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Abstract: This paper describes a feature extraction and gaze estimation software, named Pistol that can be used with
Pupil Invisible projects and other eye trackers (Dikablis, Emke GmbH, Look, Pupil, and many more). In offline
mode, our software extracts multiple features from the eye including, the pupil and iris ellipse, eye aperture,
pupil vector, iris vector, eye movement types from pupil and iris velocities, marker detection, marker distance,
2D gaze estimation for the pupil center, iris center, pupil vector, and iris vector using Levenberg Marquart
fitting and neural networks. The gaze signal is computed in 2D for each eye and each feature separately and
for both eyes in 3D also for each feature separately. We hope this software helps other researchers to extract
state-of-the-art features for their research out of their recordings.

1 INTRODUCTION

Eye tracking has a variety of application areas as well
as research areas in today’s world. In human-machine
interaction it is used as a new input signal (Gardony
et al., 2020; Arslan et al., 2021), in computer graph-
ics as a constraint for the area to be rendered (Wal-
ton et al., 2021; Meng et al., 2020), in medicine us-
ing more eye features as data for self-diagnosis sys-
tems (Joseph and Murugesh, 2020; Snell et al., 2020;
Lev et al., 2020) or to measure the eyes (Nesarat-
nam et al., 2017; Economides et al., 2007), in the
field of psychology it is used to detect neurological
diseases such as Alzheimer’s (Davis and Sikorskii,
2020; Pavisic et al., 2021), in behavioral research to
evaluate expertise as well as train students (Panchuk
et al., 2015; Jermann et al., 2010), and many more like
driver monitoring in autonomous driving (Liu et al.,
2019; Shinohara et al., 2017) etc. This wide range of
research and application areas requires that new eye
features as well as more robust algorithms be easily
and quickly deployable by everyone. As eye track-
ing itself is the focus of research and new more robust
or accurate algorithms are constantly being published
as well as new features, properties or signals such as
pupil dilation are added, it is necessary that everyone
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has quick access to it to improve their products or in-
tegrate it in their research.

This poses a problem for the industry, since it must
be determined long before the final product which
functionalities and features will be integrated into the
software (Lepekhin et al., 2020). If new features are
added, this is usually postponed until the next gen-
eration of eye trackers. This is due to the fact that
the industry’s software must be very reliable and ev-
erything should be tested multiple times, as well as
automated test cases for the new parts of the software
must be integrated (Taylor et al., 2020). Further test-
ing must be done with other integrated components,
and the software must continue to be compatible with
external software components used or developed by
industry partners (Jiang et al., 2020). Another impor-
tant point for the industry is the software architecture
as well as also the quality of the source code. New
parts must adhere to the software architecture as well
as also be written in a clean and understandable way.
This also delays the integration of new components,
since the source code must also be checked.

Research groups themselves do not have these
problems, since the software architecture is usually
created and extended dynamically, which however
also leads to a poorer source code quality (Hassel-
bring et al., 2020). Likewise, research groups have

Fuhl, W., Weber, D. and Eivazi, S.
Pistol: PUpil INvisible SUpportive TOOl to Extract Pupil, Iris, Eye Opening, Eye Movements, Pupil and Iris Gaze Vector, and 2D as Well as 3D Gaze.
DOI: 10.5220/0011607200003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 2: HUCAPP, pages
27-38
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

27



Figure 1: The workflow of Pistol. In gray are the data sources, and the single processing steps are in color. Each arrow
corresponding to a data dependency is colored in the same color as the processing step.

the possibility to accomplish theses for the advance-
ment of the software, whereby no costs develop. In
the case that a research group develops such software,
many new algorithms are already available in work-
ing form, which makes integration much easier and
faster. Also, research groups do not have contractual
partners, so they do not have to maintain the output
formats and integrated interfaces in the software in a
prescribed format for many years.

The Pistol tool presented in this paper extracts
a variety of eye features such as pupil ellipse, iris
ellipse, eyelids, eyeball, vision vectors, and eye-
opening degree. These are needed in many applica-
tions such as fatigue or attention determination or can
serve as new features in research, however these fea-
tures are not provided by every eye tracker manufac-
turer. In addition, to the extracted features, our soft-
ware offers the possibility to determine the eye gaze
by different methods and based on different data like
the iris or the pupil with the coordinates of the center
or with the vectors. This also offers new possibili-
ties in interaction and behavioral research. We hope
that this tool will be useful for scientists all over the
world and also help industry to integrate new features
into their software. The Pistol tool will continue to
be developed in the future, and we hope to be able to
integrate many scene analysis techniques.

Our contributions to the state of the art are:

1. A free to use tool to extract a plethora of eye fea-
tures for the pupil invisible offline.

2. 2D gaze estimation per eye with multiple opti-
mization algorithms, as well as for the pupil and
the iris separately.

3. 3D gaze estimation with both eyes using differ-
ent optimization algorithms and separately for the
pupil and the iris.

4. The eye trackers Dikablis, Emke GmbH, Look,
Pupil, and many more are also supported for eye
feature extraction and gaze estimation. But here
the dirct path to the videos has to be specified.

2 RELATED WORK

In the field of eye tracking and feature extraction,
there is a wide range of related work. This is due, on
the one hand, to the industry, which provides a wide
range of eye trackers at different prices and with dif-
ferent features. On the other hand, it is due to the ever-
growing research community and the growing appli-
cation fields for eye tracking.

From the industry there are for example the man-
ufacturers Tobii (Tobii, 2021), ASL (ASL, 2021),
EyeTech (EyeTech, 2021), SR Research (SRRe-
search, 2021), Eyecomtec (eyecomtec, 2021), Er-
goneers (Ergoneers, 2021), Oculus (Oculus, 2021),
Pupil Labs (PupilLabs, 2021), iMotions (iMotions,
2021), VIVE (VIVE, 2021) and many more. The
eye trackers differ in frame rate and in the features
used for eye tracking, each having its advantages and
disadvantages. For a good overview of more details,
please refer to the manufacturer pages as well as sur-
vey papers that deal with this overview (Rakhmatulin,
2020; Duchowski, 2002; Park and Yim, 2021; Mao
et al., 2021).

Science itself, has of course produced some eye
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trackers and systems for gaze calculation. The first
one mentioned here is the EyeRec (Santini et al.,
2017) software, which can be used for online eye
tracking for worn systems. It has several built-in al-
gorithms and uses a polynomial fitting to the optical
vector of the pupil. Another software dealing with
pupillometry is PupilEXT (Zandi et al., 2021). This
is a highly accurate extraction of the pupil shape,
which can also only be performed under severe limi-
tations and with high-resolution cameras. The soft-
ware OpenEyes (Li et al., 2006) offers a hardware
and software solution in combination. The algorithm
used for pupil detection is Starburst. For the Tobii
Glasses there is also a tool (Niehorster et al., 2020),
which allows analyzing the images offline and to ap-
ply algorithms from science to the data. For Mat-
lab there is also a freely available interface to use
Tobii Eye Tracker directly (Jones, 2018). For Tobii
there also exists a custom software to improve the
accuracy of the eye tracker (Phan, 2011). To dis-
tribute the data of a Gazepoint Eye Tracker over a net-
work, there is also a tool from science (Hale, 2019).
For studies with slide shows, there is the software
OGAMA (Voßkühler et al., 2008). This can be used
to record mouse movements and gaze signal and then
analyze them, as well as create visualizations. Gaze-
Code (Benjamins et al., 2018) is a software that al-
lows mapping eye movements to the stimulus image.
The software was developed to speed up the process-
ing time for mapping and to improve the usability
compared to commercial software like Tobii Pro Lab.

The distinguishing features of our software from
existing ones is that we output a variety of other fea-
tures such as pupil, iris, eyelids, eye-opening, pupil
vector, iris vector, eye movements and different meth-
ods for gaze estimation. Also, we determine the 3D
gaze point position and support a variety of eye track-
ers. Another important feature of our tool is, that each
feature is exported together with a video, which show-
cases the quality.

3 METHOD

Pistol is executed by calling the program with a path
to the Pupil Invisible project. Then you specify the
recording to be processed (psX or just X after the us-
age of the Pupil Player) and Pistol starts the detec-
tions and calculations. In addition, you can specify
the range of marker detection to be used for calibra-
tion (based on the scene video frames). If you do not
specify this range, all detected markers will be used.
Pistol also supports to specify a polynomial (or expo-
nential function) and neural newtork architectures for

Figure 2: Exemplary detections of the pupil, iris, and eyelid
for one subject. The first four images are from the left eye
and the last four images are from the right eye.

the gaze estimation. For the eye ball computation, the
window size to compute the eye ball can be specified
as well as two diffrent approaches can be usd (Direct
on one ellipse or the eye ball computation over multi-
ple ellipses). If pistol is not used together with Pupil
Invicible eye tracker recordings, the path to the videos
has to be selected (Eye and scene videos).

Figure 1 shows the processing flow of Pistol and
the data dependencies of each step. The gray boxes
represent data that either exists in the project or was
generated by a calculation step. Each calculation step
in Figure 1 has a unique color, with which the data
dependencies are also marked. At the end of each
calculation step, the data is saved to a CSV file and a
debugging video is generated to check the result.

In the following, we describe each processing step
of our tool in detail. Some sections like the pupil, iris,
and eyelid detection are combined since the funda-
mental algorithmics are similar.

3.1 Pupil, Iris, and Eyelid Detection

In Figure 2 we show some results of pupil, iris, and
eyelid detection. For detection, we use small DNNs
with maximum instead of residual connections (Fuhl,
2021a) as well as tensor normalization and full dis-
tribution training (Fuhl, 2021b) to detect landmarks.
Using the maximum connections allows us to use
smaller DNNs with the same accuracy. The full distri-
bution training makes our DNNs more robust, and we
also need less annotated data to train them. Tensor
normalization increases accuracy and is more stable
than batch normalization. In addition, we use land-
mark validation as well as batch balancing from (Fuhl
and Kasneci, 2019) to evaluate the accuracy of the
landmarks at the pixel level and discard detections
if the inaccuracy is too high. To obtain the ellipses
for the pupil and iris from the landmarks, we use the
OpenCV (Bradski, 2000) ellipse fit. The shape of the
upper and lower eyelid is approximated using cubic
splines. The architecture of our models as well as the
training details are in the supplementary material.
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Figure 3: Exemplary images for the left (first 4) and right
(last 4) eye of one subject. We compute the maximal dis-
tance along the vector between the eye corners to compen-
sate for the off axial camera placement.

3.2 Eye Opening Estimation

Figure 3 shows some results of our eye-opening de-
gree calculation. The eye-opening is calculated us-
ing an optimization procedure and is always oriented
orthogonally to the vector between the eye corners.
Without the constraint of this orthogonality (simple
selection of the maximum over all minimum distances
of the points on the eyelid curves), the results are very
erratic, because due to the perspective of the camera,
parts of the eyelids are not completely visible. Also,
the orthogonality to the vector between the eye cor-
ners is what is expected in a frontal view of the eye.

Let Pup be the set of points of the upper eyelid, Pdw

be the set of points of the lower eyelid, and
−→
C be the

vector between the corners of the eye.

Opening(Pup,Pdw,
−→
C ) = argmaxargmin|

−→
ud|,

u ∈ Pup, d ∈ Pdw,
−→
ud ⊥−→

C
(1)

Equation 1 shows our optimization to compute the
eyelid opening, where u and d are selected elements
of Pup and Pdw with the side condition, that the vector
between the two is orthogonal to the vector between
the corners of the eye, i.e.

−→
ud ⊥−→

C . For a frontal im-
age this additional side condition is usually not nec-
essary, but for the images from the pupil invisible the
results without this side condition are unstable and not
always oriented correctly regarding the eye.

3.3 Eye Ball, Pupil&Iris Vector
Estimation

To calculate the eyeball and the optical vectors, we
use the neural networks of (Fuhl et al., 2020a). Here,
several pupil ellipses are given into the neural network
from which the eyeball radius and the eyeball center
are calculated. As neural network, we used a network
with one hidden layer consisting of 100 neurons. To
calculate the optical vectors, we calculated the vector

Figure 4: Exemplary images for the eyeball as well as iris
and pupil vector. The eyeball is drawn in red, the iris vector
in blue, and the pupil vector in green.

Figure 5: Exemplary detections for all eye movement types,
Fixation, Saccade, Blink, and smooth pursuit. All images
are from the left eye of the subject. In addition, if no fea-
ture is detected or only the eyelids are valid, but the eye is
still open, the eye movement type will be marked as error.
The four smooth pursuit (SM) images are from four con-
secutive frames with a distance of 25 frames (Eye cameras
have 200FPS). The two saccade images are from two con-
secutive frames with a distance of 10 frames(Eye cameras
have 200FPS).

between the center and each of the pupil center and
the iris center and converted it to a unit vector.

Basically the eyeball can be computed continu-
ously in a window with this method where we sam-
ple only once over all ellipses and select the 100 most
different ones. The user of the software can specify
the window size which is used to compute the eye-
ball. We also integrated the second approch from
(Fuhl et al., 2020a), which allows computing an or-
thogonal vector from a single ellipse using a neural
network, which can then be used to continuously ad-
just the eyeball model. The choice of the method to be
used is selected via a parameter when calling Pistol.

3.4 Eye Movement Detection

For the detection of eye movements, we use the an-
gles between the pupils and iris vectors as well as the
difference of the eye-opening distance. For classifica-
tion, we use a neural network with a hidden layer and
100 neurons, as well as the softmax loss. The network
was trained on the annotated data of 12 subjects. In
addition, we use the validity of the extracted eye fea-
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Figure 6: Exemplary images of the marker detection. The
yellow dot is the estimated center. Zoom in to sea more
details.

tures to classify errors.
Pistol supports also the fully convolutional ap-

proach from (Fuhl et al., 2020b) to segment the
motion trajectories. This model is pretrained on
TEyeD (Fuhl et al., 2021) and can be used to com-
pute the eye movements for other eye trackers like
the Dikablis, Emke GmbH, Look, Pupil, and many
more, which are included in the TEyeD datset. This
is necessary because there are significant differences
in the eye trackers due to different camera placement
and perspective distortion. We decided to provide a
small seperate neural network since with the Pupil In-
visible Eye Tracker, the classification is not a linear
function, as eye movements near the nose have sig-
nificantly smaller distances compared to areas of the
eyes that are much closer to the camera. This is due
to the different depth and of course the perspective
distortion of the camera lens.

3.5 Marker Detection

Figure 6 shows results of our marker detection, where
the center is shown as a yellow dot. Our marker detec-
tion must be able to detect the marker over different
distances and should calculate the center as accurately
as possible. To accomplish this in a reasonable time,
we decided to use two DNNs. The first DNN gets the
whole image scaled to 400×400 pixel. From this, the
DNN generates a heatmap with a resolution of 50×50
pixel. The maxima in this heatmap are then used as
the starting position for the second DNN, which ex-
tracts a 120× 120 pixel area from the original image
and performs landmark detection with validation from
(Fuhl and Kasneci, 2019) here. With the validation
signal, we again reject marker positions which are too
inaccurate. The architecture of our models as well as
the training details are in the supplementary material.

3.6 2 D & 3D Gaze Estimation

For the determination of the calibration function, we
use the Levenberg Marquart optimization and neural

Figure 7: Exemplary images of the 2D gaze estimation for
the left (first 2) and right (second 2) eye, and exemplary im-
ages of the 3D gaze estimation for both eyes (last 4). The
iris center, pupil center, iris vector, and pupil vector with
neural networks and levenberg marquart polynomial fitting
are drawn in different colors. In addition, each scene frame
as ≈ 6 gaze points based on the frame rate of the eye cam-
era. Zoom in to sea more details.

networks with two hidden layers (50 and 20 neurons).
The polyniomal and the neural network architecture
can be changed with additional parameters of Pistol.
It is also possible to use exponential functions instead
of the polyniomal. This is due to the fact that Pis-
tol supports different eye trackers, and both methods
are able to learn more complex functions than sim-
ple polynomials. An example of this can already be
found in the depth estimation, where the parameters
are in the exponent of the function and thus cannot be
determined via a direct computation method.

For the 2D eye tracking we fit a neural net-
work and a polynomial with the Levenberg Marquart
method to the pupil center, iris center, pupil vector,
and iris vector. This is done separately and also for
each eye independently. This means that people with
an ocular incorrect eye position or only one function-
ing eye can also be measured. In the case of 3D eye
tracking, we use the data from both eyes simultane-
ously. This means that we fit a neural network and
a polynomial with the Levenberg Marquart method
to both pupil centers, iris centers, pupil vectors, and
iris vectors. Overall, the program therefore computes
8 gaze point estimators per eye (Total 16) and addi-
tionally 8 for both eyes in combination. All of these
estimated gaze points can be used separately and are
written to the csv files.

The selection of the calibration data is done in
three steps. First, each scene image with a marker de-
tection is assigned only one eye image for each eye.
This assignment is done by the minimum distance of
the time stamps. In the second step, we check that
only scene images are used for which it is true that
there are 5 valid marker detections in the preceding
and following scene images. In the third step, we use
the Levenberg Marquart method together with a poly-
nomial. Based on the error of the gaze positions to
the marker position, the best 90% are selected and the
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Figure 8: Image of the marker area to depth estimation
recording (Flipped by 90 degree). The brown markers on
the floor have 50 cm distance to each other and the subject
had to stand in front of the line for one measurement sam-
ple.

remaining 10% are discarded.
The training parameters for the neural networks

are initial learning rate of 0.1, optimizer SGD, mo-
mentum 0.9, and weight decay 0.0005. Each network
is trained 4 times for 2000 epochs, with batch size
equal to all input data. After 2000 epochs, the learn-
ing rate is reduced by a factor of 10−1. For the Leve-
berg Marquart method, we use the delta stop strat-
egy with a factor of 1−10 and a search radius of 10.0.
For the neural networks and the Leveberg Marquart
method, all data are normalized. This means that the
pupil and iris centers are divided by the resolution in
x and y direction, as well as the eyeball centers for
the pupil and iris vectors. The vectors themselves are
already unit vectors.

3.7 Depth Estimation

For the determination of the depth, we have consid-
ered several methods. One is the fitting of polynomi-
als and complex functions to the vectors of the pupil
and the iris, as well as to the angle between both
vectors. Also, we tried to determine the depth geo-
metrically. In all cases there were significant errors,
because the vectors are not linear to each other due
to the perspective distortion of the camera, the non-
linear deep distribution of the eye image and also due
to the head rotation. In the case of the head rotation, it
comes to the eye rotation around the z axis as well as it
also depends on the viewing angle to different eye po-
sitions comes, which are not linear to a straight view.
Since neither neural networks nor complex functions
worked for us, we decided to use the K nearest neigh-
bor method (KNN) with k = 2. This method gave the
best results in our experiments and a good accuracy
(except for a few centimeters).

In order to determine the marker depth and thus
obtain our calibration data for the KNN, we per-
formed trial measurements with the marker and two
people. The setup can be seen in Figure 8. The brown
strokes on the floor are plotted at 50 cm intervals, and
both subjects took measurements at each stroke. We
then used the Matlab curve fitting toolbox to deter-

mine the best function and parameters for them.

d(A) = a∗Ab+c (2)

The best function can be seen in the Equation 2,
where A is the area of the marker and d(A) is the
depth in centimeters. The first thing to notice is that
the parameter b is in the exponent, which makes de-
termining the parameter not easy to solve directly.
The parameters we determined for the function are
a = 13550.0 f , b = −0.4656, and c = −18.02. We
use these parameters and function to determine the
depth of the marker from the marker area using the
fine detector.

4 EVALUATION

In this section we evaluate the different processing
steps of the presented tool. If it was possible we com-
pared it to other state of the art approaches. For the
gaze estimation we compared to the Pupil Player but
we want to mention again, that our tool has to be seen
as an additional software to use with the Pupil Invisi-
ble and with other eye trackers too. It is not a compet-
ing product, nor do we wish to denigrate any software
here.

For the evaluation of the gaze, we recorded five
subjects who looked at the calibration marker at the
beginning of the recording. Subsequently, the sub-
jects moved freely inside and outside the university
and at the end the calibration marker was viewed
again. The observation of the calibration marker was
at the beginning that the subjects stood close to the
marker and then slowly moved away from the marker
with head rotations. For the evaluation data, sub-
jects were roughly five meters away initially and then
moved towards the marker with head rotations. By
doing this, we have depth information in the calibra-
tion as well as in the evaluation data (See section 3.7).
The head rotation caused the marker to move in the
scene image as well as eye rotations, making gaze de-
termination much more difficult.

Each recording was approximately five minutes
long, and each subject took three recordings. One
shot could not be used because the subject had the
marker in the scene image for a while without look-
ing at it, resulting in a false calibration. Of course,
Pistol filters out a certain amount of false data via the
outlier selection, but this must not exceed 10% of the
images with markers in the calibration phase.

Our system for the evaluation consists of an
NVIDIA GTX 1050ti, an AMD Ryzen 9 3950X with
16 cores (where only one core was used in the evalua-
tion), and 64 GB DDR4 RAM. The operating system
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Table 1: We evaluated the segmentation quality with the mean intersection over union as well as the average euclidean pupil
center error in comparison to other approaches from the literature on our annotated dataset (7 subjects for training and 5 for
evaluation). In addition, we evaluated the iris landmark RMSE also with the euclidean distance.

Method Pupil center RMSE (px) Pupil mIoU Iris LM RMSE (px) Iris mIoU Eyelid mIoU
Pistol 0.96 0.83 1.14 0.88 0.89
(Fuhl et al., 2016b) 8.92 0.49 - - -
(Fuhl et al., 2015) 11.13 0.35 - - -
(Fuhl et al., 2016a) - - - - 0.49
(Fuhl et al., 2017) - - - - 0.61

Table 2: Evaluation of the eye movement detection algorithm in pistol and compared to other state of the art approaches on
our annotated data set (7 subjects for training and 5 for evaluation).

Saccade Fixation Smooth Pursuit Blink
Method Accuracy mIoU Accuracy mIoU Accuracy mIoU Accuracy mIoU
Pistol 89% 0.81 96% 0.89 95% 0.89 86% 0.78
(Fuhl et al., 2018b) 90% 0.78 93% 0.85 90% 0.80 86% 0.77
(Fuhl et al., 2018a) 80% 0.69 89% 0.81 99% 0.85 66% 0.45
(Fuhl et al., 2020b) 92% 0.87 97% 0.90 97% 0.91 89% 0.83

is Windows 10 and the CUDA version used is 11.2, al-
though Pistol also works with CUDA versions 10.X,
11.1, and 11.3.

4.1 Pupil, Iris, and Eyelid Detection

The results of the pupil, iris, and eyelid extraction net-
works can be seen in Table 1. As can be seen, the re-
sults of Pistol are very good compared to other meth-
ods, but the other approaches do not require training
data. Of course, one could use much larger networks
with even better results, but Pistol should be usable by
everyone, so the resource consumption is also a very
important property of the models. In the runtime sec-
tion, you can see that our approach on an old GTX
1050ti with 4 GB Ram needs only 17.21 milliseconds
per frame (Table 8) and also uses only a fraction of
the GPU RAM. This makes it possible to use Pistol
on older hardware.

4.2 Eye Movement Detection

Table 2 shows the accuracy of our eye movement clas-
sification compared to other methods from the liter-
ature. The best result is given by the method from
(Fuhl et al., 2020b) which is also integrated in Pistol
but for other eye trackers and pretrained on TEyeD.
We did not select the model from (Fuhl et al., 2020b)
as standard approach since it requires more com-
putational ressources andthe fully convolutional ap-
proach is independent of the length of the input sig-
nal. Therefore, it can allocate a huge amount of ram,
which can only be controlled by seperating the input
vector, which would also impact the resulting accu-

racy. However, the current approach is better than
HOV (Fuhl et al., 2018a) and as well as more accurate
compared to threshold learning (Fuhl et al., 2018b) as
used in the classical algorithms.

4.3 2 D & 3D Gaze Estimation

As already described in the introduction in the section
Evaluation, we use different depths for calibration and
evaluation as well as there are head and eye rotations.
Table 3 shows the accuracy of our gaze determination
with the different methods. As can be seen, the neural
networks are significantly worse than the Levenberg-
Marquardt fitting, which we suspect is due to the for-
mulation of the individual neurons. These are single
linear functions which are combined to approximate
the seen area well and interpolate well between train-
ing data. However, in the case of extrapolation, neural
networks are very poor. This will be the task of future
research, and we hope to provide better networks in
the future. Compared to the Pupil Player, we are sig-
nificantly better on average, but this is also due to the
fact that the Pupil Invisible Eye Tracker is only cali-
brated to one depth level and the software cannot use
our markers.

Table 4 shows the frequency of detected view-
points relative to all seen images from all shots. As
can be seen, it is possible to determine significantly
more gaze points with the Pupil Invisible than is pro-
vided for in the Pupil Player software. This is due to
the fact that the eye cameras record 200 frames per
second and the scene camera records 30 frames per
second. Looking at the results, it is noticeable that the
3D gaze point can be calculated the least. This is due
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Table 3: The average gaze estimation accuracy in pixels for all methods of Pistol for the five participants. LM stands for
the Levenberg-Marquardt fitting, NN for the neural network fitting, PC for pupil center, IC for iris center, PV for the pupil
vector, and IV for the iris vector. Since the Pupil Player outputs only up to two gaze points per scene image, we evaluated
our approaches with all assigned gaze points to the scene image and only with the eye image with the lowest timestamp
difference. The result of 2D left+right is the average of both gaze estimations. Note: The Pupil Player uses only the one
time calibration for one depth and therefore, the evaluation is not entirely fair

Data Method Average Accuracy (px)
LMPC LMIC LMPV LMIV NNPC NNIC NNPV NNIV

≈6
Image

Pistol 2D left 29.04 27.73 28.61 27.33 36.25 35.29 34.51 35.26
Pistol 2D right 32.20 33.21 34.25 35.18 47.44 44.82 37.78 38.60
Pistol 2D left+right 21.76 23.53 22.96 24.11 27.08 27.33 24.51 28.27
Pistol 3D 20.20 21.24 19.61 20.45 28.78 30.22 26.86 27.91

1
Image

Pistol 2D left 24.84 23.61 24.42 23.26 32.68 31.51 30.53 31.34
Pistol 2D right 28.01 29.12 29.93 31.11 43.89 40.81 33.83 34.62
Pistol 2D left+right 18.54 20.21 19.62 20.88 24.22 24.54 21.66 25.23
Pistol 3D 18.11 19.24 17.43 18.56 27.54 29.14 25.18 26.25

≈2
Image PupilLabs 66.39

Table 4: Since the Pupil Player outputs only one or two gaze points per scene image, we evaluated the total valid gaze points of
all possible gaze points (Up to seven per scene image) as well as scene images with at least one gaze point both as percentage.
For the evaluation, we used all recordings from all five participants.

Source Left Right Left + Right 3D Pupil Player
Valid gaze points 90.63% 93.71% 93.78% 88.14% 23.07%
At least 1 valid gaze point per scene image 91.77% 94.80% 96.89% 89.66% 99.32%

to the fact that both eyes must be valid here. However,
due to the camera placement, the pupil is no longer
visible in one of the eyes when looking from the side.

If we calculate the relative gaze points per scene
image, i.e. that at least one viewpoint per scene image
is sufficient, we see that here the Pupil Player deter-
mines significantly more gaze points than Pistol. For
future versions of Pistol, this will be further improved,
and we will also integrate an appearance based gaze
estimation approach.

4.4 Pupil, Iris, and Eyelid Detection

The architecture of our models is described in ta-
ble 5. With the four by three maximum interconnec-
tion blocks, our networks are between ResNet-18 and
ResNet-34 (He et al., 2016) in size. For training, we
used the AdamW optimizer (Loshchilov and Hutter,
2018) with parameters first momentum 0.9, second
momentum 0.999, and weight decay 0.0001. The ini-
tial learning rate was set to 10−4 and reduced after
1000 epochs to 10−5 in which we trained the mod-
els for an additional 1000 epochs with a batch size
of 10. We pretrained our model on the TEyeD (Fuhl
et al., 2021) dataset and used all stages up to 8 as
backbone model. Afterwards, we retrained the last
layer on 6,000 annotated images from the pupil invisi-
ble with 3,000 additional annotated images for valida-
tion. The annotated data set contains 12 subjects and

for the evaluation we split the training (7 subjects) and
testing (5 subjects) data so that there was no subject
from the training set in the testing set. For data aug-
mentation we used random noise (0 to 0.2 multiplied
by the amount of pixels), cropping (0.5 to 0.8 of the
resolution in each direction), zooming (0.7 to 1.3 of
the resolution in each direction), blur (1.0 to 1.2), in-
tensity shift (−50 to 50 added to all pixels), reflection
overlay (intensity: 0.4 to 0.8, blur: 1.0 to 1.2, shift:
−0.2 to 0.2), rotation (−0.2 to 0.2), shift (−0.2 to 0.2
of the resolution in each direction), and occlusion
blocks (Up to 10 occlusions and with size from 2 pix-
els up to 50 with a fixed random value for all pixels or
random values for each pixel).

For other eye trackers (Dikablis, Emke GmbH,
Look, Pupil, and many more), Pistol support also the
feature extraction, if they are included in the TEyeD
dataset (Fuhl et al., 2021). This can be specified as
a parameter and the path to the videos of the eyes
have to be specified. For those eye trackers, Pistol
will use the last fully connected stage of the backbone
network.

4.5 Marker Detection

Table 6 shows the results of our marker detection in
the Euclidean distance to the marker landmarks, as
mean intersection over union, which is important for
the determination of the depth information, and the
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Table 5: Shows the architecture of the DNNs used for pupil, iris, and eyelid landmark detection.

Level Layer
Input Gray scale image 192×192 Center cropp and rescale for other resolutions.
1 5×5 Convolution with depth 64
2 ReLu with tensor normalization
3 2×2 Max pooling
4 3 Maxium connection blocks with 64 layers and 2×2 average pooling integrated in the first block.
5 3 Maxium connection blocks with 128 layers and 2×2 average pooling integrated in the first block.
6 3 Maxium connection blocks with 256 layers and 2×2 average pooling integrated in the first block.
7 3 Maxium connection blocks with 512 layers and 2×2 average pooling integrated in the first block.
8 Fully connected with 1024 neurons and ReLu
Output Fully connected with 48, 96, or 198 output neurons for pupil, iris, or eyelid landmarks in the same order.

Table 6: Results of the marker detection. The accuracy and
the mean intersection over union is evaluated on our anno-
tated data set. Accuracy is measured as average euclidean
distance of the landmarks in pixel. The false detections are
evaluated over all recorded videos and divided by the sum
of all frames.

Method Average landmark Accuracy (px) mIoU False detections
Coarse 7.12 0.60 3.26%
Fine 0.87 0.92 0.0%

false detections over all videos. As can be seen, the
coarse detection of the markers is relatively error-
prone with a false detection rate of 3.26% as well as
very inaccurate. However, this is compensated by the
fine detection, and it saves a lot of time to have to
check only a few positions with the fine detection.

Table 7 shows the architectures of our DNNs.
Both DNNs use tensor normalization (Fuhl, 2021b).
The maximum connections (Fuhl, 2021a) and full
distribution training (Fuhl, 2021b) were also used in
the fine detector. To train the DNNs we annotated
1,250 images (1,000 for training and 250 for valida-
tion) where the coarse DNN used the entire image
for training and the fine DNN used only the region
of the marker in a 120×120 pixel area. The data set
of the markers was recorded in five different rooms
and on different walls. To ensure the generalization
of our approach we used four rooms for training and
one room for testing.

For data augmentation we used random noise
(0 to 0.2 multiplied by the amount of pixels), cropping
(0.5 to 0.8 of the resolution in each direction), zoom-
ing (0.7 to 1.3 of the resolution in each direction),
blur (1.0 to 1.2), intesity shift (−50 to 50 added to all
pixels), reflection overlay (intesity: 0.4 to 0.8, blur:
1.0 to 1.2, shift: −0.2 to 0.2), rotation (−0.2 to 0.2),
shift (−0.2 to 0.2 of the resolution in each direction),
and occlusion blocks (Up to 10 occlusions and with
size from 2 pixels up to 50% of the image with a
fixed random value for all pixels or random values for
each pixel). This data augmentation was used for both
DNNs.

For training of the fine detector, we used the
AdamW optimizer (Loshchilov and Hutter, 2018)

with parameters first momentum 0.9, second momen-
tum 0.999, and weight decay 0.0001. The initial
learning rate was set to 10−3 and reduced after 1000
epochs to 10−4 in which we trained the models for an
additional 1000 epochs with a batch size of 10.

The coarse detector was trained with
SGD (Rumelhart et al., 1986) and the parame-
ter’s momentum 0.9 and weight decay 0.0005. The
initial learning rate was set to 10−1 and reduced after
1000 epochs to 10−2 in which we trained the models
for an additional 1000 epochs with a batch size of 10.

4.6 Depth Estimation

Figure 9: The average error per distance is shown on the
right in cm. The left plot is the distribution of errors for the
segments in 1 meter blocks. Both plots are computed on all
recordings.

Figure 9 shows the accuracy of our depth estimation.
On the left side, the mean values for all depths up to 5
meters are shown. As you can see, especially the near
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Table 7: Shows the architectures of the DNNs used for the marker detection.

Level Coarse detector Fine detector
Input Gray scale image 400×400 RGB image 120×120
1 5×5 Convolution with depth 32 5×5 Convolution with depth 32
2 ReLu with tensor normalization ReLu with tensor normalization
3 2×2 Max pooling 2×2 Max pooling
4 5×5 Convolution with depth 64 1 Maxium connection block with 64 layers and 2×2 average pooling
5 ReLu with tensor normalization 1 Maxium connection block with 128 layers and 2×2 average pooling
6 3×3 Convolution with depth 1 1 Maxium connection block with 256 layers and 2×2 average pooling
7 4×4 Average pooling Fully connected with 512 neurons and ReLu
8 Fully connected with 48 output neurons for the landmarks

Table 8: Runtime of each step of Pistol in milliseconds per
image or one data instance, without the generation of the
debug information and debug video, as average over 1000
data instances. The used GPU is a GTX 1050Ti and the
CPU AMD Ryzen 9 3950X where only one core is used for
the evaluation.

Step Feat. Ball Open Move Sync Mark GazeLM GazeNN TrainLM TrainNN
time 17.21 0.22 0.18 0.49 0.01 57.35 0.14 0.27 2958 6107

areas are highly error-prone, which is due to the fact
that both eyes are very close to the nose, which makes
the perspective of the camera placement difficult to
detect and distorts the vectors. On the right side, you
can see the frequencies in one meter blocks. Here
it is clear that there are some outliers, but the most
common estimates have an error below 50 cm. This
clearly shows that the depth estimation especially for
a lateral camera placement needs further research, and
we hope to improve it in future versions.

4.7 Runtime

Table 8 shows the runtime of the individual steps of
Pistol. The times are in milliseconds and include the
use of the GPU for marker detection and feature ex-
traction. In the first update, the use of Pistol will also
be possible without GPU, and thus we can then also
provide a version for MacOSX. The training for the
gaze determination takes the most time, however, it
is not only a data instance, but the complete training
with all data. In the future, the marker detection will
be accelerated as well, since it currently still takes too
much time. However, it was important to us that the
marker detection is very accurate and robust.

5 CONCLUSION

In this paper we have described in detail our software
that allows to extract a variety of features from the eye
as well as to perform 2D and 3D gaze estimation. We
hope that the variety of extracted features will support
research in many areas and that the software will be
useful for many researchers. Future features of the

software will be gesture recognition, scene analysis as
well as scan path classification, which will hopefully
make the software even more useful for research.
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Fuhl, W., Santini, T., Kübler, T. C., and Kasneci, E. (2016b).
Else: Ellipse selection for robust pupil detection in
real-world environments. In Proceedings of the Ninth
Biennial ACM Symposium on Eye Tracking Research
& Applications (ETRA), pages 123–130.

Gardony, A. L., Lindeman, R. W., and Brunyé, T. T.
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