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Abstract: Robots are becoming everyday devices, increasing their interaction with humans. To make human-machine
interaction more natural, cognitive features like Visual Voice Activity Detection (VVAD), which can detect
whether a person is speaking or not, given visual input of a camera, need to be implemented. Neural networks
are state of the art for tasks in Image Processing, Time Series Prediction, Natural Language Processing and
other domains. Those Networks require large quantities of labeled data. Currently there are not many datasets
for the task of VVAD. In this work we created a large scale dataset called the VVAD-LRS3 dataset, derived
by automatic annotations from the LRS3 dataset. The VVAD-LRS3 dataset contains over 44K samples, over
three times the next competitive dataset (WildVVAD). We evaluate different baselines on four kinds of features:
facial and lip images, and facial and lip landmark features. With a Convolutional Neural Network Long Short
Term Memory (CNN LSTM) on facial images an accuracy of 92% was reached on the test set. A study with
humans showed that they reach an accuracy of 87.93% on the test set.

1 INTRODUCTION

Technology is integrating more and more into the life
of the modern man. A very important question is
how are people interacting with technology. The hu-
man brain does not react emotionally to artificial ob-
jects like computers and mobile phones. However, the
human brain reacts strongly to human appearances
like shape of the human body or faces (gun Choi
and Kim, 2009). Therefore humanoid robots are the
most natural way for human-machine interaction, be-
cause of the human-like appearance. This hypothesis
is strongly supported by HRI Research from (Kanda
and Ishiguro, 2017), (Ángel Pascual del Pobil Ferré
et al., 2013), (OZTOP et al., 2005) and (Miwa et al.,
2003). They see Social Robots as a part of the future
society. (Kanda and Ishiguro, 2017) also defines the
following three issues which need to be solved to bring
social robots effectively and safely to the everyday life:

a. Sensor network for tracking robots and people

b. Development of humanoids that can work in the
daily environment.

a https://orcid.org/0000-0003-0609-2850
b https://orcid.org/0000-0001-5793-9498
c https://orcid.org/0000-0002-1713-9784

c. Development of functions for interactions with
people.

This paper is located in the field c, as we propose
a large scale dataset to train models for the task of
Visual Voice Activity Detection (VVAD) which detects
whether a person is speaking to a robot or not, given
the visual input of the robot’s camera.

VVAD is an important cognitive feature in a
Human-Robot Interaction(HRI). As we want Robots
to integrate seamlessly into our society, Human-Robot
Interaction needs to be as close as possible to Human-
Human Interaction (HHI). VVAD can be used for
speaker detection in the case where multiple people
are in the robot’s field of view. Furthermore it can
be usefull to detect directed speech in noisy environ-
ments.

In this paper we present a new benchmark for the
VVAD task, produced from the LRS3 dataset (Tri-
antafyllos Afouras, 2018) which contains TED Talks,
and by using the provided textual transcripts, we can
extracts parts of the TED Talk video in order to gen-
erate positive/negative video samples for the VVAD
task. Our dataset contains 37.6K training and 6.6K val-
idation samples, making it the largest VVAD dataset
currently. The dataset will be publicly available on the
internet. We provide baseline models using commonly
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Figure 1: Example of error detection - Person is classi-
fied as having a mouth activity, however does not speak
(Meriem Bendris and Chollet, 2010).

used neural network architectures. In an experimental
setup with a CNN LSTM an accuracy of 92% was
reached on the test set. A study with humans showed
that humans reach an accuracy of 87.93% on the test
set.

This paper contributes a large scale dataset and
a simple approach on how to use it for VVAD.

2 RELATED WORK

The classic approach to solve VVAD is to detect lip
motion. This approach is taken by F. Luthon and M.
Liévin in (F. Luthon, 1998). They try to model the
motion of the mouth in a sequence of color images
with Markov Random Fields. For the lip detection
they analyze the images in the HIS (Hue, Intensity,
Saturation) color space, with extracting close-to-red-
hue prevailing regions this leads to a robust lighten-
ing independent lip detection. A different approach
was taken by Spyridon Siatras, Nikos Nikolaidis, and
Ioannis Pitas in (Spyridon Siatras and Pitas, 2006).
They try to convert the problem of lip motion detec-
tion into a signal detection problem. They measure
the intensity of pixels of the mouth region and classify
with a threshold, since they argue that frames with
an open mouth have a essentially higher number of
pixels with low intensity. In (Meriem Bendris and
Chollet, 2010) Meriem Bendris, Delphine Charlet and
Gérard Chollet propose a method, which measures the
probability of voice activity with the optical flow of
pixels in the mouth region. In (Meriem Bendris and
Chollet, 2010) the drawback of lip motion detection
based approaches is already discussed. As shown in
Figure 1, what makes the problem difficult is that peo-
ple move their lips from time to time although they are
not speaking.

This issue is tackled by Foteini Patrona, Alexan-
dros Iosifidis et al. (Patrona et al., 2016). They
use a Space Time Interest Point (STIP) or the Dense
Trajectory- based facial video representation to train
a Single Hidden Layer Feedforward Neural Network.
The features are generated from the CUAVE dataset

(Patterson et al., 2002). This erases the implicit as-
sumption (of the approaches above) that lip motion
equals voice activity. A more robust approach, which
uses Centroid Distance Features of normalized lip
shape to train a LSTM Recurrent Neural Network is
proposed by Zaw Htet Aung and Panrasee Ritthipravat
in (Aung and Ritthipravat, 2016). This method shows a
classification accuracy up to 98% on a relatively small
dataset. In conclusion all of the mentioned methods
use some kind of face detection and some also use
mechanics to track the face. This is needed if there
is more than one face in the image. From the facial
images features are created in different ways. From
that point the approaches divide into two branches.
The first and naive approach is to assume that lip mo-
tion equals speech. This is obviously not always the
case, which is why the later approaches do not rely
on this hypothesis. The latter approach uses learning
algorithms to learn the real mapping between facial
images and the speech/no speech. This approach is
strongly relying on a balanced dataset to learn a good
performing model.

While datasets like the LRS3 or CUAVE (Patterson
et al., 2002) provide a good fit for lipreading they lack
the negative class for VVAD. There seems to be not
many datasets for the VVAD task. The only compet-
itive state of the art dataset for VVAD that we found
was the WildVVAD (Guy et al., 2020). WildVVAD
is not only 3 times smaller than the VVAD-LRS3 it
is also more prone false positive and false negative
because of the loose assumption that detected voice
activity and a single face in the video equals a speaking
sample and every detected face in a video sequence
without voice activity is a not speaking sample. Fur-
thermore the source WildVVAD is drawn from makes
it less diverse. Table 1 shows a comparison of state of
the art datasets. The VVAD-LRS3 that we propose in
this paper is ∼ 3× larger than WildVVAD.

3 DATASET CAPTURE

To create the large scale VVAD dataset we took the
Lip Reading Sentences 3 (LRS3) Dataset introduced
by Afouras et al. in (Triantafyllos Afouras, 2018) as a
basis. The LRS3 is a dataset designed for visual speech
recognition and is created from videos of 5594 TED
and TEDx talks. It provides more than 400 hours video
material of natural speech. The LRS3 dataset provides
videos along with metadata about the face position and
a speech transcript. In the LRS3 metadata files the
following fields are important for the transformation
to the VVAD dataset:
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Table 1: Overview of state of the art datasets for VVAD.

Dataset Samples Diversity Pos/Neg Ratio

VVAD-LRS3 (this work) 44,489 Very high 1-to-1
WildVVAD (Guy et al., 2020) 13,000 High 1-to-1
LRS3 (Triantafyllos Afouras, 2018) >100,000 Very high 1-to-0
CUAVE (Patterson et al., 2002) ∼7,000 Low 1-to-0

Table 2: Number of samples for training, validation and test
splits of the VVAD-LRS3 dataset.

Training Set Validation Set Test Set

37646 Samples 6643 Samples 200 Samples

Text. contains the text for one sample. The length of
the text or respectively the sample is defined by length
of the scene. That means one sample can get as long
as the face is present in the video.

Ref. is the reference to the corresponding YouTube
video. The value of this field needs to be appended to
https://www.youtube.com/watch?v=

FRAME. corresponds to the face bounding box for
every frame, where FRAME is the frame number, X and
Y is the position of the bounding box in the video and
W and H are the width and height of the bounding box
respectively. It is to mention that for the frame number
a frame rate of 25 fps is assumed and the values for X,
Y, W and H are a percentage indication of the width and
height of the video.

WORD. maps a timing to every said word. Here
START and END indicate the start and end of the word
in seconds respectively. It is to mention that the time
is in respect to the start of the sample given by the first
frame and not to the start of the whole video.

The LRS3 dataset comes with a low bias towards
specific ethnic groups, because TED and TEDx talks
are international and talks are held by men and women
as well as small children. It also comes with the advan-
tage that it depicts a large variety of people because
the likelihood of talking in multiple TED or TEDx
talks is rather small. This is a big advantage over the
LRS2 and LRW dataset that are extracted from regular
TV shows, which brings the risk of overfitting to a
specific persons. LRS3 makes learning more robust in
that sense. Since natural speech in front of an audience
includes pauses for applause and means to structure
and control a speech as described in (Nikitina, 2011),
the LRS3 dataset provides speaking and not speaking
phases.

To transform LRS3 samples to VVAD ones the
given text files are analyzed for these speaking and
not speaking phases. In (Zellner, 1994) Brigitte Zell-
ner shows that pauses occur in natural speech and
explicitly in speech in front of an audience. This leads
to two constants we need to define in the context of
pauses. The first is maxPauseLength which defines
the maximal length of a pause which is still considered
to be an inter speech pause. In consideration of the
different types of pauses mentioned in (Zellner, 1994)
maxPauseLength is set to 1 s. The second constant is
sampleLength which defines the length of a sample.
In other words this defines how long a pause should be
to be considered as a negative (not speaking) sample
or how long a speech phase needs to be to be consid-
ered a positive (speaking) sample. It shows that most
of the pauses have a length between 1.5 s and 2.5 s,
therefore sampleLength is set to 1.5 s to get the most
out of the LRS3 dataset. The extraction of positive and
negative samples for the VVAD starts only on textual
basis. Theoretically the whole extraction of the data
could work on this basis but the given bounding boxes
where very poor. To overcome this problem face de-
tection and tracking was remade using dlib’s (King,
2009) correlation filter based tracker and face detector.
We provide for different kinds of features derived from
the tracked face and facial features:

• Face Images. The whole image resized and zero
padded to a specific size.

• Lip Images. An image of only the lips resized and
zero padded to a specific size.

• Face Features. All 68 facial landmarks extracted
with dlib’s facial landmark detector

• Lip Features. All facial landmarks concerning the
lips extracted with dlib’s facial landmark detector

For the face images the input image only needs to be
resized and zero padded to a given size. As depicted in
Figure 2 the predictor extracts facial shape given by 68
landmarks, while 20 of these landmarks describe the
lips. The predictor is trained on the ibug 300-W face
landmark dataset 1. For the lip images the minimal

1Available at https://ibug.doc.ic.ac.uk/resources/facial-
point-annotations/
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(a) Face Images feature (b) Lip Images feature

(c) Face Features feature (d) Lip Features feature

Figure 2: Visualization of one frame of different features.

Table 3: Dimensionality for the different features with ts as
the number of timestamps, d as the image dimensions.

ts d dtype

Face Images 38 200×200×3 uint8
Lip Images 38 100×50×3 uint8
Face Features 38 68×2 float64
Lip Features 38 20×2 float64

values in x- and y-direction are taken as the upper left
corner of the lip image, while the lower right corner is
defined by the maximal values in x- and y-direction.
The face features are taken directly from the landmarks
given from dlib’s facial landmark detector. For the lip
features only landmark 49 to landmark 68 are taken
into account, because they fully describe the lip shape
as seen in Figure 2. It is to mention that it is useful to
normalize the features for face features and lip features
when applied to a learning algorithm.

With this approach we could create 22,245 negative
(not speaking) samples and 22,244 positive (speaking)
samples which is equal to 18.5 h of learning data in
total. While the theoretical number of positive samples
is way higher we were aiming for a balanced dataset
and experimental results show that this is sufficient.
Table 2 shows the number of samples on the training,
validation and test sets. Figure 3 shows a random
selection of 10 positive and negative images from the
training set. Table 3 shows the dimensionality of one
sample for the different features.

We evaluate two important hyper-parameters of
our dataset to examine their relation with learning
performance:

Image Size. The optimal image size is evaluated
for MobileNets (Howard et al., 2017) using image
sizes starting from 32×32 to the maximal image size
of 200 with a step size of 32. Figure 4a shows that
the maximal accuracy in the spatial domain can be

reached using a image size of around 160×160.
Number of Frames. Figure 4b shows how ac-

curacy improves over the number of frames for a
TimeDistributed MobileNet on 96×96 pixel images
(limited by available GPU memory). These results
show that the VVAD task requires many frames for an
accurate prediction and speaking cannot be inferred
from a low number of frames.

Taking Figure 4b and 4a into account the optimal
values for the image size and number of frames are
160×160 and 36 respectively.

Dataset Construction. To test the dataset with
different models we created the following four features
that are available directly on our dataset:

Face Images used for the most sophisticated model.
These Face Images come in a maximal resolution of
200× 200 pixels and with a maximal number of 38
frames. So the maximum shape of one sample of
the Face Images feature is 38 frames× 200 pixels×
200 pixels×3 channels = 4.56 MB. Pixel values range
between 0 and 255 which can be represented with one
byte.

Lip Images are also used for an end-to-end learning
approach but they obviously concentrate on a small
subset of the Face Images. Lip Images are RGB im-
ages with a maximum of 38 frames but they have a
maximal resolution of 100×50 pixels. This resolves
to 38 frames× 100 pixels× 50 pixels× 3 channels =
0.57 MB.

Face Features are used for the learning approach
which focuses on facial features.

We provide 68 landmarks with a (x,y) position for
a single face as depicted in Figure 2. A single feature
is given as float64 (8 bytes), given by 38 frames×
68 features×2 dimensions×8 bytes = 41.4 KB.

Lip Features are a small subset of Face Features
that only take the features of the lips into account.
dlib’s facial landmark detector reserves 20 features for
the lips as shown in Figure 2. This results in the size
of 38 frames×20 features×2 dimensions×8 bytes =
12.1 KB for a single sample in the lip features flavor.

Test Set and Human-Level Accuracy. To test
the VVAD-LRS3 dataset a human accuracy test was
performed. The test is built with a randomly seeded
subset of 200 samples that is not part of the train/val
splits, and we used 10 persons to produce predictions
for this set. The overall human accuracy level was
87.93%, while the human accuracy level on positive
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(a) Positive Examples

(b) Negative Examples

Figure 3: Random selection of speaking (positive) and negative (not speaking) samples from the VVAD-LRS3 dataset.

(a) Evaluation of the optimal image size with a single frame.

(b) Validation Accuracy for CNN LSTM over the number of
timesteps/frames used.

Figure 4: Comparison of performance as image size and
number of timesteps/frames is varied on MobileNet.

samples is 91.44%, and the human accuracy level on
negative samples is only 84.44%.

This shows, that the automatic extraction of the
negative samples is more prone to errors than the au-
tomatic extraction of positive samples. This is due to
the purpose of the LRS3 as a lipreading dataset which
obviously offers more positive samples than negative
samples for a VVAD dataset.

In the human accuracy test some of the samples

Figure 5: Sample 6178 is labeled as a negative (not speak-
ing) sample by the automatic transformation from LRS3
to VVAD dataset. On the human accuracy level test 100%
of the subjects classified the sample as positive (speaking)
sample. Beat boxing is not considered speech in the LRS3
dataset, which causes the wrong label.

were labeled incorrectly or at least were classified with
the opposite class label. A closer look is taken into
four of these samples from the test set. While the sam-
ples 31366 and 42768 are labeled positive from the
automatic transformation from the LRS3 sample to
the VVAD sample they were classified as negative by
all the subjects in the human accuracy level test. For
the samples 14679 and 6178 the opposite is the case.
On further investigation it was seen that sample 14679
and 42768 are obviously wrong labeled while sam-
ple 31366 and 6178 have some special properties that
make them perform very bad on the human accuracy
level test. Sample 31366 has a very quick head move-
ment which makes it very hard to see the very little
movements of the mouth to produce speech. Sample
6178 shows a person obviously producing sound with
his mouth. But the sound here is no speech but beat
boxing which is not considered speech in the original
LRS3 dataset. Sample 6178 and 31366 are depicted
in Figure 5 and 6 respectively.
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Figure 6: Sample 31366 is labeled as a positive (speak-
ing) sample by the automatic transformation from LRS3 to
VVAD dataset. On the human accuracy level test 100% of
the subjects classified the sample as negative (not speaking)
sample. The fast movement of the head while producing
only a small movement of the lips causes the wrong label.

4 INITIAL EXPERIMENTAL
RESULTS

Pre-trained Models. To show that the dataset can be
efficiently used to train a VVAD, we implemented and
trained CNN-LSTM models with our dataset as base-
lines. As described earlier speech cannot be effectively
classified with a single image, which motivates the use
of recurrent neural networks.

We evaluate the use of LSTM cells, as described in
(Hochreiter and Schmidhuber, 1997). We use standard
architectures as a backbone, which are wrapped by a
TimeDistributed wrapper in order to transform them
into a recurrent network that can process a sequence
of images. TimeDistributed is a wrapper provided by
Keras (Chollet et al., 2015) which basically copies
a model for all timesteps, to effectively handle time
series and sequences. The sequence can be processed
by a LSTM Layer to make temporal sense, while the
last Dense Layer is used to make the classification.
Experiments have shown that a single Dense layer
with 512 units on top of a LSTM layer with 32 units
show good results. We use a 200× 200 pixels input
image size on one or two frames for initial testing.

We use DenseNet (Huang et al., 2018), MobileNet
(Howard et al., 2017) and VGGFace (Parkhi et al.,
2015) as backbone networks in the TimeDistributed
wrapper. These models are pre-trained and used as is
from the keras-applications library.

All models were trained using Stochastic Gradient
Descent, with a starting learning rate α = 0.01 and
decaying as needed. Models were trained until con-

vergence, which varied between 80 to 200 epochs. A
binary cross-entropy loss is used, and each network
has an output layer with a single neuron and a sigmoid
activation. All architectures and hidden layers use a
ReLU activation.

Our results are presented in Table 4. It shows
that DenseNet, MobileNet and VGGFace improve by
around 2.3% using one more frame. Our results also
shows that MobileNetV1 and DenseNet121 perform
better than the corresponding model alteration. We
will refer as MobileNet and DenseNet to MobileNetV1
and DenseNet121 respectively.

End-to-End Learning. In this section we evaluate
end-to-end models trained from scratch, using not just
face images but also other features such as lips and
their features. Since evaluating for all 38 frames is
not always possible (depending on access to GPUs
with large amounts of RAM), only the MobileNet as
the smallest of the base models is taken further into
consideration. For this experiment we use 96× 96
input image sizes for image features.

In comparison MobileNet contains approximately
4.2 million parameters while DenseNet requires
around double the amount with 8 million parameters
and VGGFace has over 50 million parameters. Know-
ing this the MobileNet is a good compromise between
performance and size, because it is able to consider
more timesteps, which in the end can lead to even
higher accuracy.

For the face and lip images a TimeDistributed Mo-
bileNet is used, while the approaches learning on the
vector features (facial and lip features) we use a single
LSTM layer with 32 units and a single Dense layer
with 512 units. Training methodology is the same as
pre-trained models.

Our results are presented in Table 5 It shows that
even with the substantially smaller face features a val-
idation accuracy of 89.79% can be reached which is
still higher than the human accuracy level. With this
end-to-end learning approach on face images we were
able to reach a very high accuracy of 92% on the test
set. This is higher than the reported human-level accu-
racy on the same dataset.

One interesting remark from our results is that
learning from image data, even if it is from scratch,
seems to outperform the use of facial or lip features
by approximately 3%, which we believe makes sense
since an image might contain additional information
that the pure facial or lip features do not contain. This
shows the importance of using visual models for this
problem.

Prediction Analysis. The classifications of the
samples from the test set can be seen in Figure 7. The
first 100 samples are negative samples while the last
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Table 4: Validation accuracies for the different baseline
models using only one or two frame in full resolution (200×
200 pixels). Increased accuracy highlights the importance of
the temporal domain in VVAD.

Baseline Model 1-Frame Acc 2-Frame Acc

DenseNet201 73.08 % -
DenseNet121 73.17 % 75.34 %
MobileNetV2 67.45 % -
MobileNetV1 69.56 % 72.11%
VGGFace 71.96 % 74.36 %

Figure 7: Visualization of predictions on the test set for
MobileNet trained on face images. Each arrow represents
the prediction confidence, with the first 100 samples being
negative (not speaking), and the remaining 100 samples
being positive (speaking).

100 samples are positive ones and the arrows show
the probability, given by the model, that this sample
belongs to the positive class. The red dashed line is
the decision boundary on which the model decides
its classifications. This visualizes how certain the
model is with its predictions. Many predictions are
incorrect with a high confidence, indicating overcon-
fidence, which also motivates the use of properly cal-
ibrated and Bayesian neural network models (Matin
and Valdenegro-Toro, 2020)

5 CONCLUSIONS AND FUTURE
WORK

In this work we present the construction of the VVAD-
LRS3 dataset using an automated pipeline to construct
VVAD samples from LRS3 samples, we also show
that these samples are not labeled perfectly, but they
can still be used to learn a robust VVAD system. The
VVAD-LRS3 dataset provides four kinds of features:
facial and lip images, and facial and lip landmark fea-
tures.

We provide baselines on our dataset using pre-

Table 5: Overview of the validation performance of the
different features on MobileNet using all 38 frames at 96×
96 pixels.

Feature Validation Acc Test Acc

Face Images 94.05 % 92.0 %
Lip Images 93.98 % 92.0 %
Face Features 89.79 % 89.0 %
Lip Features 89.93 % 89.0 %

Human Level - 87.93 %

trained and end-to-end neural network architectures
on all feature kinds. Face images with end-to-end
architectures seem to perform best with a validation
accuracy of up to 94%, while landmark features on
face and lips seem to perform the worse at around
89% validation accuracy. We also show that up to 38
frames are required to obtain the highest predictive
performance for this task.

Although the performance shows to be better than
human accuracy and the presented solutions seem to
be robust enough to handle outliers it may be possi-
ble to improve the results with a cleaned dataset. The
cleaning can be done by manually testing all labels
and correct or remove wrong labeled samples or by en-
hancing the algorithm to reduce the number of wrong
labels.

Due to the comparability of the test results with
the human accuracy level it was only possible to use
the 200 randomly seeded samples used for the human
accuracy test as the test set for the trained models,
although it was described as best practice to hold back
at least 10% of the data for testing. If the test set would
be bigger and comparability to the human performance
can be secured the test results would have an even
stronger meaning than right now. A larger amount of
samples that were tested on humans would make it
possible to examine the relationship between DNNs
for VVAD and the human brains approach to VVAD
more closely. Furthermore it is hard to determine a
ground truth for the data because human classification
varied for some of the samples. But in general the
human classification and the data creation through the
automatic pipeline have a significant similarity which
allows us to use the data effectively as is. Experiments
with trained models in real human-robot interaction
can hopefully be conducted in the future. We hope that
the community benefits from our dataset and is able to
produce learning algorithms that can produce a robust
VVAD system for social robots.

The dataset is publicly available under
https://tinyurl.com/mucfmfyx. With a large
scale publicly available dataset for VVAD the
research on this topic can be massively accelerated.
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Furthermore we were able to publish some of
the trained models on PyPI (PSF, 2022) under
https://pypi.org/project/vvadlrs3/ to make it easier to
develop applications.
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