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Abstract: Vaccination is one of the most effective measures for epidemic prevention and control. In this paper, we firstly 
construct a vaccine timeliness function based on vaccine effectiveness and completion time. Then we propose 
a dynamic two-dose vaccine distribution optimization model base on the age-structure compartment model, 
to reduce infection and speed up infection clearance. Comparing with the pro rata strategy and the not 
considering timeliness strategy, the results showed that the strategy designed in this paper not only advanced 
the clearing time but also reduced the number of infections. 

1 INTRODUCTION 

Vaccination is one of the most efficient ways to halt 
the spread of the COVID-19 outbreak. Most countries 
advise 2 rounds of vaccination to avoid COVID-19 
pneumonia. But optimizing the distribution of two 
doses of the vaccine in the absence of adequate 
vaccine production presents an objective and 
practical difficulty. 

Vaccine distribution needs to be based on the 
dynamics of epidemic transmission, and the 
compartment model is an effective means to 
characterize epidemic transmission (Mukandavire et 
al. 2007, Althaus et al. 2014, Glasser et al. 2016, He 
et al. 2020). 

A compilation of the literature related to vaccine 
distribution reveals that most vaccine distribution 
studies consider only one-time distribution of one-
dose vaccines, such as Enayati et al. reduced the 
effective regeneration number of influenza epidemics 
to less than or equal to 1 by a one-time vaccine 
distribution (Enayati et al. 2020). Matrajt et al. 
proposed an optimal allocation strategy for the 
COVID-19 vaccine, and they assumed that people 
had been vaccinated according to the optimal 
allocation before the experiment (Matrajt et al. 2021). 
A small number of studies have also considered two-
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dose vaccine allocation, such as Matrajt et al. who, 
based on a previous article, proposed an optimal 
allocation strategy with a mixture of one- and two-
dose vaccines (Matrajt et al. 2021). Few other studies 
conducted dynamic distribution studies of vaccines in 
the spread of the epidemic, such as Han et al. 
conducted an optimal distribution study of the new 
crown vaccine to obtain a time-varying vaccine 
distribution strategy (Han et al. 2021). Chen et al. 
studied the COVID-19 vaccine allocation strategy in 
New York City and found that the dynamic 
distribution strategy outperformed the static 
distribution strategy (Chen et al. 2018). 

Specifically, Parino et al. conduct a dynamic 
distribution study of two-dose vaccine in an Italian 
research context (Parino et al. 2021). Further, they 
proposed a stochastic optimal vaccine allocation 
model to explore the problem of optimal allocation of 
two-dose vaccine (Calafiore et al. 2022). Based on 
their study, this paper further considers the age 
heterogeneity of virus transmission and vaccine 
efficacy, and innovatively defines vaccine timeliness 
and uses it as the objective function for optimal two-
dose vaccine distribution. 
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2 MODEL FORMULATION 

2.1 Parameter and Variable Definitions 

The necessary notation for this paper is first defined 
as follows to make it easier to articulate the model in 
the following section:  

K : the set of age groups, ,k k K∈  
k : any age group that encounters the age group k

, the age group kwill encounter this age group and 
other age groups 

kN : Number of people in the age group k 
kς : Susceptibility of the age group k 

1kτ : Effectiveness of the first dose of vaccine for 
the age group k 

2kτ : Effectiveness of two full doses of vaccine for 
the age group k 

β : Transmission rate 

,k kC : Contact rate between age group k and age 

group k  
δ : Probability of conversion from latent to 

infected 
γ : Probability of conversion of an infected person 

to a recovered person 
ω : Interval between the first and second doses 
T : Duration of the experiment, t T∈  
ο: Number of vaccines distributed per day 

( )kS t : Number of susceptible persons in the age 
group k at the time t  

1 ( )kV t : Number of people in the group k  who 
had received the first dose of vaccine and not the 
second dose at the time t  

2 ( )kV t : Number of people in the age group k 
who had received the full two doses of vaccine at the 
time t  

( )kE t : Number of latent cases in the age group 
k at the time t  

( )kI t : Number of infected persons in the age 
group k at the time t  

( )kR t : Number of recovered persons in the age 
group k at the time t  

1 ( )ku t : Number of first vaccine doses assigned to 
the age group k at the time t  

2 ( )ku t : Number of second vaccine doses assigned 
to the age group k at the time t  

2.2 Model Explanation 

2.2.1 Timeliness Definition 

This study evaluates the vaccination's timeliness in 
terms of both vaccine efficiency and completion time. 
The total number of infections devotes the efficiency 
of the vaccination. The clearing time of infected 
persons indicates completion time of the vaccination. 
The vaccine effect and completion time functions are 

created using the sigmoid function ( 1
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(3)

𝑔(𝑡ሶ) = 1
1 + 𝑒௟௡ቀ ଵఌమିଵቁమ௧ିఠሶ (௧ሶି்ାఠଶ ) (4)𝑀𝑎𝑥 (𝑚𝑓(𝐼ሶ))(𝑛𝑔(𝑡ሶ)) (5)

2.2.2 Vaccine Distribution Model 

In this study, the vaccine distribution operation is 
added to the age-structured seir model with two new 
compartments included to create the SVEIR model, 
as illustrated in Figure 1 below. 

Sk

V1k

V2k

Ek Ik Rkδ γ

 
Figure 1: The SVEIR model. 

In the SVEIR model, we divide the population 
into six categories, namely susceptible (S), first dose 
vaccine recipient(V1), full dose vaccine recipient(V2), 
exposed (E), infected (I) and recovered (R). 
Susceptible persons (Sk) are transformed into exposed 
persons (Ek) in part due to contact with infected 
persons (

kI ) and into first dose vaccine recipients 
(V1k) in part due to first dose vaccination. After at 
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least  days, the first dose vaccinated persons (V1k) 
can receive the second dose vaccination and become 
full dose vaccinated persons (V2k). The total number 
of first and second doses of vaccine allocated to each 
age group each day will not exceed the supply for that 
day ( ). The first dose vaccine recipients (V1k) and 
the full dose vaccine recipients(V2k) are also partially 
transformed into exposed persons (Ek) due to contact 
with infected persons ( )kI  in each age group. 
Exposed persons (Ek) become infected (Ik) after an 
incubation period of . Infected persons (Ik) are 
transformed into recovered persons (Rk) after a period 
of infection. 

According to the above description, the dynamic 
conversion process between different populations 
during the outbreak is as follows:  𝑑𝑆௞(𝑡)𝑑𝑡 = െ𝑢ଵ௞(𝑡) െ 𝑆௞(𝑡)𝛽 ෍ (𝜍௞𝐶௞,௞ത 𝐼௞ത (𝑡)𝑁,௞ത )௄௞ത ୀଵ  (6)𝑑𝑉ଵ௞(𝑡)𝑑𝑡 = 𝑢ଵ௞(𝑡) െ 𝑢ଶ௞(𝑡) െ 𝑉ଵ௞(𝑡)(1െ 𝜏ଵ௞)𝛽 ෍ (𝜍௞𝐶௞,௞ത 𝐼௞ത (𝑡)𝑁,௞ത )௄௞ത ୀଵ  

(7)𝑑𝑉ଶ௞(𝑡)𝑑𝑡 =   𝑢ଶ௞(𝑡) െ 𝑉ଶ௞(𝑡)(1െ 𝜏ଶ௞)𝛽 ෍ (𝜍௞𝐶௞,௞ത 𝐼௞ത (𝑡)𝑁,௞ത )௄௞ത ୀଵ  
(8)𝑑𝐸௞(𝑡)𝑑𝑡 = (𝑆௞(𝑡) + 𝑉ଵ௞(𝑡)(1 െ 𝜏ଵ௞) + 𝑉ଶ௞(𝑡)(1െ 𝜏ଶ௞))𝛽 ෍ (𝜍௞𝐶௞,௞ത 𝐼௞ത (𝑡)𝑁,௞ത )௄௞ത ୀଵെ 𝛿𝐸௞(𝑡) 

(9)

𝑑𝐼௞(𝑡)𝑑𝑡 = 𝛿𝐸௞(𝑡) െ 𝛾𝐼௞(𝑡) (10)𝑑𝑅௞(𝑡)𝑑𝑡 = 𝛾𝐼௞(𝑡) (11)෍ (𝑢ଵ௞(𝑡) + 𝑢ଶ௞(𝑡)) ൑ 𝜊௄௞ୀଵ  (12)0 ൑ 𝑢ଵ௞(𝑡) ൑ 𝑆௞(𝑡) (13)0 ൑ 𝑢ଶ௞(𝑡 + 𝜔) ൑ 𝑉ଵ௞(𝑡) (14)𝑆௞(𝑡), 𝑉ଵ௞(𝑡), 𝑉ଶ௞(𝑡), 𝐸௞(𝑡), 𝐼௞(𝑡), 𝑅௞(𝑡) ൒ 0 (15)

3 SOLUTION PROCEDURE 

The model described above is a nonlinear 
optimization model and solved by the particle swarm 
algorithm. The solution process is outlined as follows. 

Step 1: Randomly initialize the position vector so 
that the sum of elements is equal to the daily vaccine 
supply ( ). 

Step 2: The positions are brought into the SVEIR 
model to calculate the infection situation, and the 
objective function value is obtained as the fitness. 

Step 3: Compare the fitness values, get the 
individual optimal solution and population optimal 
solution, and update the position and velocity of the 
particles. 

Step 4: The algorithm terminates when the 
maximum number of iterations or the upper limit of 
running time is reached. 

4 CASE STUDY 

4.1 Parameter Setting 

The test population of 100,000 people was divided 
into four groups: 0-14, 15-39, 40-64, and 65+. The 
parameter settings considering age heterogeneity are 
referred to the literature (Al Kaabi et al. 2021, China 
2021, Hu et al. 2021), as shown in the following table. 

Table 1: Parameter settings considering age heterogeneity. 

Age 
group 

No. Popul
ation 

Susce
ptibili

ty 

Effectiv
eness of 

first 
dose 

Effectiv
eness of 
full dose 

0-14 1 17973 0.58 0.2 0.6 
15-39 2 32816 1 0.3 0.8 
40-64 3 35689 1 0.3 0.8 
65+ 4 13522 1.65 0.2 0.6 
Assuming an effective reproduction number of 

1.5 at the beginning of the outbreak, the resulting 
transmission rate was 0.0610 (Diekmann et al. 1990). 
The contact rate between age groups was calculated 
from literature (Zhang et al. 2019). The transition rate 
from exposed to infected was 0.1562 (incubation 
period 6.4 days). The probability of recovery was 
0.1754 (mean infection period 5.7 days) (Hu et al. 
2021). The minimum interval between the first and 
second dose was 21 days. The total duration of the 
experiment was set at 300 days, with 1500 doses of 
vaccine distributed daily and 5 infected individuals in 
each age group at the beginning of the experiment. 

4.2 Test Result 

The algorithm yielded a locally optimal solution after 
349 iterations with a cumulative number of infections 
of 3338 and 178 days of clearing under a 1-hour 
runtime limit.  

The distribution of the vaccine is shown in Fig. 2-
3 below. The 65+ age group, which is sensitive to the 
virus and has low vaccine efficacy, needs to be 
vaccinated as fast as possible until fully covered. 
When the outbreak appears to be under control in the 
65+ age group, the 65+ age group can postpone 
receiving the first dose, which already has high 
coverage, and continue receiving vaccinations once 
the disease has been contained in other age groups. 
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The 15-39 and 40-64 age groups, which have the most 
contact with other age groups, also need to be 
vaccinated quickly until complete coverage is 
achieved. The 0-14 age group basically does not 
receive vaccination in the early stage due to its own 
low susceptibility to the virus, and a small amount of 
vaccination is slowly administered after the epidemic 
is controlled in other age groups. 

 
Figure 2: First dose distribution. 

 
Figure 3: Second dose distribution. 

5 CONCLUSION 

In this paper, a time-efficient objective function is 
innovatively defined in the vaccine distribution 
problem to reduce infections and achieve early zero 
community transmission. We introduce vaccination 
operations into an age-structured compartment model 
and constructs a dynamic vaccine distribution model 
that can be extended to other age heterogeneous 
infectious diseases for resource distribution 
decisions. Afterwards, we combine particle swarm 
algorithm with ideal point method to solve the 
location model. Based on data experiments, we 
suggest that vaccination of the 65+ age group should 
be performed as fast as possible until complete 
coverage is achieved. The 15-39 and 40-64 age 
groups should be followed by timely and complete 

coverage; the 0-14 age group can be vaccinated in 
small amounts in the early stages. 

This paper also has some shortcomings that could 
be a direction for future research. We do not consider 
asymptomatic infected people and the effect of 
vaccine on reducing the symptoms of infection. We 
used the particle swarm algorithm to solve the model, 
but the search for a faster and more accurate solution 
can be continued. 
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