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Abstract:  Sleep is an important part of maintaining human health. With the high incidence of sleep disorders, sleep 
has attracted much attention. Sleep staging is an effective means to study sleep structure. This paper studies 
the effect of different feature dimensionality reduction algorithms on the accuracy of sleep analysis, including 
the influence of principal component analysis, factor analysis and autoencoders on common classifiers,  
s u c h  a s  random forest and support vector machine for automated sleep stage detection. The combination 
with the highest accuracy was used to verify the sleep EEG data obtained in our laboratory. The results show 
that, using autoencoders to reduce dimension can keep the performance of the model, while using principal 
component analysis and factor analysis can improve the accuracy of the model in most cases. 

1 INTRODUCTION 

According to the WHO survey, about 30% people 
worldwide suffer from sleep disorders. The automatic 
sleep stage classification algorithm helps to improve 
the detection efficiency and reduce the detection time. 

A large number of studies have proposed methods 
for automatic sleep staging (Chriskos, 2018; 
Aboalayon, 2015; Sanders, 2014). Features are 
usually used as the input of classical classification 
algorithms, such as support vector machine (SVM) 
(Zhang, 2014), k- nearest neighbor (Malaekah, 2014), 
RF etc. In recent years, neural networks have also 
been widely used in automatic classification of sleep 
stages. Different architectures were created, such as 
convolution (Tsinalis, 2016), and the deep neural 
network architecture (Stanislas Chambon, 2018). 
Different methods are proposed to reduce the content 
of large data. Fan et al. (Fan, 2018) used multi-scale 
entropy combined with principal component analysis 
(PCA) to extract features and automatically detect 
sleep stages in MIT-BIH database. The final accuracy 
rate reached 87.9%. Autoencoders (AE) can 
compress the input data in different degrees (Najdi, 
2017). 

In this paper, the influence of different 
dimensionality reduction methods on different types 

of classifier models will be evaluated. By using less 
computational load, the memory consumption can be 
reduced, and more modal information can be fused 
for sleep staging in the future, which increases the 
variability of classification model and expands its 
applicability. 

2 MATERIALS AND METHODS 

As shown in Figure 1, after feature extraction and 
dimension reduction technology are applied, the 
obtained feature data is used to train the classifiers. 
Then the obtain training classification model is tested. 
In the case of cross-validation, the performance of 
each model is evaluated. The best performance model 
is used to identify the existing sleep EEG data in our 
laboratory by stages. 
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Figure 1: Overview of the method of obtaining the automatic sleep stage model from polysomnographic recordings. 

●Data set description: The sleep EEG data in our 
laboratory includes the sleep EEG data of 41 male 
students in college for 2 nights each, of which 20 
sleep on ordinary mattresses and 21 sleep on sleeping 
mattresses with magnets. The sampling frequency is 
100hz and the acquisition channel is Pz-Oz. 

The distribution of sleep stages in the whole sleep 
is unequal. To provide the classifier with the same 
amount of data from each sleep stage category, we 

preprocessed the category distribution in the dataset. 
We selected the smallest available category and 
randomly sampled other categories, so that all sleep 
stages have the same performance in the input seen 
by the classifier. 

●Extracted features: Table 1 lists the general 
situation of all extracted features. Each sleep stage is 
represented by different EEG features. 

Table 1: The general situation of all extracted features. 

id Feature Description id Feature Description 

1 Spectral power spectral power: absolute 12 Amplitude env 
mean envelope: mean value 

2 Spectral relative 
power 

spectral power: relative 
(normalised to total spectral 
power) 

13 Amplitude env 
SD 

envelope: standard 
deviation 

3 Spectral flatness spectral entropy: Wiener 
(measure of spectral flatness) 14 rEEG mean range EEG: mean 

4 Spectral diff difference between consecutive 
short-time spectral estimates 15 rEEG median range EEG: median 

5 Spectral entropy spectral entropy: Shannon 16 rEEG lower 
margin

range EEG: lower margin 
(5th percentile) 

6 Spectral edge 
frequency 

spectral edge frequency: 95% of 
spectral power contained 
between 0.5 and fc Hz (cut-off 
frequency) 

17 rEEG upper 
margin 

range EEG: upper margin 
(95th percentile) 

7 FD fractal dimension 18 rEEG width range EEG: upper margin - 
lower margin 

8 Amplitude total 
power time-domain signal: total power 19 rEEG SD range EEG: standard 

deviation 

9 Amplitude SD time-domain signal: standard 
deviation 20 rEEG CV range EEG: coefficient of 

variation 

10 Amplitude skew time-domain signal: skewness 21 rEEG asymmetry range EEG: measure of 
skew about median 

11 Amplitude kurtosis time-domain signal: kurtosis

●Dimensionality reduction and Classification: 
The purpose of feature dimension reduction is to 
reduce the amount of computation and memory 
requirements, at the same time try to improve the 
performance through different feature expressions. 
This paper reduced the total number of features to 10, 
20 and 40 components. Three dimensionality 

reduction methods are used, including PCA, FA and 
AE (The implementation of AE is shown in Figure 2. 
The model was fitted with 16 batch size to avoid over-
fitting, and was carried out within 100 epochs.). 
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Figure 2: Dimensionality reduction with autoencoders. 

We choose two classifiers to evaluate: One is RF 
(Twenty decision trees were used.). The other is SVM. 

Each generated model was evaluated by 10 times 
cross validation. The average accuracy and F1ୱୡ୭୰ୣ 
of all sleep stage categories were used to compare the 
performance. Precision ൌ ୘୔୘୔ା୊୔          (1) 

Recall ൌ ୘୔୘୔ା୊୒              (2) F1ୱୡ୭୰ୣ ൌ 2 ∗ ୖୣୡୟ୪୪∗୔୰ୣୡ୧ୱ୧୭୬ୖୣୡୟ୪୪ା୔୰ୣୡ୧ୱ୧୭୬        (3) 

where TP – true positive, TN – true negative, FP – 
false positive, FN – false negative. 

3 RESULTS 

Table 2 shows the results. For the automated sleep 
stage scoring using SVM and RF, after using FA, 20 
components are obtained by feature decomposition, 
and then by using RF the classification accuracy 
increased to 88%. 

Table 2: The change results of different dimension reduction algorithms (PCA, FA, AE). 

Classification Dimensionality NO. Precision Recall F1-
score Classification Dimensionality NO. Precision Recall F1-

score

SVM 

PCA 
10 0.75 0.76 0.75 

RF 

PCA 
10 0.82 0.81 0.81 

20 0.75 0.76 0.75 20 0.83 0.83 0.83 
40 0.75 0.76 0.75 40 0.88 0.88 0.88 

FA 
10 0.81 0.82 0.81 

FA 
10 0.79 0.80 0.80 

20 0.86 0.67 0.70 20 0.88 0.88 0.88 
40 0.86 0.67 0.70 40 0.87 0.87 0.87 

AE 
10 0.76 0.77 0.81 

AE 
10 0.80 0.80 0.80 

20 0.83 0.68 0.70 20 0.86 0.87 0.88 
40 0.81 0.75 0.70 40 0.87 0.88 0.87 

20 components were obtained by FA feature 
decomposition, and the experimental laboratory data 
were identified by stages using RF classification 

model. The comparison between the stage results and 
the original stage results is as figure 3. 

 
Figure 3: The comparison between the stage results and the original stage results. 

4 DISCUSSION 

In this paper, the sleep stage was realized according 
to the steps of feature extraction, feature selection and 

classification recognition of single lead EEG (Pz-
Oz). In the sleep stage recognition experiment, a 
relatively ideal experimental result has been 
obtained. 
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In this paper, three levels of feature quantities are 
used respectively: 10, 20, 40; Three dimensionality 
reduction methods: PCA, FA and AE; Two 
classification methods: SVM and RF. By 
comparison, it is found that the best classification 
results are obtained when using the RF classifier in 
combination with PCA (40 features) and FA (20 

features). Among them, FA uses fewer features and 
occupies less computing space. 

The best model in this paper is used to verify and 
analyze the EEG data in our laboratory. The 
agreement between the results and the original results 
reaches 89.26%, among which N1 is 80.00%, N2 is 
88.41%, N3 is 91.34% and REM is 97.27%. Among 
them, N1 has the greatest difference in staging and 

REM has the highest coincidence. 

5 CONCLUSION 

In this paper, several dimensionality reduction 
techniques of EEG data set for automatic detection of 
sleep stage are analyzed. Among them, FA uses fewer 
features and occupies less computing space. 
Dimension reduction technology helps to reshape the 
input data, thus reducing the computing power and 
improving the performance for some transformations. 
The analysis of sleep EEG data in our laboratory 
supports that static magnetic field can improve sleep 
quality, whether it is sleep time or sleep structure. 
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