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Abstract: Secure enclaves are commonly used for securing sensitive data and computation. However, an enclave can only
be trusted if the software running in the enclave is secure. Nevertheless, enclave software is often written in
low-level languages that are prone to vulnerabilities. As the number of enclave application developers grows,
more attention must be paid to secure software development. The use of safe programming languages could be
one step towards more secure trusted software. In this paper, we discuss our work towards a Rust programming
language SDK for Keystone enclave application development. In addition, we present early performance
measurements of the SDK compared to the original Keystone SDK written in the C/C++ languages.

1 INTRODUCTION

Trusted Execution Environments, TEEs, have become
a standard practice to protect device secrets and criti-
cal system functionality from untrusted software run-
ning on the same platform, e.g., in mobile devices
(Gunn et al., 2022). Traditionally, TEEs have been
closed environments, running trusted applications de-
veloped by a small and tightly controlled group of
manufacturers and trusted third parties. However, in
the recent years the direction has been towards open-
ing TEEs for other, less trusted, third-party applica-
tions. At the same time, the application of the TEEs is
expanding to new directions that demand richer, more
complex trusted applications to be supported. For ex-
ample, the confidential computing paradigm (Russi-
novich et al., 2021) depends on secure enclaves to
protect sensitive data from untrusted cloud platforms.

Unfortunately, TEEs and trusted applications are
not without vulnerabilities (Fei et al., 2021; Cerdeira
et al., 2020; Van Bulck et al., 2019). In practice, the
TEE firmware and the applications are still commonly
written using low-level programming languages such
as C and C++ that make it notoriously easy to intro-
duce subtle vulnerabilities, such as buffer and integer
overflows, that are difficult to detect during testing.
As TEEs are often used to store critical information,
such as device keys, vulnerabilities easily lead to full
compromise of the device. For example, one byte
buffer overflow was recently found in Google’s Titan-
M (National Vulnerability Database, 2022). The au-
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thors claim it can be used to read any memory address
of chip’s secure memory (Melotti and Rossi Bellom,
2022). As trusted applications become more complex
and the number of developers writing them increases,
so rises the number of vulnerabilities.

Vulnerabilities may be prevented using secure
software development methods and tools. High-level
programming languages (Oak et al., 2021) and stan-
dard APIs (Boubakri et al., 2021; Open Enclave,
2022) can minimize the newly written code and leave
less chance for mistakes. They can also improve the
effectiveness of testing, manual inspection, and static
analysis due to more manageable code size, API spe-
cific checks, and enabling common tools to be used
for different platforms. Recently, the Rust program-
ming language has become a common alternative for
C/C++ in system software development as it offers
better type, memory, and thread safety guarantees. It
has also been taken into use in enclave application de-
velopment (Wang et al., 2019).

However, most such solutions support only one
or few closed architectures, i.e., Intel SGX or ARM
TrustZone. TEEs for emerging architectures have
gained far less attention. Keystone is an open frame-
work for developing TEEs for the open RISC-V archi-
tecture. It uses an interesting enclave model, where
only a very minimal security monitor is provided and
much of the enclave functionality is moved to un-
trusted user-space or left to an enclave specific run-
time. Keystone too only offers a C/C++ SDK for en-
clave application development.

In this paper, we present our work towards a Key-
stone compatible SDK that allows development of en-
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clave applications in the Rust programming language.
The main contributions of our work are:

• A Rust language API for both Keystone enclave
and host application development

• Required Rust programming libraries (crates)
published as open-source software

• Performance comparison of our implementation
against the original Keystone SDK

The rest of this paper is structured as follows.
First, in Section 2 we introduce the reader to Key-
stone enclaves and the Rust programming language.
Next, in Section 3 we present the work we have done
towards the Rust SDK. In Section 4 we discuss early
evaluation results in the form of a demonstrator ap-
plication and performance measurements. Then, in
Section 5 we discuss potential pitfalls of our work and
future work still needed. In Section 6 we elaborate re-
lated approaches to developing enclave applications.
Finally, in Section 7 we conclude the paper.

2 BACKGROUND

Keystone (Lee et al., 2020) is a framework for build-
ing customizable TEEs that hardware and system
manufacturers can use to tailor their security solutions
to match their own threat model. Keystone’s main de-
sign principles are:

• Leveraging platform specific isolation primitives:
hardware-dependent concepts are used to imple-
ment a Security Monitor that provides isolation
and security functions

• Decoupling security policy enforcement from re-
source management: Security Monitor handles
mostly security checks and each enclave applica-
tion has a runtime handling resource management

• Modularity: independent architecture layers allow
designers to replace components as they see fit

• Fine-grained, minimal, Trusted Computing Base

Keystone is in many ways more flexible compared
to existing commercial TEE solutions. For example,
Intel SGX has fixed memory protection system and
ARM TrustZone provides only one enclave, easily
leading to monolithic security solutions.

Keystone implementation exists for the RISC-
V (Lu, 2021) architecture and its security building
blocks: processor privileged levels, Physical Memory
Protection (PMP) mechanism, and process isolation
between hardware threads. In the Keystone architec-
ture, illustrated in Figure 1, the Security Monitor, runs
on M-mode privilege below all other software and
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Figure 1: Keystone Security Framework architecture.

implements physical memory protection and security
enforcement to partition system resources between a
normal untrusted operating system and a number of
isolated enclaves. In each partition, the operating sys-
tem or enclave runtime runs on S-mode privilege and
orchestrates applications running on U-mode privi-
lege. Keystone provides a reference runtime called
Eyrie that supports one application per enclave.

The applications of the untrusted operating system
create and interact with the enclave applications us-
ing a Keystone pseudo-device and an untrusted shared
memory buffer that is used to transfer data between
security domains. The buffer is shared between an un-
trusted application and an enclave runtime. The run-
time copies the data into the enclave application.

3 DESIGN

In this section we describe the design of the Rust lan-
guage SDK and its main features. The implemen-
tation has been published as an open-source project
(Julku and Kylänpää, 2022).

3.1 Architecture

Keystone enclaves are an interesting starting point for
our work for several reasons. First, its open software
and one of the few enclave systems available for the
RISC-V architecture. Second, it provides a distinct
enclave model, consisting only of a minimal secu-
rity monitor and operating system driver, while the
other parts are highly customizable. We selected Key-
stone’s Eyrie enclave runtime as the enclave applica-
tion’s operating system for simplicity. However, the
API can also be used with other operating systems.

The scope of our work is illustrated in Figure 2.
Components presented in grey are standard system
components, e.g., the hardware, the operating sys-
tem, and the applications. The original Keystone
components, i.e., the Security Monitor and the Eyrie
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Figure 2: Scope of our work in the RISC-V and Keystone stack.

runtime, we are utilizing, but chose not to modify
for backwards compatibility, are presented in orange.
The two blue boxes represent an enclave application
and its counterpart, a host application that drives the
enclave application. Both consist of the application
logic, represented in yellow, which includes appli-
cation specific Rust code and possibly a set of Rust
crates, i.e., programming libraries. The applications
must be linked with a Rust language runtime, repre-
sented in grey. An unmodified Rust language runtime
is used for both the applications. Finally, our work is
represented in green. It consists of two Rust crates,
one for the host application and one for the enclave
application. These crates correspond to Keystone’s
original SDK libraries and they enable Keystone en-
clave operations, such as communication between the
applications using the ocall and ecall operations, and
attestation to verify enclave application’s integrity.

3.2 Enclave Runtime

Due to restricted enclave environment, the enclave ap-
plication’s Rust runtime provides only the Rust Core
Library, i.e., a bare metal Rust environment, but no
Rust Standard library. In addition, Rust core alloca-
tion library can be optionally included for enclaves
that require dynamic memory allocation. The SDK
provides a safe Rust language API for enclave oper-
ations. All the unsafe features, e.g., the system calls
to Keystone Eyrie and management of the raw mem-
ory for dynamic memory allocation, are hidden be-
hind the API. As Eyrie doesn’t support application
threads, neither does the Rust Enclave runtime. How-
ever, the implementation is thread-safe and all access
to globally shared data is guarded by spin locks.

Enclave applications are compiled for RISC-V
bare metal environment. Since the enclave doesn’t

provide but the minimal environment by the Keystone
Eyrie, all application components, including third-
party crates and the Rust language runtime, must be
statically linked into the application binary.

Like most standard libraries, the Rust Enclave
Runtime contains the actual entry point of the appli-
cation, which is used to trigger initialization routines,
such as initialization of the memory heap, before the
actual application specific code enters execution. A
Rust macro, called eapp entry, is used to define the
application entry point. Similarly, eapp return func-
tion is provided for terminating the enclave and re-
turning into the host application. In addition, the run-
time implements a Rust panic handler that automati-
cally terminates the enclave in case of panic.

The runtime supports all the central Eyrie sys-
tem calls, e.g., the ocall operation, and retrieving
enclave instance’s attestation report and data sealing
keys from the Security Monitor. A high-level API is
provided over the system calls, enabling their func-
tionality to be used in more Rust-like conventions.
For example, the ocalls are made using a structure that
manages the underlying buffers and performs safety
checks on the system call parameters. Furthermore,
the ocall API prepends a header to each message that
also allows new features not supported by the Eyrie
to be implemented: the means to communicate the
low-level status code and the actual response length
written by the host application, as well as the means
to convey the maximum response length supported by
the enclave application to the host application.

Eyrie doesn’t support ecalls, i.e., calls from the
host system to an enclave. The Rust SDK adds ecall
support by emulating them using ocalls. The process
is discussed in Section 3.4. In the API, ecalls are de-
fined as a server interface and listener trait that may
be used to dispatch incoming calls to listeners.
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#![no_std]
#![no_main]

extern crate eapp;
use eapp::{eapp_entry, Status};
use eapp::ecall::{ECall, Listener, Server};

/* Handler replies with the same data: */
struct CopyListener {}

impl Listener for CopyListener {
fn on_ecall(&self,

ctx: &mut ECall,
req: &[u8]) -> Status {

/* Check response fits into the buffer: */
let res = ctx.response();
if req.len() > res.len() {
return Status::ShortBuffer;

}
/* Copy input buffer into output buffer: */
res[..req.len()].clone_from_slice(req);
ctx.response_length(req.len());
return Status::Success;

}
}

/* Enclave entry point function: */
#[eapp_entry]
pub fn my_eapp_entry() -> u64 {
/* Create ecall dispatcher */
let mut disp = Server::new();
/* Maximum expected input size: */
if !disp.max_input_size(64) {
return 1;

}
/* Ensure attestation report fits */
if !disp.max_output_size(2048) {
return 1;

}
/* Register handler for ecall */
let handler = CopyListener{};
disp.register(0x1, &handler);
/* Serve ecalls until interrupted */
return disp.serve() as u64;

}

Figure 3: Example application that copies input to output.

An example application using the API is illus-
trated in Figure 3. This application defines an entry
point function for the enclave application. The func-
tion simply creates an ecall dispatcher and registers
a custom ecall handler for a specific call identifier.
After that it starts to serve incoming ecalls until in-
terrupted. The handler responds all requests by copy-
ing the ecall input buffer to the output buffer, i.e., re-
sponds each call with the same payload data that it
received. The runtime provides a default ecall han-
dlers for serving, e.g., attestation requests, to reduce
the amount of application specific code needed for ba-
sic enclave functionality.

Many common Rust features, e.g., vectors, de-
pend on dynamic memory allocation. The enclave
runtime provides a memory allocator for Rust’s libal-
loc, based on the buddy system allocator (Chen,
2022). This allows developers to use the standard
Rust syntax for memory allocation features in the en-
clave. The memory allocator can be turned on using a
Rust crate feature flag. The memory available for the
allocator is defined at the application link time using
a linker script. Allocation failures lead to panic and
termination of the enclave application.

3.3 Host Runtime

The host application is built like any other Rust ap-
plication using a full Rust Standard Library Environ-
ment. The Rust SDK crate adds functionality to inter-
act with the Keystone pseudo device in order to build
and run enclave applications. The library is designed
to be thread-safe and supports simultaneous interac-
tion with multiple enclave application instances.

A distinctive feature of Keystone is that enclave
application’s memory image is constructed in an in-
secure userland process and transferred into the en-
clave’s private memory. That is, the application is
loaded into memory and the page table for the enclave
private memory built by the host application. The
Security Monitor only validates the result as it con-
figures memory protection for the enclave. Attesta-
tion is used to verify that the enclave private memory
matches the expected memory image. The Rust SDK
provides a pure Rust implementation of the loading
logic. It is exposed to the end-user in the form of
a builder-pattern API that allows the enclave parame-
ters to be configured cleanly in a step-by-step fashion.
The interface also supports emulation of the enclave
memory construction even when Keystone pseudo-
device is not available, e.g., in order to validate ap-
plications and to compute reference integrity hashes
for attestation.

The Rust API allows building new enclave in-
stances, running instantiated enclaves, and registering
ocall listeners for calls coming from the enclave. The
ocalls API consist of a call dispatcher that performs
safety checks for the raw memory and call parame-
ters, e.g., buffer address and length, before wrapping
the raw memory in a safe Rust byte array abstraction.
Thus, the developer by default operates on safer Rust
primitives. The API supports multi-threaded host ap-
plications by providing a thread-safe handle to the en-
clave abstraction. The handle can be passed to other
threads for requesting ecalls while the main thread
is engaged in running the enclave. The handle syn-
chronizes the call parameters and the payload with the
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main thread, which then executes the operation on the
enclave at the next opportunity. In addition, the crate
provides a Rust interface, e.g., for parsing and verify-
ing Keystone attestation reports.

3.4 Ecall Emulation

Keystone doesn’t support ecalls from the host appli-
cation to the enclave. Nonetheless, in many appli-
cations ecalls are a natural way of communication:
the enclave provides a secured service interfaced via
a daemon process running in the host system. We
designed a Rust API for the ecall operation, imple-
mented by emulating ecalls on top of a pair of ocalls.

The enclave API allows to register handlers for
ecalls and provides a server, which dispatches call re-
quests to handlers based on user-defined identifiers,
similar to how ocalls work in the host application.
However, as the enclave application doesn’t currently
support threads, the main thread must either be ded-
icated to serving calls or multiplex between serving
calls and any other processing.

The runtime internally handles certain ecalls, e.g.,
a generic attestation request and a request to terminate
the enclave application gracefully. The default attes-
tation handler serves local attestation requests by the
host application in the enclave application by relay-
ing the request, including a caller-specified nonce for
freshness of the attestation report, to Eyrie’s system
call interface, and eventually, into the Keystone Secu-
rity Monitor that generates the attestation report and
signs it together with the nonce.

In the host application, ecalls are made using an
enclave handle, as the enclave abstraction is owned by
the thread dedicated to interacting with the Keystone
pseudo-device and Rust thread-safety rules forbid
other threads from using it simultaneously. The han-
dle hides thread synchronization, but unfortunately,
the payload of the call and any returned values must
be copied once between the calling thread’s memory
and the untrusted memory. For larger payloads, this
might cause considerable overhead.

The emulation process is illustrated in Figure 4.
The calling thread in the host application first informs
the thread owning the enclave abstraction about its in-
tent by sending a message to a Rust channel via the
handle. Within the message, it includes the call pa-
rameters (#) and payload (I). After this, the calling
thread blocks on another channel until it receives a
response. In parallel, the enclave application prepares
to serve ecalls. It issues an ocall with a special identi-
fier, EPoll, to yield execution to the host thread own-
ing the enclave. At the host, the enclave thread re-
sumes to handle the ocall and checks the channel for

Handle Enclave Server Handler

ecall(#, I)

ocall(EPoll)

{#, I}
on ecall(I)

{S, O}
ocall(ERet, S, O)

{S, O}

Figure 4: Emulation of ecall on top of ocalls.

pending calls. If at least one exists, then the thread
validates the call parameters, copies them and pay-
load to the ocall response, and resumes the enclave
execution. If no calls are pending, then the thread ei-
ther waits for one to appear, and in doing so blocks
the enclave, or immediately resumes the enclave de-
pending on the selected crate features.

In case a pending call was found, the enclave ap-
plication’s server validates the call parameters and
dispatches the request to a handler assuming one is
registered for the corresponding identifier. The han-
dler then performs any application specific process-
ing. When the handler returns, another ocall, called
ERet, is made to return a status code (S) and any out-
put (O) to the host application. At the host, the en-
clave thread resumes and matches the response with
the original ecall intent and its return channel. Send-
ing the response to the channel wakes the calling
thread and completes the ecall emulation process.

4 EVALUATION

In this section, we present an example use case to
show that the Rust SDK can be used to develop com-
plex applications. We also discuss early performance
measurements and compare them to the original Key-
stone SDK.

4.1 Example Use Case

We created a simple demonstrator example that im-
plements a simplified confidential computing scenario
where a remote client application exchanges data with
an enclave via a secure channel created between the
client and the enclave application. The application is
inspired by the original Keystone demonstrator writ-
ten in C (Keystone Enclave project, 2022). The client
application and the enclave and the host applications
on the server-side are all written using Rust program-
ming language utilizing the Rust SDK.
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The application demonstrates how to build and
start the enclave instances and pass data to and from
the enclave using ecalls. The server-side application
is partitioned into host application listening for in-
coming connections from client applications and is
starting a separate enclave instance to handle each
connection. The client and the enclave use Diffie-
Hellman key exchange protocol to create a shared se-
cret that is used to establish a secure channel between
them. The channel is tunnelled through the host ap-
plication. Because the secure channel is established
between the client and the enclave, the host-side of
the server need not be trusted.

The key observations made while building the ap-
plications was that the lack of support for the Rust
standard library made it difficult to utilize many ex-
isting Rust crates. Especially availability of suitable
cryptographic functions was a challenge.

4.2 Measurements

We evaluated the performance of the SDK against the
original Keystone SDK by measuring the communi-
cation delays between the host and the enclave appli-
cation. A separate set of test programs with minimal
functionality was developed to ensure that the mea-
surements indicate the overhead caused by the SDK,
not the applications using it. In addition, we used a
patched version of Keystone Eyrie, since the standard
version always copies data back to enclave on ocalls,
not based on the amount the host application is send-
ing, but the maximum size of the target buffer in the
enclave application, which causes unnecessary copy-
ing on shorter payloads.

Unfortunately, we were unable to acquire hard-
ware for running Keystone and were forced to per-
form the measurements using a QEMU (QEMU team,
2022) virtual machine emulating RISC-V architecture
on top of a x86 64 platform. The virtual machine had
4 GB of memory and one CPU. The use of QEMU
caused two problems for the measurements. First,
binary translation and emulation affect the measure-
ments causing extra overhead and periodical spikes.
Second, QEMU is not cycle accurate. Therefore, the
measurements are not comparable to real hardware,
but only directional. In order to reduce the interfer-
ence of emulation, we measured the performance as
instructions reported by QEMU, retrieved with the
rdcycle instruction. This approach ignores the fact
that instructions have different performance overhead.
However, since the payloads are identical for the com-
pared programs, we claim that the measurements give
at least a coarse estimate of the performance differ-
ence between them.

Table 1: Performance of ocalls.

Data O0 O3
C Rust ∆ x C Rust ∆ x

(kB) (k) (k) (k) (k) (k) (k)
0 7.75 13.58 5.83 1.75 7.79 8.78 0.99 1.13
1 9.11 14.78 5.67 1.62 8.95 10.06 1.11 1.12
4 12.63 18.46 5.83 1.46 12.66 13.71 1.05 1.08

16 27.35 33.09 5.74 1.21 27.31 28.34 1.03 1.04
64 85.90 91.74 5.84 1.07 85.84 86.91 1.07 1.01

128 164.01 169.90 5.89 1.04 164.06 165.02 0.96 1.01
256 320.30 326.20 5.90 1.02 320.26 321.30 1.04 1.00
512 632.82 638.71 5.89 1.01 632.72 633.82 1.10 1.00

Table 2: Enclave application binary sizes.

Program O0 O1 O2 O3 O3-lto
(kB) (kB) (kB) (kB) (kB)

C 8.72 5.08 5.02 5.02 5.02
Rust 17.12 13.02 13.02 13.02 8.86
Rust / C 1.96 2.56 2.59 2.59 1.76

Table 3: Performance of ecall emulation.

Data O0 O3
Host Enclave x Host Enclave x

(kB) (k) (k) (ocall) (k) (k) (ocall)
0 73.78 76.58 5.64 43.26 43.14 4.91
1 73.82 77.67 5.26 46.00 47.08 4.68
4 80.31 85.10 4.61 51.40 53.55 3.91

16 105.63 114.35 3.46 75.74 81.95 2.89
64 208.08 232.58 2.54 178.14 199.83 2.30

128 346.00 391.08 2.30 316.34 358.91 2.17
256 621.42 706.47 2.17 591.30 675.34 2.10
512 1171.73 1338.83 2.10 1141.87 1306.12 2.06

Comparison of ocall performance with different
payload sizes is presented in Table 1 for optimization
levels -O0 and -O3. For both levels, the values are
reported as thousands of instructions. Each call sends
and receives the number of bytes indicated by the first
column. All the reported values are measured as an
average of 250 calls to reduce measurement error.

The difference between the measurements, indi-
cated by the ∆ columns, show that the extra overhead
of the Rust SDK does not depend on the payload size,
but is constant. We assume the overhead is caused
by use of higher-level abstractions and extra safety
checks compared to the thinner layer of the Keystone
SDK. For both cases, the majority of the instructions
are expected to take place in the Keystone driver and
the Eyrie, when data is copied between the shared
memory and enclave private memory. On larger pay-
load sizes, the difference becomes insignificant, as the
ratio of the instruction counts of the Rust and the C
program, presented in column x, indicates. Variation
in the instruction count for identical ocalls is caused
by the Keystone sometimes interrupting the enclave
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and passing the control back to the host application to
prevent the enclave from executing forever.

Binary sizes of the enclave applications for vari-
ous optimization levels are presented in Table 2. All
binaries were stripped from symbols and debug infor-
mation to have result comparable to production code.
The C and Rust programs are compiled using differ-
ent compilers. Thus, the optimizations performed for
them might be different even for identical optimiza-
tion levels. The results show the Rust applications are
around 2-3 times larger than their C equivalents. One
of the reasons for this is that the Keystone SDK only
contains a very minimal C layer, while the Rust SDK
contains higher-level abstractions and more checks
for the incoming and outgoing data. In addition, the
linker script for the applications is different, causing
some program sections to be a bit larger.

Rust SDK’s ecall performance is represented in
Table 3. Measurements were made for the enclave
application, i.e., instructions to serve single call, and
the host application, i.e., instructions to make a sin-
gle call. The x column shows the ratio of the instruc-
tion count to that of an ocall with the same amount of
payload data. In the host application, the instruction
count is measured from the thread initiating the ecall,
thus thread synchronization is included. The original
C/C++ SDK doesn’t support ecalls, thus these mea-
surements are only shown for the Rust SDK.

The results show that an emulated ecall is approx-
imately 2 to 6 times slower than an ocall. As men-
tioned in Section 3.4, both all the data needs to be
copied one extra time during emulation. Since on
larger payload sizes the number of measured instruc-
tions is dominated by the instructions needed to copy
the payload data, the performance is as expected.

5 DISCUSSION

The Rust SDK API for enclave applications is rather
minimalistic and Keystone Eyrie specific. To enhance
portability to other enclave architectures, a more stan-
dardized enclave API could be implemented on top
of our API. To our knowledge, no such API defini-
tion exists yet for the Rust language and most existing
standard APIs only define C or C++ bindings.

Most real-world enclave applications need func-
tionality that the Rust SDK does not yet offer, al-
though some of it can be included using existing Rust
libraries. One of the most important and commonly
used features is persistent secure storage that is sealed
to the underlying platform. Keystone derives data
sealing keys for each enclave, which the Rust API
also exposes to the enclave applications. However,

persistent storage must be implemented with the sup-
port of the host application or operating system to
store the encrypted data on the untrusted platform. As
the implementation is complex, it makes sense to pro-
vide a common API and implementation in the en-
clave library. Other generic functionality that could
be added into the API includes derivation of enclave
specific keys and other common cryptographic opera-
tions, such as data signing and verification.

One motivation for our research is to decrease vul-
nerabilities in security critical software. Using Rust,
or any other safe programming language, is not a sil-
ver bullet to increase security (Xu et al., 2021) or to
guarantee that the enclave interface or applications are
secure (Van Bulck et al., 2019). Safe programming
languages are only enablers for writing more secure
software. Nevertheless, the Rust language allows par-
ticular types of security issues, e.g., buffer overflows,
to potentially be detected more easily and earlier dur-
ing development. In addition, Rust language’s strict
type system and aliasing rules, applied also to mem-
ory and threads, enable stronger static analyses to be
used for security assurance.

Thorough security analysis and hardening of our
SDK is still work to be done before it can be claimed
to accomplish our intended goal. Van Bulck et al.
(Van Bulck et al., 2019) analyzed vulnerabilities in
input sanitization at the boundary of enclave appli-
cations and untrusted code in several TEEs. They
found several vulnerabilities in runtime implementa-
tions and at enclave ABI and API layer, some also in
Keystone. Their insight to enclave security issues and
proposed mitigations form a good starting point for
our future work to ensure security of the SDK.

We limited our work to the enclave and host ap-
plication APIs and their implementation. However,
security of the enclave application depends on many
layers, none of which can be overlooked. First, se-
curity of the enclave architecture, its ABI, and the
implementation, in this case the Keystone Security
Monitor, its driver for the untrusted OS, and the Eyrie
runtime functioning as the OS for the enclave appli-
cation. High-level security analysis of the Keystone
framework was presented by Lee et al. (Lee et al.,
2020). However, Keystone is still a research proto-
type and we are not aware if detailed security anal-
ysis and hardening of the implementation has been
performed. Second, security of the API used by the
applications and its implementation, i.e., in our case
the Rust SDK. As said, this is still work to be done.
Finally, security of the application built on top of the
APIs. It is impossible to anticipate how the applica-
tions are written, and thus, to prevent or mitigate all
the vulnerabilities in the runtime. Nevertheless, the
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runtime layer should minimize the attack surface and
help the developers to write more secure applications.

6 RELATED WORK

We are by no means the first to propose develop-
ment of enclave applications in safe programming
languages. Earlier work includes, e.g., Wang et al.
(Wang et al., 2019) who designed a Rust API wrap-
per on top of the Intel SGX C/C++ SDK. Their API
provides a comprehensive set of enclave functionality.
The authors report around 5% performance overhead
for the wrapper. Other Rust-based approaches include
the Apache Teaclave SGX SDK (The Apache Soft-
ware Foundation, 2022) and the Fortanix Rust En-
clave Development Platform (Fortanix, 2022). How-
ever, all of these only support Intel SGX enclaves.

While most of the work revolve around Intel SGX
architectures, some work exists also for the RISC-V
architecture. Boubakri et al. (Boubakri et al., 2021)
discuss porting of OP-TEE framework to RISC-V, en-
abling Trusted Applications to be written using the
standardized GlobalPlatform API specifications com-
monly used for mobile device TEEs. Suzaki et al.
(Suzaki et al., 2020) also selected the GlobalPlatform
API as basis of their work that attempts to unify en-
clave APIs for different hardware architectures. They
implemented the GlobalPlatform internal API on top
of the Intel SGX’s and Keystone SDK’s enclave def-
inition languages and compared their performance
against the OP-TEE framework. Unfortunately, Glob-
alPlatform APIs are defined for the C language, and
thus, retain the language problems with security.

Others have considering unifying enclave APIs
using less standardized API definitions. For exam-
ple, the Open Enclave SDK (Open Enclave, 2022)
and Asylo (Asylo Authors, 2022) projects intend to
simplify enclave development and enhance portabil-
ity with enclave technology agnostic APIs. Both of
these, too, only define C/C++ APIs.

Oak et al. (Oak et al., 2021) propose use of even
high-level abstractions. In their approach, developers
use Java annotations to partition the software between
the host and the enclave and to define the interface
available to non-enclave callers. In addition, they pro-
pose a type system to enforce information flow poli-
cies between the program partitions.

7 CONCLUSION

In this paper, we discussed our work towards enabling
Keystone enclave applications to be developed in the

Rust programming language instead of error prone
C/C++ languages traditionally used for enclave appli-
cation development. The aim of our work is to facili-
tate development of more secure enclave applications.

We discussed our Rust SDK and its implementa-
tion, published as an open-source project (Julku and
Kylänpää, 2022), and presented early performance
measurements. The results show that the Rust SDK
incurs a small overhead compared to the original Key-
stone C/C++ SDK. The overhead is mostly caused by
extra safety checks and higher-level abstractions.

Our work is by no means complete. Intended
future work includes persistent secure storage APIs
and better support for cryptographic operations. Fur-
thermore, using safe programming languages in it-
self doesn’t guarantee that the resulting programs are
more secure. Therefore, thorough security analysis
and hardening of the SDK still needs to be performed
in the future.
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