
Classification of Parkinson’s Disease Using the Frequency-Specific 
Changes of Resting Brain Activity 

Jiaqi Tang, Runhan Zhang and Jiayi Pu 
Keystone Academy, Beijing 101318, China 

jiayi.pu@student.keystoneacademy.cn 

Keywords:  Parkinson’s Disease, Frequency-Specific Changes, Resting-State Functional Magnetic Resonance Imaging, 
Machine Learning, Classification. 

Abstract:  Resting state functional magnetic resonance imaging has become a widely used method for diagnosingof 
Parkinson's disease. Nevertheless, machine-learning technology has not been used to better classify disease 
results from MRI signals. Here, the slow-frequency fluctuation amplitudes of patients and healthy controls 
are measured as input to the machine learning model. The features and classification capabilities of the 
machine learning model are respectively evaluated by the T-test and linear support vector machine. . The 
signals from three frequency bands (Slow-5, 0.01-0.03 Hz; Slow-4, 0.03-0.08 Hz; conventional, 0.01-0.08 
Hz) are analyzed. We found that in the classification of Parkinson's disease, Slow-4 signal provides more 
information than Slow-5, and its classification ability is comparable to traditional frequency bands. This study 
shows that machine-learning technology is a promising method of detecting abnormal areas and activities in 
Parkinson's disease, and multi-band data can give us more specific message. 

1 INTRODUCTION 

Parkinson's disease (PD) is a kind of 
neurodegenerative disease which mainly affects 
dopaminergic (dopamine-producing) neurons in the 
substantia nigra and basal ganglia (Blandini, 2000). 
Neurons in the substantia nigra produce the 
neurotransmitter dopamine, which regulates synaptic 
transmission and controls body movement. In PD 
patients, dopaminergic neurons in the substantia 
nigra gradually die. When 80% of dopaminergic 
neurons are lost, a variety of typical PD symptoms 
occur, including tremor, slow movement, stiffness, 
and balance problems (Surmeier, 2018). In addition 
to motor control, dopamine also plays a vital role in 
higher cognitive functions, including motivation, 
learning, and memory. In fact, dopamine deficiency 
is associated with many neurological and psychiatric 
diseases, such as Parkinson's disease, schizophrenia, 
depression, attention deficit/hyperactivity disorder 
(ADHD), and addiction (Burbulla, 2017). The 
decrease in dopamine levels mainly leads to 
abnormal brain activity in the basal ganglia network 
(Qian, 2017), motor system (Hu, 2019) and visual 
cortex (Meder, 2019; Spay, 2019). All of these can 
cause movement disorders and sensory and cognitive 

symptoms, such as gearing, axial and limb stiffness, 
slow movement, stiffness, balance and tremor, and 
decreased sense of touch and smell (Surmeier, 2018). 

Machine learning (ML) has been used in the study 
of the spatial patterns of abnormal cerebralin activity 
areas in PD patients. It can be further divided into two 
phases. I the first phase, a model trained through data 
set is biult, and in the second stagethe classification 
ability from an independent test data set is evaluated. 
ML is an ideal new tool for clinical research because 
it can integrate complex imaging data into 
personalized diagnostic and prognostic indicators. 
Through Comparison, it is clear that ML provides a 
more effective multivariate pattern to analyze the 
predictions for future observations than traditional 
univariate analysis. In addition, it produces 
independent P values that can be recorded in standard 
tests. The ML model has been applied to various data 
patterns for diagnosing PD, including handwriting 
patterns (Licarete, 2020; Wiviott, 2019), sports 
(Cherubini, 2014; Wahid, 2015), neural Image data 
(Choi, 2017), speech patterns (Sakar, 2013), 
cerebrospinal fluid (Maass, 2020), myocardial 
scintigraphy (Nuvoli, 2020), and serum (Váradi, 
2019). ML also allows combining data from different 
experimental methods, including magnetic resonance 
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imaging (MRI) (Wang, 2017) and single photon 
emission computed tomography (SPECT) 
(Cherubini, 2014). Using the ML method, scientists 
have identified outstanding features that have 
traditionally not been used for clinical diagnosis of 
PD. In addition, they have ML to detect pre-clinical 
stage or atypical forms of disease and better 
understand the disease. 

Resting functional magnetic resonance imaging 
(RS-fMRI) is a way of assessing regional interactions 
that occur at rest. It can be used to check PD on a 
macro scale. fMRI enables scientists to understand 
the neuronal activity in the body in PD (Meppelink, 
2009). In addition, RS-fMRI enables scientists to 
understand how functionally specialized brain 
function areas change in comparsion with structural 
MRI data.. 

The low frequency fluctuation amplitude (ALFF) 
derived from classic fMRI is a method to measure the 
total power withina given time in a typical frequency 
range (0.01–0.08 Hz), and has been proven to be an 
important indicator of regional spontaneous neurons 
activity. The different frequencies of neuronal 
oscillations may represent unique brain functions 
(Thut, 2012). In the current study, we will examine 
three frequency bands, Slow-5 (0.01–0.03 Hz), Slow-
4 (0.03–0.08 Hz), and traditional frequency bands 
(0.01–0.08 Hz). Scientists found ALFF abnormalities 
in the auxiliary motor cortex, thalamus, putamen, and 
prefrontal cortex of PD patients (Skidmore, 2011). 

In this study, we used Linear Support Vector 
Machine (LSVM) to classify PD patients and healthy 
controls (HC) according to slow 4, slow 5, and 
regular frequency bands. We found that Slow-4 
shows superior classification ability than Slow 5 and 
is comparable to traditional bands. 

2 MATERIALS AND METHODS 

2.1 Background Information 

The data for this study comes from an open source 
dataset used for fMRI experiments. The 161 right-
handed participants were divided into two groups. 
One is composed of 72 PD patients, and the other is 
composed of 90 age- and gender-matched healthy 
controls (HC). All PD patients were diagnosed as the 
brain bank of the British Parkinson's Disease 
Association (Gibb, 1988). The exclusion criteria for 
PD patients include a Mini Mental State Examination 
(MMSE) score <24, acute physical diseases, mainly 
neurological diseases and other mental diseases. MRI 
examination revealed no obvious abnormalities, 

history of mental illness, or neurological disease. 
Actual"on" state which includes Hoehn and Yahr 
staging scale (H&Y) (Hoehn, 1998), Unified 
Parkinson’s Disease Rating Scale Exercise Part III 
(UPDRS III) (Vassar, 2012) and global Cognitive 
function (Folstein, 1975) is used to evaluate the 
clinical indicators of each PD patient. 

2.2 MRI Data Acquisition 

A 3.0 Tesla MR system (Discovery MR750, General 
Electric, Milwaukee, WI, USA) was used to retrieve 
magnetic resonance (MR) images. It acquires RS-
fMRI data through gradient echo planar imaging 
(GRE-EPI) sequence with the following parameters: 
repetition time (TR) = 2000 ms, echo time (TE) = 30 
ms, flip angle = 90°, matrix size = 64 × 64, field of 
view (FOV) = 220 × 220 mm2, thickness/gap = 3.5 
mm / 0.6 mm, number of slices = 31. They obtained 
the data of 140 participants’ brain volumes . During 
the experiment, the participants were asked to close 
their eyes, don’t think about anything and don’t fall 
asleep. In order to obtain high-resolution structural 
images for standardization purposes, we applied a 
T1-weighted fluid attenuation inversion recovery 
(FLAIR) sequence with the following parameters: 
TR = 2530 ms, TE = 3.34 ms, flip angle = 7°, matrix 
= 256 × 256, FOV = 256 × 256 mm2, thickness = 1 
mm, no gap, number of slices = 196. 

2.3 Image Processing 

FMRIB software library (FSL: 
http://www.fmrib.ox.ac.uk/fsl, version 5.0) and 
functional NeoroImaging analysis (AFNI: 
http://afni.nimh.nih.gov/afni, version 
2011_12_21_1014) It is used to perform standard 
preprocessing steps, including motion correction, 
joint registration, segmentation and normalization. 
Remove irrelevant noises that cause white matter, 
ventricular signals, global signals, and motion 
parameters to obtain fMRI signals for each voxel. No 
spatial smoothing was performed in this study. In 
order to determine the frequency-specific fMRI 
profile to classify PD classification, the voxel ALFF 
graph of the three frequency intervals (slow 5, 0.01–
0.03 Hz and slow 4, 0.03–0.08 Hz and regular, 0.01–
0.08 Hz) is used REST The filter function provided 
in the toolbox is calculated (Yang, 2007; Song, 
2014). We use the code in the Connectome 
Compotation System to determine the frequency 
band (Xu, 2015). 
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2.4 Feature Extraction, Feature 
Selection and Classification 

The automatic anatomical labeling (AAL) template 
image is used to estimate the average ALFF value of 
each subject and extract the functional magnetic 
resonance spectrum features of ML (Tzourio-
Mazoyer, 2002). Ninety brain regions were selected. 
Therefore, we used the three frequency bands 
respectively (slow 5, slow 4, or traditional) to obtain 
a matrix of 90 features for 161 subjects. Moreover, in 
order to check the effect of the method on the basis 
of the structure atlas on our results, we performed 
feature extraction based on the Power-264 atlas 
(Power, 2011) and the Yeo-17 network (Thomas, 
2011). Compared to the classification performance of 
slow 5, slow 4, and traditional frequency band 
combinations, we concatenate the ALFF values of 
slow 5 and slow 4 to generate a single original feature 
vector for each topic (Wee, 2012). 

Implemented a feature selection method to 
achieve high accuracy, study the most distinguishing 
features, and avoid overfitting in the final classifier 
training. According to previous research, two-sample 
t-test was chosen for the feature selection method 
(Cui, 2016). The outer loop is used to evaluate 
classification performance, and the inner loop is used 
to select the best subset of features. The classification 
performance of these two loops is evaluated by linear 
support vector machine (LSVM), which is one of the 
most commonly used supervised ML methods. 
Matlab's LIBSVM toolbox is used to perform LSVM 
classification (Chang, 2011). The penalty factor C is 
set to 1 (Cui, 2016). According to the LSVM score, 
participants with positive scores are classified as HC, 
and those with negative scores are classified as PD. 

The detailed steps are as follows (Figure 1). (1) 
Randomly select one subject from the entire data set 
(N subjects) as the test subject, and leave the rest (N-
1 subjects) as the training set for each LOOCV. (2) 
Repeat the inner LOOCV in each outer LOOCV fold, 
and obtain N-2 subjects as the training subset of each 
inner LOOCV. (3) Introduce the training subset of 
each internal LOOCV (N-2 subjects) into feature 
selection. In this study, we perform a two-sample t-
test for each feature and calculate the P value. Feature 
selection is processed on the basis of a P threshold 
from 0 to 1, with an interval of 0.01. Include and 
exclude features below and above the P threshold, 
respectively. The feature selection procedure is 
repeated N-1 times for each P threshold, which 
results in the accuracy of internal cross-validation. 
Then we define the optimal P threshold is defined as 
the P value with the highest internal cross-validation 

accuracy. This threshold is used for the final classifier 
training in the external LOOCV and obtain the final 
cross-validation accuracy score (Wee, 2012). 

 
Figure 1: Flow chart of data processing and ML modelling. 

2.5 Evaluation of the Classification 
Power of Various Indices 

We use accuracy, sensitivity, and specificity values to 
assess the classification ability of specific ALFF 
methods at different frequencies. In addition, receiver 
operating characteristics (ROC) and area under ROC 
(AUC) are also used to evaluate the classification 
performance of specific fMRI features in different 
frequency bands, too. In addition, 1000 permutation 
tests were performed to assess whether the figure of 
the AUC and accuracy were significantly higher than 
the random value. In addition, in order to compare the 
classification performance of the multi-band (Slow-5 
and Slow-4) with that of the single-band (Slow-5, 
Slow-4 or traditional), we calculated the accuracy 
difference and the AUC difference between them. For 

ICBB 2022 - International Conference on Biotechnology and Biomedicine

144



nonparametric statistical tests, the P-value for 
accuracy or AUC (or its difference) is calculated by 
dividing by the number of permutations that show the 
actual value (or its difference) higher than the real 
sample. 

3 RESULTS 

3.1 Basic Information 

We did not find any significant differences in the age 
(PD: 57.7 ± 7.0, HC: 57.7 ± 5.6, P = 0.97, two-sample 
unpaired two-tailed t-test, N = 72, 89, respectively), 
education level (PD: 10.8 ± 3.3, HC: 11.6 ± 5.0, P = 
0.65, two-sample unpaired two-tailed t-test, N = 72, 
89, respectively), sex (PD: 33/39, HC: 42/47, P = 
0.86, Fisher’s exact test, N = 72, 89, respectively), or 
MMSE scores (PD: 28.6 ± 1.7, HC: 29.0 ± 2.3, P = 
0.33, two-sample unpaired two-tailed t-test, N = 72, 
89, respectively) between PD patients and HCs. The 
UPDRS III score, H&Y score, and disease duration 
for PD patients were 26.2 ± 13.4, 1.6 ± 0.5, and 6.3 ± 
3.4 years, respectively (Figure 2). 

 
A. Distribution of ages of HC and PD. P = 0.973, two-sample unpaired two-tailed t-test, n = 89 and 72. B. Distribution of education 
years. P = 0.647, two-sample unpaired two-tailed t-test, n = 89 and 72. C. Distribution of Male/Female ratios. P = 0.854, Fisher’s 
exact test, n = 89 and 72. D. Distribution of MMSE values. P = 0.330, two-sample unpaired two-tailed t-test, n = 89 and 72. E. 
Distribution of UPDRS III values. n = 72. F. Distribution of H & Y values. n = 72. G. Distribution of disease duration (DD). n = 72. 

Figure 2: Basic information of health controls (HC) and PD patients. 

3.2 Classification Performance 

This study used three frequency bands, namely slow 
5, slow 4 and regular frequency bands. The 
classification is then determined by the linear support 
vector machine (LSVM), a machine learning model 
based on these bands. We further evaluated the 
performance of the model (ie, AUC, accuracy, 
sensitivity, and specificity). According to the AUC 
value, we found that the performance of the models 
based on Slow-5, Slow-4, and Conventional 

frequency bands are 0.77, 0.81, and 0.84, 
respectively; according to the Accuracy values, they 
are 71.4, 76.8, and 79.5; according to the Sensitivity 
values, they are 61.1, 74.7, and 73.6; According to 
the specificity values, they were 79.8, 80.2 and 86.5 
(Figure 3). These results show that classification 
based on Slow-4 signal is better than classification 
based on Slow-5 signal. In addition, the performance 
of models based on Slow-4 signals is mostly 
comparable to traditional frequency bands. Together, 
we found that Slow-4 can be used as a diagnostic 
criteria for PD patients to classify HC. 

Classification of Parkinson’s Disease Using the Frequency-Specific Changes of Resting Brain Activity

145



 
A. Comparison of AUC values among group S5, S4, and C. B. Comparison of Accuracy values (%) among group S5, S4, and C. C. 
Comparison of Sensitivity values (%) among group S5, S4, and C. D. Comparison of Specificity values (%) among group S5, S4, 
and C. LSVM, linear support vector machine; Slow-5 (S5), 0.01–0.03 Hz; Slow-4 (S4), 0.03–0.08 Hz; Conventional (C), 0.01–0.08 
Hz; AUC, area under curve. 

Figure 3: The results of the LSVM classifier with a single or combined features. 

4 DISCUSSION 

In the study, we used ML methods and multivariate 
analysis to analyze the multi-frequency signals in the 
brain and found two main findings. First of all, the 
classification performance of all frequency band-
based schemes is significantly higher than that of 
random schemes, indicating that all frequency bands 
have good diagnostic capabilities. Secondly, through 
comparing the classification performance of Slow-5 
and Slow-4, we find the latter has more information 
in PD classification than Slow-5. 

Using LSVM to compare the classification 
performance of each pair of schemes based on 
frequency bins, we found that slow 4 signals (0.03-
0.08 Hz) provide more information on the 
pathogenesis of PD. In addition, the results of the ML 
method show that compared with the traditional 
frequency band, the Slow-4 signal shows almost the 
same classification performance. This shows that a 
specific frequency interval can provide the most 
information for PD classification. 

Although the traditional method shows 
classification performance comparable to multi-band 
fMRI data processing, it fails to detect abnormal 
activities in the lateral parietal cortex (Blandini, 
2000; Tumati, 2019). Previous researches have 
shown that this dysfunction is relevant to the 
pathogenesis of PD (Tumati, 2019). In addition, the 
classification performance of Slow-4 is superior to 
the traditional frequency band (0.01-0.08 Hz) in 
distinguishing the frozen and non-frozen gait of PD 
patients (Hu, 2017). In summary, the results show 
that multiple frequency bands can provide more 
information for PD detection and classification. 

5 CONCLUSION 

In summary, here we established a ML framework 
based on specific frequency bands in the ALFF 
signals from the RS-fMRI data for the diagnosis of 
PD. The results suggested the information from a 
specific band (Slow-4) can provide more information 
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than any other frequency interval and is comparable 
to the conventional wide-band frequency signals. 
These data highlight the classification power of ML 
approaches in the classification of PD by detecting 
subtle and complex changes in the ALFF signals. 
This study will shed light on future research on the 
diagnosis and treatment for PD patients. 
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