would be of interest to compare
normal vs. plausible explanations, and to compare di-
verse explanations vs. a single explanations.
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Table 2: Quantitative results: Shift perturbation – all num-
bers are rounded to two decimal places, best scores are high-
lighted in bold-face.
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Table 3: Ranking of results from Table 1 – counting the
number of metrics where the method yields the best score,
best scores are highlighted in bold-face.

DataSet Algo 1 ModelAgnos

L
in

ea
r Diabetes 3/3 0/3

Breast cancer 3/3 0/3
Toy 3/3 0/3

SO
M

Diabetes 2/3 1/3
Breast cancer 2/3 1/3

Toy 2/3 1/3

A
E

Diabetes 2/3 1/3
Breast cancer 2/3 1/3

Toy 2/3 1/3

t-
SN

E Diabetes 2/3 1/3
Breast cancer 2/3 1/3

Toy 2/3 1/3

Table 4: Ranking of results from Table 2 – counting the
number of metrics where the method yields the best score,
best scores are highlighted in bold-face.

DataSet Algo 1 ModelAgnos
L

in
ea

r Diabetes 3/4 1/4
Breast cancer 3/4 1/4

Toy 3/4 1/4

SO
M

Diabetes 2/4 2/4
Breast cancer 2/4 2/4

Toy 2/4 2/4

A
E

Diabetes 2/4 2/4
Breast cancer 3/4 1/4

Toy 2/4 2/4

t-
SN

E Diabetes 3/4 1/4
Breast cancer 2/4 2/4

Toy 3/4 1/4

ACKNOWLEDGEMENTS

We gratefully acknowledge funding from the VW-
Foundation for the project IMPACT funded in the
frame of the funding line AI and its Implications for
Future Society.

REFERENCES

Aamodt, A. and Plaza., E. (1994). Case-based reasoning:
Foundational issues, methodological variations, and
systemapproaches. AI communications.

Artelt, A. and Hammer, B. (2020). Convex density con-
straints for computing plausible counterfactual expla-
nations. 29th International Conference on Artificial
Neural Networks (ICANN).

Artelt, A. and Hammer, B. (2021). Convex optimization for
actionable \& plausible counterfactual explanations.
CoRR, abs/2105.07630.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. (2015). On pixel-wise explana-

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

36



tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140.

Bardos, A., Mollas, I., Bassiliades, N., and Tsoumakas, G.
(2022). Local explanation of dimensionality reduc-
tion. arXiv preprint arXiv:2204.14012.

Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok,
I. W., Ng, L. G., Ginhoux, F., and Newell, E. W.
(2019). Dimensionality reduction for visualizing
single-cell data using umap. Nature biotechnology,
37(1):38–44.

Bibal, A., Vu, V. M., Nanfack, G., and Frénay, B.
(2020). Explaining t-sne embeddings locally by adapt-
ing lime. In ESANN, pages 393–398.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press, New York, NY,
USA.

Bunte, K., Biehl, M., and Hammer, B. (2012). A gen-
eral framework for dimensionality-reducing data visu-
alization mapping. Neural Computation, 24(3):771–
804.

Byrne, R. M. J. (2019). Counterfactuals in explainable ar-
tificial intelligence (xai): Evidence from human rea-
soning. In IJCAI-19.

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous
science of interpretable machine learning.

Fisher, A., Rudin, C., and Dominici, F. (2018). All Models
are Wrong but many are Useful: Variable Importance
for Black-Box, Proprietary, or Misspecified Prediction
Models, using Model Class Reliance. arXiv e-prints,
page arXiv:1801.01489.

Gisbrecht, A. and Hammer, B. (2015). Data visualization
by nonlinear dimensionality reduction. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Dis-
covery, 5(2):51–73.

Gisbrecht, A., Schulz, A., and Hammer, B. (2015). Para-
metric nonlinear dimensionality reduction using ker-
nel t-sne. Neurocomputing, 147:71–82.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.

Kaski, S. and Peltonen, J. (2011). Dimensionality reduc-
tion for data visualization [applications corner]. IEEE
signal processing magazine, 28(2):100–104.

Kim, B., Koyejo, O., and Khanna, R. (2016). Examples
are not enough, learn to criticize! criticism for inter-
pretability. In Advances in Neural Information Pro-
cessing Systems 29.

Kobak, D. and Berens, P. (2019). The art of using t-sne for
single-cell transcriptomics. Nature communications,
10(1):1–14.

Kohonen, T. (1990). The self-organizing map. Proceedings
of the IEEE, 78(9):1464–1480.

Kuhl, U., Artelt, A., and Hammer, B. (2022a). Keep
your friends close and your counterfactuals closer:
Improved learning from closest rather than plausi-
ble counterfactual explanations in an abstract setting.
arXiv preprint arXiv:2205.05515.

Kuhl, U., Artelt, A., and Hammer, B. (2022b). Let’s go to
the alien zoo: Introducing an experimental framework
to study usability of counterfactual explanations for
machine learning. arXiv preprint arXiv:2205.03398.
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APPENDIX

Results of the Empirical Evaluation

Table 5: Ranking of results from Table 6 – counting the
number of metrics where the method yields the best score,
best scores are highlighted in bold-face.

DataSet Algo 1 ModelAgnos

L
in

ea
r Diabetes 3/4 1/4

Breast cancer 3/4 1/4
Toy 3/4 1/4

SO
M

Diabetes 2/4 2/4
Breast cancer 2/4 2/4

Toy 2/4 2/4

A
E

Diabetes 2/4 2/4
Breast cancer 2/4 2/4

Toy 2/4 2/4

t-
SN

E Diabetes 3/4 1/4
Breast cancer 2/4 2/4

Toy 3/4 1/4

Table 6: Quantitative results: Gaussian perturbation – all
numbers are rounded to two decimal places, best scores are
highlighted in bold-face.
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