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Abstract: To meet the requirements of high-precision tracking of long-range hypersonic vehicle position and 
minimization of terminal velocity deviation, this paper completes the online generation of guidance 
commands based on dynamic surface control theory and reinforcement learning method. First, this paper 
transforms the control problem of three-dimensional under-actuated system into a problem of two-
dimensional path-tracking and establishes the basic framework of the guidance system by using the control 
method of dynamic surface path-tracking, and the online optimal adjustment of guidance parameters is then 
accomplished through the online network of flight state deviation and reinforcement learning to achieve the 
minimization of the integrated deviation of the process position and terminal velocity. The simulation results 
show that the proposed guidance method can solve the high-precision position tracking problem of long-range 
hypersonic vehicles effectively, and it can reduce the terminal velocity deviation. The algorithm computation 
is small, which has good prospects for engineering applications. 

1 INTRODUCTION 

Hypersonic vehicles are fast, have long flight range, 
and can achieve flexible mission maneuvers, but 
modeling and perturbation deviations under complex 
environmental conditions can seriously affect the 
flight capability and mission execution effectiveness 
of hypersonic vehicles. Once the optimal trajectory 
satisfying the mission and constraints is planned 
offline or online, a high-precision trajectory tracking 
guidance system is the key to ensuring that the 
hypersonic vehicle is effective. 

For a nonlinear system with large perturbations 
and strong uncertainties such as hypersonic vehicles, 
the backstepping method can divide the higher-order 
system into several lower-order subsystems based on 
modeling deviations, and achieve the asymptotic 
stability of the system through the rectification of the 
subsystems that meet the Lyapunov stability 
requirements (Xu et al, 2011). However, due to the 
need to derive the virtual control quantities, it is easy 
to lead to the problem of "complexity explosion". The 
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adaptive dynamic surface control (ADSC) method is 
based on the backstepping method and solves the 
"complexity explosion" problem by adding a first-
order low-pass filter (Swaroop et al, 1997), so it has 
also been more widely used. The combination of 
extended observer and dynamic inversion technology 
improved the response speed and accuracy of attitude 
control for hypersonic vehicles (Liu et al, 2015). The 
Reference (Xu et al, 2014) designed a general 
hypersonic vehicle longitudinal controller based on 
adaptive dynamic surface method. In the literature 
(Wu et al, 2021), a finite-time control strategy is 
proposed by combining dynamic surface trajectory 
tracking control with sliding mode attitude control. 
The literature (Butt et al, 2010; Butt et al, 2013) 
combined dynamic surface control theory with neural 
networks for the design of tracking control systems, 
which better dealt with the effect of nonlinear terms 
in the system. After that, (Yu et al, 2014; Xu et al, 
2016; Shin, 2017) used neural networks with different 
structures to compensate the nonlinear terms, so as to 
achieve accurate tracking of the states such as altitude 
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and speed. The literature (Hu et al, 2013) combined 
dynamic surface control with a dynamic inverse 
strategy to improve the robustness of the control 
system against the effects of model uncertainty. The 
literature (Aguiar et al, 2007) used a path tracking 
method to transform the 3D underdriven trajectory 
tracking problem into a 2D tracking control problem 
and achieved a better tracking control effect using 
dynamic surface control, but the control parameters 
could not be adaptively adjusted to meet the demand 
of long-range unpowered gliding trajectory tracking 
under strong disturbance conditions. 

Among the model-free reinforcement learning 
methods, the actor-critic algorithm combines the 
advantages of policy-based methods in terms of 
continuous action space problem description and 
value-based methods in terms of convergence speed, 
and has therefore been extensively studied. In the 
literature (Li et al, 2018), an optimization model for 
hypersonic vehicle control parameters was designed 
in the actor-critic framework. The Reference (Zhen et 
al, 2019) designed a PID controller based on actor 
critical network which adjusted parameters online. 
The literature (Lillicrap et al, 2015) applied the 
successful concept of Deep Q-Learning to the 

continuous action domain and proposed an Actor-
Critic deep deterministic policy gradient (DDPG) 
approach based on no model dependency, which 
successfully solved several simulated physics tasks. 
The literature (Cheng et al, 2019; Gao, 2019) applied 
the DDPG method to complete the optimization of 
hypersonic re-entry flight trajectories with terminal 
altitude and velocity magnitude constraints using 
velocity inclination as the action space, but did not 
consider the process position tracking and terminal 
constraint guidance requirements under perturbation 
conditions. 

In this paper, for the needs of high precision 
position tracking and terminal velocity deviation 
minimization of long-range hypersonic vehicles, the 
basic framework of the guidance system is 
established by adopting the path tracking idea and 
ADSC theory, and converting the effects of earth 
rotation and curvature into system modeling 
deviations, while introducing the DDPG 
reinforcement learning method to generate the 
optimal adjustment network of guidance parameters 
under perturbation conditions for online generation of 
guidance commands, and finally, the effectiveness of 
the proposed method is verified by simulation. 
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Figure 1: Guidance system training and online application framework based on DDPG.

2 OVERALL FRAMEWORK 

The hypersonic vehicle guidance method based on 
dynamic surface control and reinforcement learning 
takes the adaptive dynamic surface control method 
(ADSC) as the basic guidance framework and adopts 
the angle of attack increment and velocity inclination 

increment as the control commands for position 
tracking; meanwhile, is is defined as the 
reinforcement learning state expressed in terms of 
instantaneous flight state and predicted terminal state, 

ia is the reinforcement learning action expressed in 
terms of ADSC control matrix coefficients, and ir is 
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the reward function, and the control parameters of 
ADSC are continuously adjusted by the DDPG 
method to finally obtain the optimal control 
parameters that satisfy the path and terminal 
constraints. The overall framework of the guidance 
system is shown in Figure 1. 

3 DYNAMIC SURFACE 
CONTROL TRACKING 
GUIDANCE METHODS 

The reference trajectory is interpolated with the actual 
x position coordinates of the vehicle to obtain the 

reference control program angle, which transforms 
the three-dimensional trajectory tracking problem 
into a two-dimensional path tracking problem. A 
simplified model of the dynamics at half speed is used 
in the calculation of the guidance command (Song et 
al, 2016). The differences between the simplified and 
real models are then considered in ADSC in the form 
of model deviations. The form of the control system 
used is: 
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Where 1w and 2w are the model deviations, and the 
variables in the control equation are:
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Where the subscripts c  and ref  denote the variables 
on the reference trajectory, the control quantities αΔ  
and vγΔ  are the differences from the reference angle 
of attack and velocity inclination, DrefC  and LrefC  are 
the aerodynamic coefficients on the reference 
trajectory, DrefCα  and LrefCα  are the aerodynamic 
derivatives on the reference trajectory. 

Designing of guidance laws: 
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Where τ , 1K  , 2K are non-singular diagonal control 
matrices. 
Define filtering error: 
     1

2 2 2      d c cx x xδ δ τ δ−= − = − −    (6) 
The adaptive equations for the model error ˆ iw and 

the filtering error δ̂  are: 
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Where iQ ,
iwK , δK are non-singular diagonal 

matrices, and a sufficiently large iQ can make the 
position tracking error ie sufficiently small, as 
demonstrated in the literature (Swaroop et al, 1997). 
However, for a long-range unpowered gliding 
hypersonic vehicle, too large a iQ will lead to an 
increase in the velocity error, which in turn will make 
it difficult to maintain the flight state when 
approaching the flight terminal due to practical 
constraints such as flight angle of attack, and 
eventually lead to a sharp increase in both position 
and velocity deviations. Therefore, the optimal 
control coefficients iQ need to be selected online for 
different flight states and deviation conditions in 
order to minimize the combined deviation of process 
position and terminal velocity. 

4 REINFORCEMENT LEARNING 
BASED CONTROL 
PARAMETER TUNING 
METHOD 

In this paper, an actor-critic-based DDPG 
reinforcement learning architecture is built with a 

vehicle as to the agent. Actor outputs actions ( )ta s
based on state decisions ts , and critic evaluates Q 
values based on state ts and actions ta . The relevant 
learning elements are: 
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Considering the actual aerodynamic characteristics 
and control requirements, the guidance system needs 
to limit the actions and program angles: 
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To explore well in physical environments that have 
momentum, Ornstein-Uhlenbeck (OU) noise 
(Uhlenbeck et al, 1930) is added to the output of the 
actions by the actor-network during reinforcement 
learning training, [ ]1, , ,t t t ts a r s +  is obtained by 
interacting with the environment and stored in the 
replay buffer. Every time the intelligence interacts 
with the environment ep step by step, a sample is 
randomly selected N from the replay buffer for 
training and updating the parameters of critic eval-net 

ceθ and actor eval-net aeθ  using the Adam (Kingma et 
al, 2014).

 
( )( ) ( )

( ) ( )
ce

ae c

ct at

e

1
ce ce 1 1

1
ae ae

, ,

,

t

t t

t t
c t t t t t

t t
a t t t

r Q s s Q s a

s Q s a
θ θ θ

θ θ

θ θ λ κ μ

θ θ λ μ

+
+ +

+

 = + + − 
= + ∇ ∇

 (10)

Where: cλ and aλ  are the learning rates of critic eval-
net and actor eval-net, respectively, tr  is the current 
reward value, and κ is the discounting factor. When 
eval-net is updated tp  times, the DDPG algorithm 
periodically soft-update target-net. 
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The actor eval-net parameters ( )ae sθ  after the 
training can be used to adjust the control parameters 
of the hypersonic vehicle during guided flight online. 

 

5 REINFORCEMENT LEARNING 
BASED CONTROL 
PARAMETER TUNING 
METHOD 

5.1 Simulation Conditions 

The simulation uses a publicly available CAV model 
with a mass of 907 kg, an aerodynamic reference area 
of 0.48 m², and the mission parameters shown in 
Table 1. 

The simulation step and guidance period are both 
taken as 100 ms, and the control parameter update and 
environment interaction period is 1 s. The structure of 
actor-net is set to [ ]11 5,20, 20,10, 2× , and the 
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structure of critic-net is set to [ ]11 5 2, 20, 20,10,1× + . 
The training hyperparameters are shown in Table 2. 

Table 1: List of vehicle mission parameters. 

Parameters Parameter 
value

Initial 
parameters 

Height/km 60 
Speed/(m/s) 5,500
Flight path angle/(°) -1 
Heading angle/(°) 90 
Design range/km 4300

Terminal 
parameters 

Height/km 28 
Speed/(m/s) 1,840
Remaining range/km 50 

Table 2: Super parameter setting of RL training. 
Item Value 

ep  5 

N  32 

aλ  0.000 1 

cλ  0.002 

κ  0.99 

tp  5 

τ  0.001 

0κ ( OU noise) 0.15 

0η ( OU noise) 0.15 

Table 3: Status deviations and environmental disturbances. 
Deviations Value 

Initial of height 0h (m) -100~100 

Initial of velocity 0v (ms-1) -20~20 

Initial of flight path angle 0γ (°) -1~1 

Resistance coefficient (%) -10~10 

Lift coefficient (%) -10~10 

Atmospheric density (%) -10~10 

5.2 Reinforcement Learning Training 

Introducing normally distributed state biases and 
environmental perturbations during reinforcement 
learning training. The status deviations and 
environmental disturbances are shown in Table 3. 

With 1000 training sessions, the reward function 
gradually converges, as shown in Figure 2. 

 
Figure 2: Curve of reward function in the process of 
reinforcement learning and training. 

5.3 Guidance Simulation Results 

To verify the adaptability of the guidance method 
proposed in this paper, given the limiting pull-off 
condition. 
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The ADSC guidance law and ADSC+DDPG 
methods are used for guidance simulation, 
respectively. The simulation results are shown in 
Figures 3-8.  

Under the two limit deviation conditions, the 
maximum altitude deviations of ADSC+DDPG are 
reduced by 28 m and 5023 m, respectively, compared 
with the ADSC process when jumping out x  
according to the terminal position; the terminal 
velocity deviation is reduced by 16.2 m/s and 101.1 
m/s, respectively. This result proves the effectiveness 
of the proposed guidance method. 

6 CONCLUSIONS 

In this paper, the basic framework of the guidance 
system is established by using the idea of path 
tracking and ADSC theory to address the needs of 
high-precision position tracking and terminal velocity 
deviation minimization for long-range hypersonic 
vehicles, converting the effects of earth rotation and 
curvature into system modeling deviations, and 
introducing the DDPG reinforcement learning 
method to generate the optimal adjustment network 
of ADSC control parameters under perturbation 
conditions for online generation of guidance 
commands. Finally, the effectiveness of the proposed 
method is verified by simulation. 
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Figure 3: 3D trajectory versus time. 

 
Figure 4: Height versus time. 

 

 
Figure 5: Velocity versus time. 

 
Figure 6: Flight path angle versus time.  

 
Figure 7: Attack angle versus time. 

 
Figure 8: Bank angle versus time. 
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