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Abstract: Incessant unhealthy routines are believed to induce chronic diseases. However, current modelling can barely 
estimate diabetes progression by analyzing daily behaviours. In this study, an input-output hidden markov 
model (iohmm) was constructed to forecast the progression of diabetes mellitus based on ordinary routines and 
to reveal the association among illness indicators (e.g., blood glucose levels), living habits and medical 
interventions. The analysis of diabetes datasets from the ucirvine machine learning repository revealed that the 
high amount of food intake, insulin overdose and unideal health status could increase the risk of severe 
exacerbation in diabetes patients. It was also found that the variation of blood glucose increased as the patients’ 
health conditions worsened. Besides, among all the factors tested in this study, the patients' initial health 
conditions contributed the most to blood sugar fluctuation, while minor contributions from meal and insulin 
were still effective enough to be regarded as significant factors. The proposed iohmm model enables the 
inference of patient’s health conditions by analyzing their living habits. Most importantly, this study 
successfully developed a novel iohmm model to estimate diabetes progression, which can be generalized and 
applied to other chronic diseases. 

1 INTRODUCTION 

As a serious public health concern, type 2 diabetes 
mellitus has led to over one million deaths in 2017 
worldwide, making it the ninth leading cause of death 
(Khan et al. 2020). A growing body of 
epidemiological evidence indicates that there is an 
urgent need to develop an effective method for 
treating and preventing this disease. A study 
conducted by Moien Khan and his colleagues 
suggests that the prevalence of type 2 diabetes can 
increase from 6059 cases per 100,000 in 2017 to 7862 
cases per 100,000 by 2040 (Khan et al. 2020). Their 
study also points to a shift in patient age, which 
results in higher incidence rates in younger age 
groups. Such increasing trends emphasize the 
necessity of monitoring disease progression to 
prevent this chronic disease (Divers et al. 2020). One 
possibly effective method to treat and prevent type 2 
diabetes is by estimating the disease progression, 
which enables potential type 2 diabetes patients to 
become aware of their blood glucose levels and take 
corresponding precautions against this disease. To 
make this form of surveillance and prevention, a 
statistical model can be developed based on the daily 

food consumption and blood samples collected from 
screening tests. The existing models, such as Hidden 
Markov model (HMM) and linear regression model, 
can be used to predict early diabetes progression, but 
their outcomes may not accurately reflect 
intervariable correlations under some circumstances. 
Since the HMM is not able to assess the effect of 
inputs, it fails to represent the correct causal relation 
between inputs and outputs. Thus, in this study, an 
input and output hidden Markov model (IOHMM) 
model was constructed, and an Expectation-
Maximization (EM) algorithm was used to remedy 
the problems in current models. 

Different from HMM and linear regression 
model, IOHMM is a dynamic system designed for 
forward and backward propagation in time to target a 
discrete state space (Grover et al. 2013). In this study, 
the IOHMM model provides a scalable framework to 
represent the complex patterns of diabetes 
progression. As a hidden variable in our model, the 
patient’s health condition is estimated through 
observable information. More importantly, the 
proposed model can track and estimate illness 
conditions temporally for each individual patient. 
Apart from those advantages, an EM algorithm that 
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has great scalability can be applied to optimize our 
model. This algorithm helps in finding optimal 
parameters through iterative computation (Dempster 
and Rubin 1977). Our study demonstrates the 
potential application of IOHMM for estimating 
diabetes progression. Depending upon the personal 
results obtained from our model, a specific targeted 
therapy can be provided to target patient’s needs. 

2 METHODS 

2.1 Data Description 

The dataset used in this study is a diabetic patient 
record published by the University of California, 
Irvine’s Machine Learning Repository. The original 
dataset was collected in 1994 by a PhD student, 
Michael Kahn, from Washington University. This 
dataset is composed of quantitative records (e.g., 
insulin doses, insulin types, and blood glucose levels 
and categorical information (e.g., the size of meal 
ingestion, regular physical activity and other living 
routines) lasting at least three months for each of the 
70 diabetes patients.  

Since not all the variables were regularly 
recorded, only three well-recorded variables were 
acquired from this dataset: blood glucose level (g), 
meal intake size (m), and units of insulin injected (i). 
Among them, insulin injection (i) and food intake (m) 
are sets of numerical data that have units of 
treatments received by each patient. Blood glucose 
level is a quantitative variable as well, which reflects 
the patients’ health conditions. 

2.2 Model Development 

In this study, the association among variables was 
revealed and the reliable projections were realized by 
constructing the input and output HMM. Not only the 
observed variables (e.g., food intake) were included 
in this model, but also the hidden states such as 
patients' health conditions (h) over time. From degree 
one to eight, the variable h quantifies patients’ health 
conditions from the healthiest to the worst. This latent 
variable is structured to be influenced by its previous 
day health conditions, food intake, and insulin 
injection dose on the same day (Fig. 1). Such an 
association could generate outcomes to indicate the 
daily changes in health conditions. As shown in the 
heatmap (Fig. 2), the probabilities of patients having 
various physical conditions were expected to be 
different. Additional treatments were also included to 

evaluate the impact of other factors on transition 
probabilities in actual model running. 

As opposed to hidden factor h, blood glucose 
levels are measurable and can be used to reflect the 
changes in regular physical activity and patient’s 
daily habits (Fig. 1). By giving treatments, an 
emission relationship was expected to be observed. 
For example, when increasing the amount of food 
ingestion, the blood sugar levels could be higher with 
a broader range compared to the control group (Fig. 
3). For patients receiving excessive amount of 
insulin, they may develop a higher chance of having 
lower and unstable blood glucose levels (Fig. 3). 
Apart from the assumptions of intervariable 
association, model parameter development is another 
indispensable step. 

There are three parameters that contributed to our 
model λ (π, φ, ψ): the prior, π, transition probability, 
φ, and emission probability, ψ. The prior parameter 
(π) which represents the health condition of our 
samples on day 0 is an estimated value ((Equation 
(1)). The transition parameter φ, as denoted by 
Equation (2), is used to estimate the next health 
condition state given previous disease progression, 
current insulin injection doses, and current meal size. 
Compared with the transition parameter, the emission 
parameter, which estimates the probability of having 
a certain blood glucose level on specific health 
conditions, is constituted by pre-prandial and 
postprandial emission parameters (Equations (3) and 
(4)). The pre-prandial emission calculates the 
probability of having certain pre-prandial glucose 
levels based on the patient’s health conditions 
(Equation (3)). In Equation (4), the postprandial 
glucose level is estimated based on the performance 
of patient’s health conditions, pre-prandial blood 
glucose, insulin dose and food intake. Coefficients a, 
b, c, d and μ were introduced to adjust and quantify 
the impact of additional variables. In this study, we 
assume that both transition and emission parameters 
follow Gaussian distribution. However, further 
studies are needed when the parameters are limited 
for other specific distribution patterns. 𝜋ሺ𝑘ሻ  =  𝑃ሺℎ଴  =  𝑘ሻ                     (1) 𝜑൫ℎ௧ାଵหℎ௧ ,  𝑖௝, ௧ ,  𝑚௝, ௧൯ =   1ට2𝜋𝜎௛೟ଶ exp ൭− ൫ℎ௧ାଵ  +  𝑑௝, ௛೟  ⋅  𝑖௝, ௧   −  𝑒௝, ௛೟  ⋅  𝑚௝, ௧  −  𝜇௛೟൯ଶ2𝜎௛೟ଶ ൱ 

(2) 𝜑൫𝑔௝, ௧, ௣௥௘ห ℎ௧൯  =   1ට2𝜋𝜎௝, ௛೟, ௣௥௘ ଶ exp ൭− ൫𝑔௝, ௧, ௣௥௘  −  𝜇௛೟, ௣௥௘൯ଶ2𝜎௝, ௛೟, ௣௥௘ଶ ൱ 

(3) 
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𝜓൫𝑔௝,௧,௣௢௦௧หℎ௧, 𝑔௝,௧,௣௥௘, 𝑖௝,௧, 𝑚௝,௧൯ = 1ට2𝜋𝜎௝,௛,௣௥௘ଶ exp ൭− ൫𝑔௝,௧,௣௢௦௧ + 𝑎௝,௛೟ ⋅ 𝑖௝,௧ − 𝑏௝,௛೟ ⋅ 𝑚௝,௧ − 𝑐௝,௛೟ ⋅ 𝑔௝,௧,௣௥௘ − 𝜇௛೟,௣௢௦௧൯ଶ2𝜎௝,௛೟,௣௥௘ଶ ൱ 

(4) 

The likelihood of our model, which indicates the 
probability of having certain health conditions by 
fitting the given model parameters (e.g., insulin 
injection and food intake) at day t, is equal to the 

product of the prior, sum of the transition 
probabilities and sum of the emission probabilities at 
different days (Equation (5)). 

𝑝ሺℎ, 𝑔|𝑖, 𝑚, 𝜃ሻ = 𝜋ሺℎ଴ሻ ∏ 𝜑൫ℎ௧ାଵหℎ௧, 𝑖௝,௧, 𝑚௝,௧൯ ∏ 𝜓൫𝑔௝,௧,௣௥௘หℎ௧൯𝜓൫𝑔௝,௧,௣௢௦௧หℎ௧, 𝑔௝,௧,௣௥௘, 𝑖௝,௧, 𝑚௝,௧൯௧்ୀଵ௧்ୀଵ                      (5) 

 
Figure 1: IOHMM demonstrating the relationship between observational measurements (denoted by black circles) and hidden 
information (denoted by white circles). The arrows represent the associations among variables by pointing at outcome 
variables from causal variables. This model establishes the relationships among health conditions (h), blood glucose levels 
(g), meal intake sizes (m), and insulin injection doses (i). For meal intake size and insulin injection dose, daily (t) 
measurements were conducted after breakfast (B), lunch (L), and dinner (D). 

 
Figure 2: The expected transition probability distribution. The color shade in this heat map is used to visualize the probabilities 
of having certain health conditions in the next stage. As the white arrow points at, for patients with lower previous day heath 
conditions (healthier), they are anticipated to have higher chances to keep healthy conditions on the subsequent days. In 
contrast, as indicated by the red arrow, patients with unideal previous day conditions are expected to have worse physical 
circumstances over time. 
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Figure 3: The expected emission outcomes. The probabilities of having different blood glucose levels when receiving various 
treatments are expected to be observed. 

2.3 Model Optimization 

In order to optimize model parameters, the EM 
algorithm was adopted to alternatively estimate the 
posterior probability of latent states and update the 
parameters in our model. Estimation was made by 
EM algorithm based on the incomplete datasets 
through iterative computation to maximize the 
likelihood in two steps: expectation and 
maximization steps. In our model, the formula of the 
EM algorithm can be denoted by Equation (6). 
(Dempster et al.). 𝜃௧ାଵ =     ఏୟ୰୥ ௠௔௫   න 𝑃ሺℎ|𝑔, 𝑖, 𝑚, 𝜃ሻ log൫𝑃ሺ𝑔, 𝑖, 𝑚, ℎ|𝜃ሻ൯ 𝑑ℎ 

   

(6) 
Expectation steps: In this step, based on the 

current estimation of parameters, an expectation of 
the log-likelihood function was formed, as shown in 
Equation (7). During calculation, the random variable 
h follows distributions in our posterior probability 
(qt,k and qt,k,k’) which can be expressed as 𝑞௧,௞ =𝑃ሺℎ௧ = 𝑘|𝑖, 𝑚ሻ  and 𝑞௧,௞,௞ᇲ =𝑃ሺℎ௧ = 𝑘, ℎ௧ାଵ = 𝑘ᇱ|𝑖, 𝑚ሻ . Since the prior ( 𝜋 ) 
transition probability ሺ𝜑ሻ ; and emission 

probabilityሺ𝜓ሻ did not share model parameters, they 
were estimated separately. New coefficients (a, b, c, 
d and e) were introduced in the expectations of post-
emission (Equation (10)) and transition probabilities 
(Equation (11)). The expectations for pre-emission 
and prior are denoted by Equation (9) and Equation 
(8), repectivly. 𝔼ሾlog 𝑃 ሺℎ, 𝑔|𝑖, 𝑚, 𝜃ሻሿ= 𝔼 ൥log 𝜋 ሺℎଵሻ + ෍ 𝑙𝑜𝑔𝜓൫𝑔௝,௧,௣௥௘หℎ௧൯்

௧ୀଵ+ 𝑙𝑜𝑔𝜓൫𝑔௝,௧,௣௢௦௧หℎ௧, 𝑔௝,௧,௣௥௘, 𝑖௝,௧, 𝑚௝,௧൯+ ෍ 𝜙ሺℎ௧ାଵ|ℎ௧, 𝑖, 𝑚ሻ்
௧ୀଶ ൩ 

(7) 𝔼 log൫𝜋ሺℎ଴ሻ൯                 (8) 𝔼 ෍ −்
௧ୀଵ 𝑙𝑜𝑔𝜎௛೟,௝,௣௥௘ − 12 log 2 𝜋

− ൫𝑔௝,௧,௣௥௘ − 𝜇௛೟,௣௥௘൯ଶ2𝜎௛೟,௝,௣௥௘ଶ  

(9) 𝔼 ෍ −்
௧ୀଵ 𝑙𝑜𝑔𝜎௛೟,௝,௣௢௦௧ − 12 log 2 𝜋 − ൫𝑔௝,௧,௣௢௦௧ − 𝑎௝,௛೟ ⋅ 𝑖௝,௧ − 𝑏௝,௛೟ ⋅ 𝑚௝,௧ − 𝑐௝,௛೟ ⋅ 𝑔௝,௧,௣௥௘ − 𝜇௛೟,௣௢௦௧൯ଶ2𝜎௛೟,௝,௣௢௦௧ଶ  

  (10) 𝔼 ෍ −்
௧ୀଵ 𝑙𝑜𝑔𝜎௛೟ − 12 log 2 𝜋

− ൫ℎ௧ାଵ − 𝜇௛೟ + ∑ 𝑑௝,௛೟ ௝ ⋅ 𝑖௝,௧ − 𝑒௝,௛೟ ⋅ 𝑚௝,௧൯ଶ2𝜎௛೟ଶ  

(11) 
Maximization step: The expectation from E-step 

was maximized to compute parameters, as shown in 

Equation (12). In prior and pre-emission 
probabilities, the maximized expressions are denoted 
by Equations (13), (14) and (15). Yet, different from 
previous derivation calculation, a least-square 
method was applied to maximize parameters in the 
post-emission and transition expressions. In the post-
emission expectation (Equation (10)) and transition 
expectation (Equation (11)), the coefficients rely on 
each other and thus should be calculated 
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simultaneously. For example, when maximizing 
expression (Equation (11)), the optimized value of 
coefficient d depends on the value of e and vice versa. 
By using the least-square method, which optimizes 
the coefficients d and e for each health condition at 
the same time, the maximization of transition 
probability can be calculated. 𝜃 =     ఏୟ୰୥ ௠௔௫ 𝔼ሾlog 𝑃 ሺℎ, 𝑔|𝑖, 𝑚, 𝜃ሻሿ 

 (12) 

     ఏୟ୰୥ ௠௔௫𝔼 ቀଵగ + ଵ௛బቁ           (13) 𝜇 = ∑ 𝔼൫𝑔௝,௧,௣௥௘൯௧்ୀଵ            (14) 𝜎ଶ = ∑ 𝔼൫𝑔௝,௧,௣௥௘ − 𝜇௛೟,௣௥௘൯ଶ௧்ୀଵ       (15) 

2.4 Model Initialization 

In the model, learnable parameters were initialized 
either through predetermined values or randomly 
chosen. The variances of blood glucose levels before 
and after meals, 𝜎௝,௧,௣௥௘ଶ  and 𝜎௝,௧,௣௢௦௧ଶ , were 
initialized to 100. The mean pre-prandial blood 
glucose levels for different health conditions were 
initialized to a range of 100-250 with uniform 
spacing, while the mean postprandial blood glucose 
levels were initialized to a range of 100-400 with 
uniform spacing. The transition variance was fixed to 
K-1, and transition means were initialized to zero, for 
all health conditions. All coefficients for food intake, 
insulin injection doses, and preprandial blood glucose 
levels were randomly sampled from the exponential 
distribution with a mean value of 0.01. The “OR” was 
initialized to the categorical distribution with uniform 
probabilities. 

2.5 Selection of the Number of Hidden 
States  

To select the optimal hyperparameter (e.g., the 
number of possible health conditions, denoted by K), 
the IOHMM was trained with different values of K 
from 4 to 13. For each value of K, five different 
random initialization values were attempted and the 
one with highest likelihood was chosen. Then, the 
elbow in the plot of log-likelihood vs. K was 
manually identified, and 8 was selected as the optimal 
value of K. 
 
 
 
 

3 RESULTS 

Diabetes mellitus, as one of the most common 
chronic diseases worldwide, still cannot be cured by 
modern medicine. Due to the high complexity and 
prevalence of diabetes, an IOHMM model was 
constructed as a preemptive strike to prevent the 
progression of this disease. The diabetes patients' 
health conditions were estimated based on their daily 
routines, and it was found that several factors, such 
as patient’s original health stages, food intake and 
insulin injection doses, could have an impact on 
diabetes progression. Besides, compared with 
treatment received and meal size, fitness stages had a 
significant influence on blood glucose levels. 

Our results showed the varying trends in the 
transition probabilities of patients with different 
health conditions, patients receiving different 
amounts of insulin injection and patients who have 
irregular meals (Fig. 4) This indicates that diabetes 
progression is not only associated with patients' 
original health stages, but also their dietary intake and 
medication habits. For example, under all kinds of 
treatments, the healthiest patients are most likely to 
have level 3 fitness stage but lowest probability to 
improve diabetes progression (h=8) at the next stage 
(Fig. 4). The most exacerbating patients (h=8), 
however, have the highest probability to stay in 
unideal situations (h=6), but lowest probability to 
recover fully into a healthy condition under the three 
different treatments (Fig. 4). This implies that 
diabetes patients with unhealthy conditions are more 
likely to deteriorate compared to those with healthy 
conditions. Besides, different treatments also have an 
impact on samples’ transition probabilities. 
Compared to standard conditions, except for samples 
having h=1, the peaks of patients receiving more-
than-usual meals shift to the right (Fig 4), suggesting 
that excessive food intake may exacerbate diabetes 
progression. In addition, the green bar peaks 
distribute closer to the right-side edge (Fig. 4). This 
suggests that compared with robust samples, weaker 
patients are more vulnerable to excess food intake. As 
for insulin overdose, its possibility peaks are 
distributed right to the blue peaks from h=1 to h=5, 
which indicates that diabetes patients with healthy 
conditions appear to have a higher risk of becoming 
seriously ill if they inject excess insulin (Fig. 4). 
However, insulin overdose does not have significant 
impact on transforming sickness conditions for 
unhealthy samples having h=6/7/8 (Fig. 4). 
Moreover, the volume of injected drugs, size of meals 
and primary physical premises not only cause 
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variations in future fitness but also blood glucose 
levels. 

Based on the modeling outcomes, the fluctuation 
of blood glucose is varied by insulin dose, meal 
intake and health conditions at different degrees. The 
patients’ physical conditions contribute the most to 
postprandial glucose level on average (Fig. 5). In 
contrast, preprandial glycemic index, insulin dose 
and meal intake have minor short-term effects but 
significant long-term effect on blood sugar levels 
(Fig. 5). However, such minor impact of insulin and 
food consumption is still important because it enables 
patients to control their blood glucose levels over 
time. These proportional results also affirm that 
diabetes is a chronic disease caused by long-term 
unhealthy habitats, since abnormal blood sugar does 
not response to temporary energy intake. As the main 
contributor of glucose level shifting, health 
conditions are closely associated with blood sugar 
patterns. The model reveals that higher sickness 
levels accentuate the irregularity of blood glucose 
level by having more unusual mean and broader 
range. For example, the most sickness patients (h=8) 

have theoretical blood glucose levels with the widest 
range and the most extremity of abnormal mean 
values (Fig. 3). In contrast, for patients with healthier 
conditions (h=1/2/3), their mean blood glucose levels 
are identified as normal values and glucose ranges are 
narrower (Fig. 6). These results demonstrate that 
patients with ideal physical conditions tend to have 
stable and normal blood glucose levels. 

4 DISCUSSION 

This study reveals diabetes progresses in transition 
and emission aspects. It is found that insulin 
injection, food intake and basic fitness stages work 
together to improve patient’s health conditions at the 
next stage. For emission outcomes, blood glucose 
level is an important reflection of one’s health status, 
and its patterns are associated with different degrees 
of sickness. It is also strongly responding to health 
conditions compared to other factors (e.g., insulin 
injection and meal intake). 

 
Figure 4: The transition probability of patients with various health conditions under different treatments. Each row on the y-
axis stands for a group of patients in different health conditions. The x-axis represents health conditions on the next states, 
while the y-axis shows the probability of patients having different health stages transiting to the next health stage. From top 
to the bottom row, the patient’s health conditions get worse. In a dataset containing each patient’s mean insulin injection dose 
and average meal intake, the standard treatment (blue) accepts 50h percentile insulin and meal intake levels, and the excess 
insulin treatment (yellow) uses 50th percentile meal intake and 75th percentile insulin dosage. 
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Figure 5: The contributions of insulin dose, meal intake, and health condition factors to postprandial glucose levels. The 
sample with the most complete observations of relevant variables was chosen as the data source for this model. For different 
factors such as insulin injection, meal intake, and health conditions, their impacts on the patient’s postprandial blood glucose 
levels over time were calculated. 

 
Figure 6: The emission possibility of patients with different health conditions. By applying the average meal intake, insulin 
injection and pre-prandial glucose level, the theoretical blood glucose level probability distributions of patients with diverse 
fitness conditions were modeled. 

5 CONCLUSION 

In this study, an IOHMM model was successfully 
developed to estimate diabetes progression. The 
results indicate that insulin injection, meal intake and 
previous health conditions have varying degrees of 

impact on transition and emission probabilities. In 
addition, certain correlation patterns are observed 
between blood glucose level and health conditions. 
More importantly, such an algorithm system can be 
applied on each individual patient to monitor the 
progression of diabetes and help high-risk groups to 
prevent this chronic disease. 
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Despite this, there are still some spaces that can 
be refined in this study. For example, the dataset 
chosen is out of date and may not reflect the exact 
trend in diabetes progression. However, it is worth 
noting that the IOHMM model used in this study 
could successfully estimate diabetes progression. 
After transformation, this model can be applied to 
other chronic diseases with follow-up data, in order 
to provide a more reliable estimation. For example, 
thyroid carcinoma, since it is an indolent disease and 
has rare deterioration, more constraints can be 
incorporated on the transition parameters when 
estimating its disease stage progression. 
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