
An Explainable Convolutional Neural Network for Dynamic Android
Malware Detection

Francesco Mercaldo1,2, Fabio Martinelli2 and Antonella Santone1

1University of Molise, Campobasso, Italy
2Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy

{fabio.martinelli, francesco.mercaldo}@iit.cnr.it

Keywords: Malware, Security, Deep Learning, Explainability, Android, Testing.

Abstract: Mobile devices, in particular the ones powered by the Android operating system, are constantly subjected to
attacks from malicious writers, continuously involved in the development of aggressive malicious payload
aimed to extract sensitive and private data from our smartphones and mobile devices. From the defensive
point of view, the signature-based approach implemented in current antimalware has largely demonstrated its
inefficacy in fighting novel malicious payloads but also old ones, when attackers apply (even simple) obfusca-
tion techniques. In this paper, a method aimed to detect malware attacking mobile platforms is proposed. We
exploit dynamic analysis and deep learning: in particular, we design the representation of an application as an
image directly generated from the system call trace. This representation is then exploited as input for a deep
learning network aimed to discern between malicious or trusted applications. Furthermore, we provide a kind
of explainability behind the deep learning model prediction, by highlighting into the image obtained from the
application under analysis the areas symptomatic of a certain prediction. An experimental analysis with more
than 6000 (malicious and legitimate) Android real-world applications is proposed, by reaching a precision of
0.715 and a recall equal to 0.837, showing the effectiveness of the proposed method. Moreover, examples of
visual explainability are discussed with the aim to show how the proposed method can be useful for security
analysts to better understand the application malicious behaviour.

1 INTRODUCTION AND
RELATED WORK

Mobile devices are present in a plethora of aspects of
our life for instance, to keep in touch with our rela-
tives but also to make payments through an app pro-
vided from our bank or to apply a digital signature on
a document.

Considering the huge amount of sensitive and pri-
vate information that every day are stored on our mo-
bile devices, it is clear that these devices are really
of interest for attackers, devoted to develop more and
more aggressive malicious payloads to steal and ob-
tain illicit gains from our sensitive information.

From the security point of view, the current an-
timalware detection mechanism, mainly signature-
based, is not able to recognize new threats: as a mat-
ter of fact a malicious payload can be detected only
whether its signature is stored into the antimalware
database signature and, for this reason, a malicious
payload must be already analysed from security ana-

lysts in order to be detected (Mercaldo and Santone,
2021).

Moreover, even when a malware signature is
stored into the antimalware repository, malicious
writes typically employ obfuscation techniques aimed
to evade the detection preserving the malicious pay-
load business logic (Canfora et al., 2015).

From the mobile operating system diffusion, in
2022 Android is the most popular operating system in
the world, with over 2.5 billion active users spanning
over 190 countries1.

Google Play, the official platform for download-
ing mobile applications for Android-powered devices,
has grown enormously in the past decade, reaching
$38.6 billion revenue in 2020. There were over 2.9
million apps available on the store in 2020, which
were downloaded 108 billion times.

Android is the dominant platform in most coun-
tries, although it has had trouble surpassing Apple in
Japan and the United States. In countries like Brazil,

1https://www.businessofapps.com/data/android-statistics/

Mercaldo, F., Martinelli, F. and Santone, A.
An Explainable Convolutional Neural Network for Dynamic Android Malware Detection.
DOI: 10.5220/0011609800003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 305-312
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

305

India, Indonesia, Iran and Turkey, it has over 85 per-
cent market share.

From these considerations, it urges to design new
methods for effective mobile malware detection. For
this reason, in this paper we propose a novel approach
based on dynamic techniques for the detection of ma-
licious behavior.

We design a convolution neural network (CNN)
to discriminate between malware and trusted applica-
tions. The CNN input is represented by images di-
rectly generated from the system call traces of a set of
(malicious and trusted) Android applications. More-
over, with the aim to explain the model decision, we
adopt the Gradient-weighted Class Activation Map-
ping (Grad-CAM) algorithm in order to automatically
generate a localization map by highlighting the image
regions responsible for a certain prediction.

As mobile platform for the evaluation analysis we
consider the Android one anyway (i.e., the most dif-
fused one), the proposed method in operating system
independent.

Current state-of-the-art research papers proposed
several methods in the mobile malware detection con-
text, for instance, authors (Jerbi et al., 2020) consider
the API call sequences’ population to find new mal-
ware behaviors, applying some well-defined evolu-
tion rules. The malware models obtained in this way
are inserted into the set of unreliable behaviors, to cre-
ate diversification between malware samples in order
to increase the detection rate.

In (Casolare et al., 2020) authors consider a static
approach, based on formal methods by exploiting
model checking to perform the detection of applica-
tions involved in colluding attacks.

Differently from these papers, we propose an
approach to dynamically detect Android malware
through the analysis of system calls by means of ex-
plainable deep learning. In detail, we propose to rep-
resent applications in terms of images obtained from
the system call traces by taking into account a way to
(visually) explain the rationale behind the model pre-
cision (i.e., the malware detection).

The paper proceeds as follows: in Section 2 the
proposed method for dynamic mobile malware de-
tection is discussed, in Section 3 with the aim to
demonstrate the effectiveness of the proposed method
we present the experimental analysis with real-world
(malicious and trusted) Android applications and, fi-
nally, conclusion and future research lines are pre-
sented in the last section.

2 MOBILE MALWARE
DETECTION THROUGH
EXPLAINABLE CNN

In this section we present the method we designed for
Android malware detection through dynamic analy-
sis. In particular we extract, from a running appli-
cation, the system call traces and we obtain an im-
age directly from these traces to input a convolutional
neural network designed by authors.

In the next subsection we describe the proposed
method for malware detection, composed by three
main phases: the first is aimed to obtain system call
traces and to generate the system call images, the sec-
ond one to build a model with a convolution neu-
ral network designed by authors and the last phase
is devoted to evaluate the model built in the previous
phase.

2.1 System Call Image Generation

Figure 1 shows how we obtain an image from a sys-
tem call trace obtained from a running application.

The idea is to capture and store, in a textual for-
mat, the system call traces generated by running ap-
plications. For this aim, the .apk installation file of an
Android application (App under analysis in Figure 1)
is installed and initialised on an Android device em-
ulator (Android device in Figure 1). Successively, a
set of 25 different operating system events (Zhou and
Jiang, 2012; Jiang and Zhou, 2013) is generated at
regular time intervals of 10 seconds (Operating Sys-
tem Event Injection in Figure 1) and sent to the emula-
tor with the aim to stimulate the malicious payload be-
haviour (Application Running in Figure 1) and, from
this, the correspondent sequence of system calls is ob-
tained (System call Extraction in Figure 1).

We exploit a set of different 25 operating sys-
tem events because several previous papers (Zhou and
Jiang, 2012; Jiang and Zhou, 2013; Casolare et al.,
2021) demonstrated that these events are considered
by malicious writers to activate the payloads in An-
droid environment. In particular, we considered the
operating system event aimed to trigger Android mal-
ware exploited by authors in (Casolare et al., 2021;
Mercaldo et al., 2016; Medvet and Mercaldo, 2016).

The system call retrieval from the Android appli-
cation is performed by a shell script (Python Script in
Figure 1) developed by authors aimed to perform in
sequence a set of actions below described:

• initialisation of the target Android device emula-
tor;

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

306

Figure 1: The system call extraction and the image generation step.

• installation the .apk file of the application under
analysis on the Android emulator;

• wait until a stable state of the device is reached
(i.e., when epoll wait is received and the applica-
tion under analysis is waiting for user input or a
system event to occur);

• start the retrieve the system call traces;

• send one event from the 25 operating system
events we considered;

• send the chosen operating system event to the ap-
plication under analysis;

• capture system calls generated by the application
until a stable state is reached;

• selection of a new operating system event (i.e., the
operating system event following the one previ-
ously selected) and repeat the steps above to cap-
ture system call traces for this new event;

• repetition of the step above until all 25 operating
system events have been considered (i.e., the An-
droid application was stimulated with all the sys-
tem events);

• stop the system call capture and save the obtained
system call trace;

• kill the process of the Android application under
analysis;

• stop the Android emulator;

• revert its disk to a clean snapshot (i.e., before the
installation of the just analysed Android applica-
tion).

Moreover we exploit the monkey tool belonging
to the Android Debug Bridge (ADB2) version 1.0.32,
to generate pseudo-random user events such as, for
instance, clicks, touches, or gestures (with the aim to

2https://developer.android.com/studio/command-line/adb

simulate the user interaction with the Android appli-
cation under analysis).

To collect the system call traces we consider
strace3, a tool freely available on Linux operating sys-
tems. In detail, we invoke the command strace -s PID
to hook the running Android application process to in-
tercept only syscalls generated by the application un-
der analysis process.

Once obtained a log of system calls, we extract
one by one the single calls and respecting the order
given by the log we build the image (Image Genera-
tion in Figure 1). We assign a certain RGB pixel to a
certain system, in this way we create the images, pixel
by pixel.

With the aim to better understand how the images
are obtained from system call traces, in Figures 2 and
3 we show two examples of images obtained from the
system call traces of two malware belonging to the
Opfake family. In detail in Figure 2 is represented
the first malware sample4 detected as malware by 35
antimalware on 63 provided by Virustotal5.

In Figure 3 is represented another Opfake mali-
cious sample6 detected as malware by 33 on 63 Virus-
total antimalware7.

Figure 4 shows an example of images obtained
from the system call trace of a legitimate application.
In particular, we show the image related to the Voice
Changer 8 application, an app aimed to record a sound

3https://man7.org/linux/man-pages/man1/strace.1.html
4identified by the 1b41f7f3d25b916c42d91e9561afeb6f

6a927d3549381aa57ab684728f0e245dhash
5https://www.virustotal.com/gui/file/1b41f7f3d25b916c

42d91e9561afeb6f6a927d3549381aa57ab684728f0e245d
6identified by the 1b81427b68c71cc3242ed0b86c2dd931

54b1b8c31fe9261a9eb886b04ae21058hash
7https://www.virustotal.com/gui/file/1b81427b68c71cc3

242ed0b86c2dd93154b1b8c31fe9261a9eb886b04ae21058
8https://play.google.com/store/apps/details?id=com.meih

illman.voicechanger&hl=en US&gl=ES

An Explainable Convolutional Neural Network for Dynamic Android Malware Detection

307

Figure 2: A first example of image generated from the sys-
tem call trace of a malware belonging to the Opfake family.

Figure 3: A second example of image generated from the
system call trace of a malware belonging to the Opfake fam-
ily.

or select an existing audio file and to convert the audio
using a set of effects.

As we can see, in the image we can see that to
each color is associated with the relative system call.
In particular, both the malware samples showed in
Figures 2 and 3, are belonging to the same family
i.e., Opfake. In the image in Figure 2 and in the im-
age in Figure 3, we can see the representations about
two different malware applications, that in this case
they look similar to each other but different from the
trusted application representation in Figure 4. In fact,
the malware images have some common parts like the
two brown bands, that on the contrary are absent in
the trusted image. In this way, we already have a vi-
sual impact that allows us to notice the differences be-
tween trusted and malware applications. Hence this
method of representation through image generation
could be used to discern between malware applica-
tions and trusted ones.

Figure 4: An example of image generated from the system
call trace obtained from a legitimate Android application.

2.2 The CNN Training

Once obtained a set of images from the system call
traces we can use these images to input the CNN de-
signed by authors in the Training step, as shown from
Figure 5.

We obtain the images related to a set of trusted
and malware Android applications. In addition to the
images dataset we need the labels (Labelled Image
Dataset in Figure 5) related to each application i.e.,
malware or trusted.

Once obtained all the images for each (malware
and trusted) application, with the related label they
represent the input for the CNN we designed (Deep
Learning Network in Figure 5). We designed a deep
learning model composed of 14 different layers car-
ried out by the utilization of the following six layers:
Conv2D, MaxPooling2D, BathNormalization, Flat-
ten, Dropout and Dense.

The Python code related to the developed model
is shown in Listing 1.

By exploiting the designed deep learning network
we build the model (i.e., Model in Figure 5) that will
be considered to discriminate between malware and
trusted (unknown) Android applications.

2.3 The CNN Testing

Once built the model, we evaluate its effectiveness
in Android malware detection in the testing step, de-
picted in Figure 6.

In this step we consider a set of Android appli-
cations not exploited in the previous step (i.e., Un-
known Application in Figure 6): through the System
Call Image Generation step we extract the system call
traces, we obtain the related images used as input for
the model built in the previous step. The model will

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

308

Figure 5: The convolutional neural network training step.

Figure 6: The model testing step.

model = models.Sequential()
model.add(layers.Conv2D(64, (3, 3),
activation='relu',
input_shape=(50, 50 ,1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.BatchNormalization(renorm=True))
model.add(layers.Conv2D(128, (3, 3),
activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.BatchNormalization(renorm=True))
model.add(layers.Conv2D(256, (3, 3),
activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.BatchNormalization(renorm=True))
model.add(layers.Flatten())
model.add(layers.Dense(256,
activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(self.num_classes,
activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=Adam(self.learning_rate),
metrics=['acc', Precision(name="prec"),
Recall(name="rec")])

Listing 1: Python code snippet of the deep learning net-
work.

output a label (i.e., malware or trusted) (i.e., Predic-
tion in Figure 6) and will provide a visual explana-
tion related to the prediction (i.e., Explainability in
Figure 6) by highlighting the areas of the image re-

lated of a certain prediction: this makes the proposed
CNN explainable. To highlight the areas of the im-
ages symptomatic of certain prediction, we generate
the activation maps for a subset of images by ex-
ploiting the Grad-CAM algorithm (Selvaraju et al.,
2017), used with the aim to provide a visual expla-
nation behind the model prediction (i.e., malware or
trusted). The rationale behind the adoption of this ap-
proach is not only to acquire a high prediction accu-
racy but also to explore the portions of the image un-
der analysis that are responsible for a specific predic-
tion. The aim is to explain the forecast by localizing
malicious-symptomatic regions. This allows to deter-
mine whether the model is looking in the proper spot
to generate a prediction.

3 EXPERIMENTAL ANALYSIS

In this section we describe, respectively, the real-
world dataset involved in the experimental analysis
and the classification results.

3.1 The Dataset

The dataset considered in the experimental analysis
was gathered from two different repositories: relat-
ing to the malicious samples we obtained real-world
Android malware from the Drebin dataset (Arp et al.,

An Explainable Convolutional Neural Network for Dynamic Android Malware Detection

309

2014; Michael et al., 2013), a very well-known collec-
tion of malware largely considered by malware anal-
ysis researchers, including the most widespread An-
droid families. The malware dataset is freely avail-
able for research purposes 9. The malware dataset
is also partitioned according to the malware family;
each family contains malicious samples sharing sev-
eral characteristics: the payload installation, the kind
of attack and the events triggering the malicious pay-
load (Zhou and Jiang, 2012). The following malware
families are considered in the experimental evalua-
tion, with the aim to try to cover the full spectrum
of mobile malicious behaviours: Geinimi, Plankton,
Basebridge, Kmin, GinMaster, Opfake, FakeInstaller,
DroidDream, DroidKungFu and Adrd (we considered
the most populous 10 malware families in the Drebin
dataset).

To gather legitimate applications, we crawled the
official app store of Google10, by using an open-
source crawler11. The obtained collection includes
samples belonging to all the different categories avail-
able on the market.

We analyzed the dataset with the VirusTotal ser-
vice12: this analysis confirmed that the trusted appli-
cations did not contain malicious payload while the
malicious ones were actually recognized as malware.
The (malicious and legitimate) dataset is composed
by 6817 samples: 3355 malicious (belonging to 10
different malicious families) and 3462 trusted. From
the malicious and legitimate dataset we gathered the
system call sequences with the procedure explained
in the previous section. Subsequently, from each sys-
tem call trace we generated the relative image repre-
sentation used for the training and the testing of the
designed CNN.

3.2 Classification Results

In this section we present the results of the experi-
mental analysis aimed to verify whether the designed
deep neural network is able to discriminate between
malicious and trusted Android applications.

In order to evaluate the results of the classifica-
tion following metrics are computed: Precision, Re-
call, Accuracy and Loss.

For replication purposes, we report the hyper-
parameters we considered for model training in Table
1.

To perform the experiment we considered a ma-
chine with a i7 8th Generation Intel CPU and 16GB

9https://www.sec.cs.tu-bs.de/∼danarp/drebin/
10https://play.google.com/store
11https://github.com/liato/android-market-api-py
12https://www.virustotal.com/

Table 1: The hyper-parameters considered for the CNN
training step.

Input Batch Epochs Learning Rate
50x50X3 128 10 0.001

Table 2: Experimental analysis results.

step Loss Accuracy Precision Recall
training 0.780 0.565 0.567 0.579
testing 0.612 0.781 0.715 0.837

RAM memory, equipped with Microsoft Windows 10
and running the Windows Subsystem for Linux. The
CNN was implemented with the Python programming
language (version 3.6.9) by exploiting the Tensorflow
2.4.4 library. We train the CNN by considering 70%
of the dataset, 15% is considered for validation, while
the remaining 15% is exploited for the CNN testing.

The results of the experimental analysis are pro-
vided in Table 2.

Figure 7 shows the accuracy trend for the 10
epochs we considered, in green the accuracy train
trend, and in grey the accuracy testing one. As shown
from Figure 7 after seven epochs (in testing) the per-
formances in detection are increasing.

Figure 8 shows the loss trend for the 10 epochs
we considered. As shown from the loss trend in Fig-
ure 8 the loss exhibits an opposite trend with respect

Figure 7: The accuracy trends for the 10 epochs: in green
the accuracy train trend, in grey the accuracy testing one.

Figure 8: The loss trends for the 10 epochs: the green line is
related to the loss train trend, while the grey line is related
to the loss testing trend.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

310

Figure 9: An example of explainability provided by the proposed method for the malware identified by the
1f0133014fac23a55fec3f56c9a09a2f0b7d02fc8f0c6c5b703397562e57098f hash.

Figure 10: An example of explainability provided by the proposed method for the malware identified by the
2bba69f5994c871380d5633e37305e7c09db17bb3ebaeeb94163625609d866d9 hash.

to the accuracy, and this is what is expected when a
deep learning model is correctly learning the classifi-
cation task: this happens for both the training and the
testing.mIn Figures 9 and 10 two examples of explain-
ability proposed by the proposed method are shown.
In each figure the first part of the image represents the
image obtained from the system call trace, the mid-
dle image is the heatmap generated by the Grad-CAM
with highlighted the areas symptomatic of a certain
prediction and, in the right image, the overlay of the
image generated from the system call trace with the
heatmap provided by the Grad-CAM, in order to un-
derstand which part of the system call image is high-
lighted by the heatmap and it is, consequently, respon-
sible for the (malware or trusted) prediction. In de-
tail the yellow areas of the heatmap are related to part
of the images that contributed to the detection with
a high percentage, the green areas contributed with a
medium percentage while the blue area did not con-
tribute to the detection thus, from the explainability
point of view they are not considered of interest.

In particular in Figure 9 we can note that the pro-
posed model correctly detected the malware applica-
tion, with a percentage equal to 68.3%. From the ex-
plainability point of view, we can note that this appli-

cation is marked as malware because the upper area
was considered malicious from the proposed model.
This data can be of interest, as it can lead the security
analysis to conduct further investigations. For exam-
ple, by going back to the system calls highlighted in
yellow, a fine-grained localization of the system calls
invoked by the malicious payload could be carried
out, as it would be possible to understand which event
in particular allowed the generation of those particu-
lar system calls (considering in fact that the events
of the operating system are generated in a predeter-
mined order). Similar considerations can be done for
the second example of visual explainability, shown in
Figure 10. As a matter of fact, in the example shown
in Figure 10 the model rightly classified the malicious
application with a percentage equal to 63.1% but, dif-
ferently from the example shown in Figure 10, the
heatmap localised the yellow areas of interest in the
lower part of the image. This can be symptomatic that
this malicious payload was triggered by one of the fi-
nal events sent to the operating system. Also in this
case it might be of interest to further investigate the
highlighted system calls, to see if they are similar to
those highlighted in other applications. In this way, it
may be possible to understand the exact sequence of

An Explainable Convolutional Neural Network for Dynamic Android Malware Detection

311

system calls generated by the execution of malicious
behavior.

4 CONCLUSION AND FUTURE
WORK

Every day we store a lot of sensitive and private infor-
mation on our mobile devices. This is the reason why
the interest of attackers with regard to our smartphone
and tables is day-by-day increasing, with the develop-
ment of more and more aggressive malicious payload
devoted to exfiltrate our sensitive data. From these
considerations, a method aimed to detect mobile mal-
ware is proposed in this paper. We focus on the most
widespread mobile platform i.e., Android, by design-
ing a method aimed to perform a dynamic analysis
by extracting the system call trace of an application
under analysis.

We exploit a CNN designed by authors to analyse
images directly obtained from the system call trace to
discern malicious applications from legitimate ones
by obtaining an accuracy equal to 0.781. Moreover,
we resort to the Grad-CAM to highlight into the im-
age representing the application system call trace the
areas symptomatic of a certain prediction, thus pro-
viding explainability behind the model prediction.

As future work, we plan to consider more al-
gorithms to provide explainability for instance, the
Grad-CAM++ (Chattopadhay et al., 2018) and the
Score-CAM (Wang et al., 2020), to compare visual
explanations. Also other deep learning models will be
considered, for instance, the VGG19 and the ResNet
ones with the aim to increase malware detection ac-
curacy. Moreover, considering that the proposed
method is platform-independent, we will also con-
sider a dataset of PC ransomware and legitimate ap-
plications .

ACKNOWLEDGEMENTS

This work has been partially supported by EU DUCA,
EU CyberSecPro, and EU E-CORRIDOR projects
and PNRR SERICS SPOKE1 DISE, RdS 2022-2024
cybersecurity.

REFERENCES

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H.,
Rieck, K., and Siemens, C. (2014). Drebin: Effec-
tive and explainable detection of android malware in
your pocket. In Ndss, volume 14, pages 23–26.

Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2015). Detecting android malware using sequences
of system calls. In Proceedings of the 3rd Interna-
tional Workshop on Software Development Lifecycle
for Mobile, pages 13–20.

Casolare, R., De Dominicis, C., Iadarola, G., Martinelli, F.,
Mercaldo, F., and Santone, A. (2021). Dynamic mo-
bile malware detection through system call-based im-
age representation. J. Wirel. Mob. Networks Ubiqui-
tous Comput. Dependable Appl., 12(1):44–63.

Casolare, R., Martinelli, F., Mercaldo, F., and Santone,
A. (2020). Detecting colluding inter-app commu-
nication in mobile environment. Applied Sciences,
10(23):8351.

Chattopadhay, A., Sarkar, A., Howlader, P., and Balasub-
ramanian, V. N. (2018). Grad-cam++: Generalized
gradient-based visual explanations for deep convolu-
tional networks. In 2018 IEEE winter conference on
applications of computer vision (WACV), pages 839–
847. IEEE.

Jerbi, M., Dagdia, Z. C., Bechikh, S., and Said, L. B.
(2020). On the use of artificial malicious patterns for
android malware detection. Computers & Security,
92:101743.

Jiang, X. and Zhou, Y. (2013). Android Malware. Springer
Publishing Company, Incorporated.

Medvet, E. and Mercaldo, F. (2016). Exploring the usage
of topic modeling for android malware static analysis.
In 2016 11th International Conference on Availabil-
ity, Reliability and Security (ARES), pages 609–617.
IEEE.

Mercaldo, F., Nardone, V., Santone, A., and Visaggio, C. A.
(2016). Download malware? no, thanks: how formal
methods can block update attacks. In Proceedings of
the 4th FME Workshop on Formal Methods in Soft-
ware Engineering, FormaliSE@ICSE 2016, Austin,
Texas, USA, May 15, 2016, pages 22–28. ACM.

Mercaldo, F. and Santone, A. (2021). Formal equivalence
checking for mobile malware detection and family
classification. IEEE Transactions on Software Engi-
neering.

Michael, S., Florian, E., Thomas, S., Felix, C. F., and Hoff-
mann, J. (2013). Mobilesandbox: Looking deeper into
android applications. In Proceedings of the 28th In-
ternational ACM Symposium on Applied Computing
(SAC).

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626.

Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S.,
Mardziel, P., and Hu, X. (2020). Score-cam: Score-
weighted visual explanations for convolutional neu-
ral networks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition
workshops, pages 24–25.

Zhou, Y. and Jiang, X. (2012). Dissecting android mal-
ware: Characterization and evolution. In Proceed-
ings of 33rd IEEE Symposium on Security and Privacy
(Oakland 2012).

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

312

