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Abstract:  Diabetic cardiovascular disease is one of the leading causes of disease death in the diabetic population and its 
prevention and treatment has become a major social challenge. It has attracted the attention of many scholars 
and experts around the world, and a lot of research work has been done on it. Most of them use cox 
proportional risk models to investigate the correlation between risk indicators and the risk of developing 
cardiovascular disease based on statistical methods, which lack attention to the heterogeneity of individual 
patient characteristics and disease contextual information. To fill this gap, we propose a new deep learning 
model, the Personality and Time-Aware LSTM (PT-LSTM), which is based on individual characteristics and 
time perception to assess the risk of developing cardiovascular disease in diabetes. The model is able to take 
into account the characteristics of chronic metabolic disease in diabetes, using information from long-term 
patient visits as input. The model uses the individual feature interaction layer to reweight the hidden 
information of disease information learned in the T-LSTM unit, resulting in a more accurate representation 
of disease information for the risk assessment task. We realistically evaluate our proposed model on this task 
and the experimental results show that our proposed model exhibits better performance. Compared to the 
baseline model, PT-LSTM achieves 93.49% AUROC on the dataset for this task, which is on average around 
8.75% higher than the comparison model. 

1 INTRODUCTION 

Diabetes is a chronic metabolic disease that causes a 
variety of serious health complications, including 
heart disease, kidney failure and cardiovascular 
disease (CVD), and has become one of the most 
significant disease burdens in our country and 
worldwide (Forbes, 2013). Death due to 
cardiovascular diseases as a complication of diabetes 
is one of the leading causes of death in this population 
(Grøntved, 2011). Therefore, the search for an 
effective diabetic cardiovascular disease risk 
assessment method for early prevention and treatment 
of the disease could greatly improve the survival rate 
of diabetic patients.  

Most of the existing studies have used statistically 
relevant experimental analyses such as cox 
proportional risk models, logistic regression tests or 
simple machine learning to calculate the correlation 
between risk indicators and CVD risk or disease risk 
scores. For example, Domanski M J et al (Mjd, 2020) 
used Kaplan-Meier method estimates to assess the 

association between low-density lipoprotein (LDL-C) 
and CVD risk. Most of these methods are based on 
statistical correlation of risk characteristics with 
disease, treating both the important disease context of 
diabetes and important individual characteristics such 
as patient gender as simple risk characteristics.  As a 
result, most of them lack attention to the heterogeneity 
of individual patient characteristics and ignore the 
important information carried by the disease context. 

Based on the above issues, we propose a model for 
assessing cardiovascular disease risk in diabetes based 
on individual interaction and time perception, namely 
the Personality and Time-Aware LSTM (PT-LSTM). 
PT-LSTM takes into account the chronic metabolic 
disease characteristics of diabetes and is inspired by 
the TLSTM model proposed by Baytas I M et al 
(Baytas, 2017), which is applied on top of the T-
LSTM to design an individual feature interaction layer 
that uses individual features to correct the hidden 
information of disease information obtained from 
learning Time-aware LSTM units to obtain a more 
accurate representation of disease information. 
Finally, we use a fully connected layer to assess the 
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patient's current risk of developing cardiovascular 
disease. 

In summary, the main contributions of this paper 
are as follows. 

(1) Considering the chronic metabolic disease 
characteristics of diabetes mellitus, we adopt the 
modelling idea of T-LSTM. For the diabetic 
cardiovascular disease risk assessment task, we regard 
patients' long-term medical visit data as time-series 
information as the input to the model. 

(2) An individual feature interaction network was 
designed to incorporate individual patient features into 
the model learning, resulting in a more accurate 
representation of disease information features. 

To demonstrate the effectiveness and superiority 
of our model, we evaluated and compared the model 
with traditional machine learning methods (LR, RF 
and GBDT) and deep learning methods (RNN, GRU 
and LSTM) on this task. The experimental results 
show that our proposed model performs better in real-
world tasks, outperforming the compared baseline 
models in terms of metrics such as AUROC. 

2 RELATED WORK 

Cardiovascular disease, as the leading cause of death 
worldwide, is an important public health issue (Yang, 
2020) and its associated disease risk research has 
been a hot issue over the years, attracting the attention 
of many scholars and experts at home and abroad. For 
example, Bode E D et al (Bode, 2021) studied the risk 
factors for cardiovascular disease in US firefighters 
by BMI category based on statistical methods using 
the Wald test and logistic regression models. 
D'Agostino RB Sr et al (D’Agostino Sr, 2008) 
constructed a predictive model for cardiovascular 
disease in Framingham, USA, based on the general 
population. Elley CR et al (Elley, 2010) used a cox 
proportional risk regression model to construct a New 
Zealand diabetes cohort based on patients with type 2 
diabetes, assessing multiple risk factors such as 
glycated haemoglobin associated with cardiovascular 
disease. Conroy R M et al (Conroy, 2003) used the 
Weibull proportional risk model to develop a risk 
scoring system for the clinical management of 
cardiovascular risk in European clinical practice. 

These risk prediction algorithms are typically 
developed using multivariate regression models and 
often assume that all these factors are linearly related 
to cardiovascular disease prognosis, allowing existing 
algorithms to typically exhibit modest predictive 
performance (Alaa, 2019). This has led some scholars 
to propose data-driven techniques based on machine 

learning (ML) to improve the performance of risk 
prediction. For example, Mohan S et al (Mohan, 
2019) combined random forest (RF) and linear 
methods (LM) to propose a hybrid random forest 
(HRFLM) heart disease prediction model with linear 
models for improving the accuracy of predicting 
cardiovascular disease. Dinh A et al (Dinh, 2019) 
used multiple supervised learning models to classify 
high-risk patients to obtain better performance than a 
single algorithm. 

All of these efforts have contributed to the study 
of cardiovascular disease risk in diabetes. But these 
models treat all relevant factors as the same, lack 
attention to the clinical significance of individual 
patient characteristics, and ignore important 
information carried by the disease context. Such as 
patient age, gender and the disease context of 
diabetes. Patients with diabetes are at greater risk of 
developing cardiovascular disease and the correlation 
cannot be ignored (Einarson, 2018; Strain, 2018). 
Therefore, it is important to further explore and 
exploit diabetes information for cardiovascular 
disease risk prediction tasks. 

3 PT-LSTM METHOD 

3.1 Overview 

As shown in Fig.1, the PT-LSTM model is a three-
stage architecture consisting of three components: (1) 
a feature learning module based on Time-aware 
LSTM; (2) an interaction module of individual 
characteristics based on attention; (3) a prediction 
module with Fully Connected Network (FNN) for 
disease risk assessment.  

The PT-LSTM model uses the visit records and 
visit time intervals in patients' EHR information as 
inputs to the T-LSTM module to obtain the hidden 
state ℎ and 𝑐 at the first moment. In the attention- 
based individual feature interaction module, the 
observation window size is set to K, and the sequence 
of disease hidden feature information ℎ்ି:் (ℎ்ି:் = [ℎ்ି, . . . , ℎ்ିଵ, ℎ்])  output in 
the previous stage is used as input to the module 
together with the individual patient features 𝑞. The 
module outputs the reweighted weights  β (β =[βି, . . . , βିଵ, β])  of ℎ்ି:்  based on the 
interaction of the individual patient features 𝑞 with 
the temporal hidden information ℎ்ି:். Finally, the 
disease risk information 𝑢 is obtained based on the 
corrected temporal hidden information ℎ෨ ்ି:்  and 
individual characteristics 𝑞  to predict the risk of 
disease occurrence 𝑦ො.
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Figure 1: Overall architecture of Personality and Time-aware LSTM model 

3.2 Time-Aware LSTM Module 

T-LSTM is proposed based on the architecture of 
LSTM, which merges runtime information into the 
standard LSTM architecture and is able to focus on 
the information dependencies between two adjacent 

visit records (e.g. 𝑣௧ିଵ and 𝑣௧ ) to capture the 
temporal dynamics of sequential data with temporal 
irregularities. Therefore, in order to capture long-term 
information in patient medical data, in this paper we 
use a Time-aware LSTM module to process the 
temporal medical features in patient data, as shown in 
Fig.2, which is computed as follows. 𝐶௧ିଵௌ = 𝑡𝑎𝑛ℎ(𝑊௦𝐶௧ିଵ  𝑏௦)            𝐶መ௧ିଵௌ = 𝐶௧ିଵௌ ∗ 𝑔(∆௧)                 (New short term memory) 𝐶௧ିଵ = 𝐶௧ିଵ െ 𝐶௧ିଵௌ       𝐶௧ିଵ் = 𝐶௧ିଵ  𝐶መ௧ିଵௌ                                          (New previous memory)  𝑓௧ = 𝜎(𝑊𝑣௧  𝑈ℎ௧ିଵ  𝑏)           𝑖௧ = 𝜎(𝑊𝑣௧  𝑈ℎ௧ିଵ  𝑏)                                                𝑜௧ = 𝜎(𝑊𝑣௧  𝑈ℎ௧ିଵ  𝑏)                                           (Gate cell calculation) 𝐶ሚ = 𝑡𝑎𝑛ℎ(𝑊𝑣௧  𝑈ℎ௧ିଵ  𝑏)       𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ்  𝑖௧ ∗ 𝐶ሚ                   (Current memory) ℎ௧ = 𝑜௧ ∗ 𝑡𝑎𝑛ℎ( 𝐶௧)                                              (Current hidden state)  

Here, 𝑣௧ represents the current input, ℎ௧ିଵ and ℎ௧ are the hidden states of the previous and current 
steps respectively. 𝐶௧ିଵ  and 𝐶௧  are the unit 
memory of the previous and current steps 
respectively. 𝐶௧ିଵௌ   represents the short-term 
memory, 𝐶௧ିଵ்   is the short-term memory after 
adjustment, 𝐶௧ିଵ  represents the long-term memory. 
Similarly, as with standard LSTM units, 𝐶ሚ  is the 

current candidate memory, 𝑓௧,  𝑖௧   and 𝑜௧  are the 
input, forget and output gates respectively. In 
addition, 𝑊 , 𝑈  and 𝑏  are the network parameters 
to be trained, ∆௧ is the access interval between 𝑣௧ିଵ 
and 𝑣௧, and 𝑔() is a heuristic decay function based 
on the value ∆௧, i.e. the larger the value of ∆௧, the 
smaller the effect on short-term memory.
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Figure 2: The structure of Time-aware LSTM cell. 

3.3 Attention-Based Feature 
Interaction Module 

In order to obtain more accurate information about 
the characteristics that can represent the patient's 
current risk of disease occurrence, we developed an 
attention-based individual factor interaction layer 
applied on the Time-aware LSTM cell, as shown in 
Fig.3 (a), whose specific process can be represented 
as the following three stages. 

(1) Individual Feature Representation Layer 
First, we count the discrete number of discrete 

individual features as the word table size, and 
according to the size of the number of possible values 
of discrete features, we set the word vector dimension 
size to 𝑁௦ . Subsequently, the discrete individual 
features [𝑑ଵ, . . . , 𝑑ே]  are input to the embedding 
layer, and the embedding vector [𝑒ଵ, . . . , 𝑒ே], 𝑒 ∈ℝேೞ  of individual features is obtained based on 
Word2Vec. Then, the matrix representation 𝑞 ෝ(𝑞ො ∈ℝଵൈ(ே∗ேೞ))  of individual features is obtained by 
vector stitching through the concat layer, and then 
multiplied with the parameter matrix 𝑊 (𝑊 ∈ℝ(ே∗ேೞ)ൈே)  to obtain the latest representation 𝑞(𝑞 ∈ ℝଵൈே)  of individual features by matrix 
variation. 

(2) Activation Unit 

The individual feature 𝑞  and the hidden state 
sequence ℎ்ି:் are used as the input of this layer, 
and the outer product 𝑝  of the two features is 
calculated, which is then concatenated with these two 
features to obtain the new feature representation. The 
attention weights β  are obtained by multi fully 
connected network and linear layer. Here is an 
example of the calculation process for a single ℎ 
with 𝑞 , as shown in Fig.3 (b), and the formula is 
expressed as follows. 𝑝 = 𝑞 ∗ ℎ 𝑅ଵ = 𝑅𝑒𝐿𝑢ሼ𝑊ଵ(𝑞 ⊕ 𝑝⨁ℎ)  𝑏ଵሽ 𝑅ଶ = 𝑅𝑒𝐿𝑢(𝑊ଶ𝑅ଵ  𝑏ଶ)                        (1) 𝛽 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑊ଷ𝑅ଶ  𝑏ଷ) 

(3) Feature Interaction Layer 
Based on the attention weights in the previous 

layer, the modified disease hidden information ℎ෨்ି:்  is obtained, which is input to the SUM 
Pooling layer for summation according to the 1st 
dimension, and then concatenated with the individual 
feature information to obtain the final disease 
information feature representation 𝑢. 𝑢 = 𝑞 ⨁  𝛽்ି

ୀ ℎ்ି               (2) 
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(a) Overall structure            (b) The process of the Activation Unit    

Figure 3: The construction of the Individual Factors Interactive Attention Layer. 

3.4 Disease Risk Assessment Module 

The disease risk assessment module takes the output 𝑢  from the previous stage as input and obtains a 
binary label indicating the patient's current risk of 
developing cardiovascular disease via a Fully 
Connected Network. In addition, we choose the cross-
entropy function to calculate the loss, which is 
calculated as follows. 𝑦ො = 𝜎(𝑊௬𝑢  𝑏௬) ℒ(𝑦, 𝑦ො) = െ(𝑦ොlog(y)  (1 െ 𝑦ො)𝑙𝑜𝑔(1െ 𝑦)              (3) 

Where 𝑊௬ (𝑊௬ ∈ ℝே) is a network parameter, 𝑦  represents the true value of the patient's risk of 

developing cardiovascular disease, and 𝑦ො  is the 
output value of the model's disease risk assessment 
function. 

4 EXPERIMENT 

4.1 Dataset Description 

The study was approved by the Ethics Committee of 
Ruijin Hospital and written informed consent was 
obtained from each participating patient in 
accordance with the Declaration of Helsinki. Patient 
information is shown in Table 1. 

Table 1: Details of Patient Information. 

 Statistic Value

DataSet 

# patients 33048
# visit 61646
# positive label 12680
# negative label 20368
% male 60.21%

Our dataset was selected from biochemical index 
data of diabetic patients in Shanghai Ruijin Hospital 
from August 1, 2009 to July 30, 2021, with a total of 
33,048 patients and 61,646 visit records, including 
19,899 men and 13,149 women. Combining domestic 
and international literature and clinical 
recommendations, we selected high-density 
lipoprotein, low-density lipoprotein, cholesterol, 
glycated hemoglobin, two-hour glucose and 
triglycerides as inputs in terms of medical 
characteristics. Also, for individual patient 

characteristics, we selected patient gender, age and 
history of the remaining four common complications 
of diabetes (here, diabetic foot disease, diabetic 
nephropathy, diabetic peripheral neuropathy and 
diabetic eye disease). 

4.2 Experiment Setting 

We implemented our proposed baseline and target 
models on tensorflow 2.2.0 and scikit-learn 1.0.2, and 
trained them using the Adam optimizer. Through 
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parameter tuning, we set the learning rate to 0.001, 
the dimensionality of the individual feature 
embedding vector used in the deep learning baseline 
and PT-LSTM models to 64, and the dimensionality 
of the hidden vector to 128. In addition, we randomly 
divided the dataset into ten sets, and all experimental 
results were averaged by ten cross-validations, using 
seven training sets, one validation set, and two testing 
sets each time. Finally, we compared the performance 
of all methods using four metrics: the area under the 
receiver operating characteristic (AUROC) curves, 
Accuracy, Recall and F1-Score in the test set as 
measures. 

To validate the effectiveness of our proposed 
model, we evaluated our proposed PT-LSTM model 
on different baseline models, including three 
traditional machine learning methods, LR, RF, and 
GBDT, and four deep learning methods, RNN, GRU, 
LSTM, and T-LSTM. Among them, in order to 
demonstrate the availability of individual feature 
interaction, we also implemented three versions of 
PT-LSTM and LSTM, namely PT-LSTM_Metabo, 
PT-LSTM_Add, PT-LSTM_Concat, LSTM_Metabo, 
LSTM_Add, and LSTM_Concat, respectively. 
Notably, there are many advanced clinical prediction 
models that use attentional mechanisms to extract 
long-term dependencies in patients' historical visits 
(Kamal, 2020; Lee, 2018), and they are orthogonal to 
our contribution. We focus on taking into account the 
heterogeneity of individual patient factors into the 
model, and our model PT-LSTM can be easily 
combined with attentional mechanisms. 

4.3 Comparison Methods 

To obtain the best performance of the model, all 
models used in our experiments were involved in 

parameter tuning. In this subsection, the PT-LSTM 
model is used as an example to discuss and compare 
the different effects of the number of patient medical 
visits T and the observation window size K of the 
individual-specific interaction layer on the model 
performance. 

4.3.1 Comparison of Parameter Selection 

(1) Parameter Selection of T 
Diabetic disease is a chronic metabolic disease, and 
to accurately assess the risk of cardiovascular disease 
in diabetic patients, it is important to effectively 
follow up and learn the long-term health status of 
patients. Setting K = 1, an experimental comparison 
of our proposed PT-LSTM model regarding the 
number of patient medical visits T was conducted.  

As shown in Fig.4, the experimental results show 
that each assessment index of the model improves as 
T increases. Thus, we believe that tracking and 
learning information about patients' long-term visits 
can effectively improve the accuracy of patients' 
cardiovascular disease risk assessment. We consider 
that this is brought about by diabetes itself as a 
chronic metabolic disease. Therefore, we should 
collect as much information on patient visits as the 
amount of data allows as a way to improve the 
accuracy of the disease risk assessment task. In 
addition, we observed that the model metrics reached 
their best and started to stabilize when T was greater 
than equal to 5. In order to reduce the impact of too 
small a data volume on other model comparison 
experiments later, we selected T of 5 as the parameter 
for our later experiments. 

 
Figure 4: Parameter selection of T. 
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(2) Parameter Selection of K 
Here, we set T=5 and discuss the influence and role 
of the parameter K in the individual feature 
interaction module on the use of the model. The 
experimental results are shown in Fig.5. When K=2, 
the model achieves the best performance, and when it 
is larger than 2, the model performance decreases, 
which is due to the long-term dependency of 
information that has been modeled and learned in the 

PT-LSTM. When T = 5, the observation window K is 
set too large, e.g. K is greater than 2, which can lead 
to the model focusing excessively on the repetitive 
and redundant part of the feature information, thus 
reducing the performance of the model. This also 
confirms the advantage of our LSTM unit in learning 
long-term dependence of information from a certain 
perspective. 

 
Figure 5: Parameter selection of K. 

4.3.2 Comparison of Individual Feature 
Fusion Methods 

From the experimental results in Table 2, we can find 
that the traditional LSTM model and our proposed 
model can also have relatively good results with only 
metabolic metrics, and their AUROC metrics can 
reach 85.87% and 88.66%, respectively. 
Subsequently, we added individual feature learning to 
the models using the traditional feature fusion 
methods concat and add, and both models showed 
significant improvements in various metrics such as 
AUROC, accuracy and F1-Score. This reflects the 
importance of individual feature learning in disease 
risk tasks. When we employ the interactive fusion 

method of individual features based on attention 
mechanism on LSTM and T-LSTM (i.e., LSTM_At 
and PT-LSTM), the accuracy and other evaluation 
metrics are significantly better than other models and 
fusion methods, which can reach 91.02% and 
94.09%, respectively. 

The experimental results demonstrate the 
effectiveness of our proposed individual feature 
interaction network and support the superiority of our 
model. In addition, comparing the LSTM and PT-
LSTM models and their respective improved models, 
we can also find that effectively focusing on the 
medical information carried by the irregularity of visit 
time in medical data is of great significance and value 
for our assessment of disease risk. 

Table 2: Comparison of feature fusion methods. 

Modela Feature Fusionb Evaluation Index 
Metabo Indifac Interfus Accuracy F1-Score AUROC Recall 

LSTM_Metabo √   0.8747 0.8359 0.8587 0.7258 
LSTM_Add √ √ 0.9007 0.8793 0.8923 0.8226

LSTM_Concat √ √ 0.8913 0.8678 0.8827 0.8118
LSTM_At √ √ √ 0.9102 0.8889 0.9002 0.8172

PT-LSTM_Metabo √   0.8936 0.8725 0.8866 0.8280 
PT-LSTM_Add √ √ 0.9291 0.9128 0.9199 0.8441

PT-LSTM_Concat √ √ 0.9314 0.9169 0.9238 0.8602
PT-LSTM √ √ √ 0.9409 0.9291 0.9345  0.8817 
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a “Metabo” here means that the model only uses 
patient visit data as input data. “Concat” and “Add” 
represent the fusion mode of medical characteristic 
information and individual factors. 
b Here, we defined the patient visit data as “Metabo”, 
individual factor as “Indifac”, and individual 
characteristic interaction as “Interfus”. 

4.3.3 Comparison of Different Producttion 
Models 

To further validate the superiority of our proposed 
model, we evaluated our proposed PT-LSTM model 
on different baseline models. The experimental 
results are shown in Table 3, where the disease risk 

assessment task almost always performs worse than 
the deep learning model on machine learning. We 
consider that it is because the machine learning model 
loses the temporal information of medical visits and 
the information of individual patient characteristics. 
The T-LSTM outperforms the LSTM model, 
demonstrating the importance of irregular visit timing 
information in patient medical data in our diabetic 
cardiovascular disease risk assessment task. It should 
be noted that the individual feature fusion methods 
used here for both the LSTM and T-LSTM models 
are the ones they performed better in the previous 
section, and in this case, our proposed model PT-
LSTM also shows significant advantages. 

Table 3: Comparison of different models. 

 Model Accuracy F1-Score Recall AUROC 

Baseline 

LR 
RF 

GBDT 

0.7626 
0.7857 
0.7899

0.7483 
0.7839 
0.7863

0.721 
0.794 
0.7897

0.7617 
0.7859 
0.7899 

RNN 0.8960 0.8736 0.8172 0.8875 
GRU 0.8960 0.8771 0.8441 0.8904 

LSTM 
T-LSTM 

0.9007 
0.9214

0.8793 
0.9069

0.8226 
0.8602

0.8923 
0.9138 

Proposed PT-LSTM 0.9409 0.9294 0.8852 0.9349 

In summary, we have experimentally analyzed 
and compared each important module of the model 
and its overall performance. In addition, we compared 
the parameter selection of the training model and 
selected the optimal hyper-parameters. The 
experimental results of the comparison with the 
baseline model provide evidence for the effectiveness 
and superiority of our proposed model. 

5 CONCLUSION 

In this study, we propose a new deep learning model 
(PT-LSTM), for the task of assessing the risk of 
developing cardiovascular complications in the 
context of diabetes. Our can model is divided into 
three phases. In the first stage, patient visit records 
and visit intervals are used as input, and a time-aware 
LSTM module is employed to learn disease 
information carried by temporal data from patient 
medical visits. In the second stage, individual patient 
factors are interacted with the disease information 
features obtained in the previous stage to obtain a 
more comprehensive and accurate representation of 
disease risk features. In the third stage, a fully 
connected layer is used for our final disease risk 
assessment. The experimental results show that our 

model, based on the design of individual feature 
interaction fusion, can learn patient information better 
and make it consistently better than the base model. 
Our model also shows better performance in this task 
compared to other models.  

Our proposed model effectively addresses the 
problem of personalised assisted diagnosis in the 
diabetic cardiovascular disease risk assessment task. 
In clinical practice, we hope that our model can help 
physicians identify patients at greater risk of diabetic 
cardiovascular disease in order to prevent or delay the 
onset of adverse outcomes. In the future, our model 
needs to be further validated on a larger scale for its 
adaptability and effectiveness in cross-hospital and 
cross-disease problems to better advance the 
application of Artificial Intelligence models in the 
field of diabetic complication risk prediction. 
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