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Abstract: Evapotranspiration is the main limitation for irrigation development in developing countries and semi-arid 
regions. Proper prediction of this variable is key for proper planning and positively contribute to daily 
management of irrigation schemes. This study used 18 years (2001-2018) of remotely sensed data extracted 
at Keiskammahoek Irrigation Scheme, Eastern Cape province of South Africa, a province that has been 
declared drought disaster region forcing many irrigation schemes in this region to close some irrigated 
sections in order to deal with reduced dam levels. This study used three prediction models, namely Auto-
Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANN), and Hybrid (ARIMA-
ANN) to predict ET for optimal water use in this irrigation scheme. The prediction models were evaluated 
using four model performance statistics, namely Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE), Mean Absolute Error (MAE), and the Pearson’s correlation of coefficient (R). The 
results show that the hybrid (ARIMA-ANN) model outperformed both the ARIMA and ANN consecutively 
with less values of the statistical performance evaluation showing RMSE = 33.80, MAE = 27.02, MAPE = 
17.31, and R = 0.94 compared to higher values of ARIMA and ANN. In general, these prediction results show 
the dominance of the Hybrid (ARIMA-ANN) model over ARIMA and ANN. These results will assist water 
managers at Keiskammahoek Irrigation Scheme to plan effectively.

1 INTRODUCTION 

The estimation and understanding of the terrestrial 
water balance are part of viable water administration 
systems. Considering the recent patterns of the impact 
of climate change, these estimates will be of 
increasing importance. One of the primary water-
balance calculation parameters is the reliable 
estimation of evapotranspiration (ET).     Therefore, 
understanding of energy and water vapor fluxes in 
certain sites is vital, particularly in a perspective of 
authenticating climate change forecasting (Gwate, 
Mantel, Pailmer, Gibson, & Munch, 2018). Thus, 
precise prediction of ET flux is important for 
agricultural development and water resource 
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management.  However, in developing countries, like 
South Africa, it is very difficult to obtain all the 
relevant data to use in a widely applied Penman-
Montheith approach, therefore alternative reliable 
and powerful prediction approaches are used to 
examine the non-linear trends related to the predictor 
variables for ET rate (Ghorbani, Kazempour, Chau, 
Shamshirband, & Ghazvinei, 2018).  

This study predicts evapotranspiration for optimal 
water use in Keiskammahoek irrigation scheme 
located in the Eastern Cape province of South Africa. 
This province has been declared a drought disaster 
region (Mahlalela, Blamey, Hart, & Reason, 2020, 
Botai, et al., 2020, Graw, et al., 2017), which led to 
Keiskammahoek Irrigation Scheme closing other 
section of its irrigated site in order to deal with 
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reduced water levels on water reserves. This study, 
therefore, used three widely used prediction tools 
namely, ARIMA, ANNs and Hybrid (ARIMA-ANN) 
model to predict ET and in order to assist 
Keiskammahoek water managers to plan and manage 
the irrigation scheme effectively.   

According to (Ziervogel, et al., 2014), the increase 
in annual temperatures in South Africa by at least 1.5 
times of the average 0.65 degrees has led to climate 
being a key concern. They further suggested that it 
was posing a vital treat to South Africa’s water 
reserves, food security, health, infrastructure, as well 
as ecosystem services and biodiversity. The growing 
impact of climate change has key consequences for 
South Africa, particularly for the poor even though 
there are programmes supporting an ambitious 
renewable energy program, South Africa’s response 
to climate change is hindered by hesitation in 
policies(Chersich, et al., 2018). In the province of 
Eastern Cape, South Africa livestock farming is very 
crucial for livelihood and is considered as a wealth by 
famers despite their education status (Mandleni & 
Anim, 2011). According to the conclusion of (Todaro 
& Smith, 2012), livestock farmers suffer a greater 
impact from climate change. South Africa suffers 
from scarcity of water as the demand for water 
resources increases with the increase in population. If 
the country wants to sustain economic development, 
urgent needs must be in place to protect the quality of 
the resources whilst striving to meet the problem of 
water scarcity (Todaro & Smith, Economic 
development, 2020). 

Most of the land in this province is used for 
agriculture with around 35% of households being 
involved in agricultural activities, however the 
extreme drought conditions over the past decades 
have negative impact on these famers (Graw, et al., 
2017). In South Africa, irrigation accounts for over 
55% of the total available consumptive freshwater 
(Mishra & Singh, 2011). South Africa falls within the 
semi-arid region where the evaporation rate is more 
than the precipitation rate (Nkondo, Zyl, Keuris, & 
Shrener, 2012).ET is one of the crucial elements of 
the hydrological cycle; hence, it expedites the 
furtherance of precipitation through the process of 
condensation. It is also crucial for the transportation 
of minerals and nutrients necessary for plant growth, 
and it creates a favorable cooling method to plant 
canopies in many climates through its direct 
relationship with the Latent heat flux (LE) effect on 
earth energy and water balance (Calzadilla, Zhu, 
Rehdanz, Richard, & Ringler, 2014). 

Therefore, ET remains to be one of the major 
constraints for irrigation development in developing 

countries and in semi-arid regions of the world 
(Traore, Wang, & Kerh, 2008). Accurate prediction 
of ET is key for agriculture as it informs proper 
planning and contributes positively to the daily 
management of the irrigation scheme. Moreover, 
determining the perfect timing and amount of water 
needed for irrigation is important for effective 
management of water used by crops (Kishore & 
Pushpalatha, 2017). Therefore, scheduling becomes 
very critical in agriculture, as ET estimation will give 
an assurance of the reliable daily run of the irrigation 
scheme, design, and project planning  (Kishore & 
Pushpalatha, 2017). It is therefore crucial to 
effectively predict ET in agriculture in order to attain 
a comprehensive picture of the water cycle. (Dutta, 
Smith, Grant, Pattey, & Desjardins, 2016) and for 
effectively managing scarce resources for crop 
production (Anapalli, Fisher, Reddy, Rajan, & 
Pinnamaneni, 2019).  

2 MATERIAL AND METHODES 

2.1 The Study Area 

Keiskammahoek Irrigation scheme is in 
Keiskammahoek, a small town situated in the Eastern 
Cape province of South Africa and located at Latitude 
S 32°41ʹ14ʺ E 27°07ʹ48ʺ. The average temperature 
ranges from 6.5º C in winter to 26.7º C in summer. 
and an average rainfall of 502mm (Sanral, Gibb, & 
Eoh, 2016).   
 

 
Figure 1: Map of Keiskammahoek Irrigation Scheme. 
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2.2 Autoregressive Integrated Moving 
Average (ARIMA) Model 

Autoregressive integrated moving average (ARIMA) 
is one of the most widely used models because of its 
statistical properties, and it can be used in different 
ways, such as pure autoregressive (AR), pure moving 
average, and combined ARIMA series (Kishore & 
Pushpalatha, 2017). It is also called the Box-Jenkins 
modeling approach and it is one of the most used time 
series because of its flexibility, even though it cannot 
predict nonlinear relationships as its linear correlation 
structure is presumed among the time values (Zhang, 
Zhang, & Li, 2016). In their study, Zhang, Zhang, & 
Li, (2016) define ARIMA as the model that can be 
decomposed into two parts, with the first part being 
the “Integrated (I) component (d)”, representing the 
quantity of distinguishing to be achieved on the 
sequence to make it constant; the second is the 
ARIMA model sequence that is rendered constant 
through variation. ARIMA is regarded the most 
effective forecasting tool, and it is widely used in 
social science and for time series; it also depends on 
the historical data as well as its past error relations for 
predicting (Adebiyi, Adewumi, & Ayo, 2015). In the 
study by Gautam & Sinha, (2016), ARIMA is 
reported as the most appropriate modeling tool for 
examination and predicting hydrological events. 
They further explain the model as explaining the 
linear mixture of the earlier state of a variable “(pure 
AR component), and previous forecast error (pure 
MA component)”. Therefore, in this study, the 
ARIMA model will be one of the forecasting 
techniques applied to this study to assist seek accurate 
prediction of evapotranspiration at the 
Keiskammahoek Irrigation scheme. The ARIMA 
model can be mathematically explained as follows: 
 
y = θ0 + ∅1 yt-1 + ∅2yt-2 +……. ∅pyt-p (1)

+ εt - ∅1εt-1 - ∅2 εt-2  ……∅qεt- (2)
 
Where the terms 𝑦  and 𝜀  are the actual value and 

the random error at a given time 𝑡 . The model 
parameters are ∅ (1,2, ⋯ , 𝑝) 𝜃 (0,1,2, ⋯ , 𝑞)..  

The model parameters p and q are integers and are 
normally explained as orders of the model. The model 
random errors 𝜀 , are predicted to be independently 
and identically distributed with a mean of zero and a 
constant variance of 𝜎 . The above equation is a 
general equation that represents and necessitates 
several essential special cases of the ARIMA family 
of models. For example, if 𝑞 = 0, then this ARIMA 
model becomes an AR model of order 𝑝. On the other 

hand, when parameter 𝑝 = 0, this model reduces to 
an MA model of order 𝑞 . Therefore, the most 
important part of designing the ARIMA model is to 
determine the appropriate model order (𝑝, 𝑞).  

2.3 Artificial Neural Networks (ANN) 
Model 

ANN is a family of artificial intelligence techniques 
which can predict any time series, including the 
geophysical time series. ANNs are non-linear data-
driven networks that were designed and inspired by 
the theory of neuroscience (Morimoto, Ouchi, 
Shimizu, & Baloch, 2007), hence the name ‘neural’. 
These are mathematical models based on the 
capabilities of the human brain to predict and classify 
problem domains. Khanna, Plyus, & Bhalla, (2014) 
describe ANN as “the information processing 
paradigm that is inspired by the way biological 
nervous systems such as a brain process information”. 
ANNs are fundamentally a semi-parametric 
regression method with the capacity to estimate any 
quantifiable function up to an unrestrained degree of 
correctness (Parasuraman, Elshorbagy, & Carey, 
2007). They have been widely adopted for predicting 
and forecasting in diverse fields of research such as 
finance, medicine, engineering, and sciences as well 
as to solve an extraordinary range of problems (Maier 
& Dandy, 2000). ANNs are specifically useful when 
the relationships between both input and output 
variables are discrete (Jha, 2007). These models have 
been commended as favorable models in cases where 
the variety of data is excessive and the relationship 
among those variables is mainly unclearly understood 
(Jha, 2007).   

 
In this study, the single hidden layer feedforward 

network was used as one of the techniques to predict 
ET. Schultz, Wieland, & Lutze, (2000) explains a 
single hidden feedforward network as the widely used 
models for forecasting models for modelling and for 
predicting time series. The model has three 
processing layers which are linked by its acyclic and 
distinguished by its connection between output (yt) 
and inputs (yt -1. yt-2,.., yt-p. Schultz, Wieland, & Lutze, 
(2000), gives the following model’s mathematical 
association between input and output: 

 𝑦 = 𝛼 + 𝛼 𝑔 𝛽 𝛽 𝑦 + 𝜀 , (3)

 
Where 𝛼  (𝑗 = 0,1,2, ⋯ , 𝑞)  and 𝛽  (𝑖 =0,1,2, ⋯ , 𝑝; 𝑗 = 1,2, ⋯ , 𝑞)  are model limits which 
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are called the joining weights; p and q are the number 
of inputs nodes and the number of the hidden nodes, 
respectively. When designing these types of ANN, 
the logistic function is often employed as the hidden 
layer transfer function that is given by:   

 𝑔(𝑥) = 11 + exp(−𝑥) (4)

 
It should be noted though that the ANN model 

presented above performs a nonlinear functional 
mapping from the past observations 
(𝑦 , 𝑦 , ⋯ , 𝑦 ) to the future value 𝑦  i.e.;  
 𝑦 = 𝑓 𝑦 , 𝑦 , ⋯ , 𝑦 , 𝑤 + 𝜀  (5)
 

Where 𝑤 is a vector of all parameters and 𝑓 is a 
function determined by the network structure and 
connection weights (Schultz, Wieland, & Lutze, 
2000). 

 
• Training the Artificial Neural Networks  
 

A multilayer perceptron (MLP) type of network 
was used; hence, it is the most used form of a neural 
network. Provided sufficient data, sufficient hidden 
units, and sufficient time, an MLP can learn to 
estimate almost any function to a precise degree (Jha, 
2007). 

2.4 Hybrid (ARIMA-ANN) Model 

To ensure the accuracy of the results obtained from 
two models that have already been used, namely Auto 
Regressive Integrated Moving Average (ARIMA) 
and Artificial Neural Networks (ANN), a hybrid 
(ARIMA-ANN) model was used. As much as both 
models can be satisfactory in modelling and 
forecasting using time series, ARIMA are able to 
detect linearity of the time series whilst the ANNs are 
capable of detecting nonlinearity of the time series. 
Therefore, each model alone cannot adequately 
handle linear and nonlinear patterns; thus, by using 
joint models, multifaceted autocorrelation structures 
in data can be modelled precisely (Zhang G. P., 
2003). As an example, a study by  Mallikarjuna & 
Prabhakara, (2019), used Zhang hybrid model and 
reported that neither ARIMA nor ANN is completely 
appropriate for prediction of all the time series 
because the real-world time series have both linear 
and nonlinear correlation structures between 
observations. Thus, in this study, they followed a 
study by (Zhang G. P., 2003) and used both ARIMA 

and ANN and developed a hybrid system which is 
given by: 
 𝑦 = 𝐿 + 𝑁  (6)

 
Elwasify, (2015) described what each of these 

values represents as follows: 
• 𝑦  - represents the observation of time series at 

the time t, 
• 𝐿  - represents the linear part of ARIMA 

models, and  
• 𝑁 - represents the nonlinear part of the ANN 

models. 
According to Zhang G. P., (2003), the first step is to 
model using ARIMA for the linear component, and 
the residual left from the liner data will contain the 
nonlinear relationship and letting ET donate the 
residual at time t from the linear model then et is 
presented as follows: 
 𝑒 = 𝑦 − 𝐿  (7)
 

Where Lt is the prediction value of time t from the 
predicted relationship of the original ARIMA 
formula. This residual is very crucial in the diagnosis 
of the adequate linear models; hence, the linear model 
is not adequate should there still be linear correlation 
structures remaining on the residual. Currently, there 
is no statistic for nonlinear autocorrelation connection 
diagnosis and that causes that even when models have 
been accepted by the diagnosis examination, it may 
still be accurate enough for a nonlinear relationship to 
be properly modelled and that means every nonlinear 
pattern cannot be modelled by ARIMA. Modeling the 
residual using ARIMA will assist to discover the 
relationship in nonlinear correlation. Zhang G. P., 
(2003), suggests the models for residual as follows: 
 𝑒 = 𝑓(𝑒 − 1, 𝑒 − 2, … . . , 𝑒 ) + 𝜀  (10)

 𝜀  is the random error whilst f is determined by 
the nonlinear function using neural network, and if f 
is not adequate, the error is not certainly random. It is 
very crucial to determine the perfect model. 
Therefore, by donating forecast from the residual 
model, the combined forecast will be 

 ŷ = 𝐿 + 𝑁  (11)
 

This simply means that the first step will be to 
utilise the ARIMA model to examine the linear part, 
and the second step of the hybrid will be to develop 
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the models using the residual from the first ARIMA 
model; hence, the residual from ARIM will be having 
nonlinear patterns and the results obtained from 
neural networks will be used to estimate the model 
error for ARIMA terms. The Hybrid model will 
therefore have different features and will have much 
power of ARIMA and ANN, which will determine 
different patterns (Zhang P. G., 2003). 

2.5 Model Performance 

Normally, there are no standard norms for evaluating 
the forecasting performance of a model and appraisal 
with other benchmark models  (Mbatha & Bencherif, 
2020). To evaluate the performance of the three 
models used in this study, namely ARIMA, ANNs, 
and Hybrid, we compared the forecasted ET values 
with their corresponding measured ET values 
obtained from the study site using typical 
performance metrics. According to Lewis C. D., 
(1982), there are many alternative models used over 
the years to forecast the time series; therefore, one 
needs to consider specific conditions in choosing the 
appropriate model to be employed. For the purpose of 
this study, It is crucial to check the model accuracy to 
select the most appropriate model based on the ET 
forecasted results. Below are the performance 
measures used for RMSE, MAPE and MAE as 
explained by (Lewis C. D., 1982). The Root Mean 
Square Error was used in order to evaluate the 
difference between the predicted ET results and the 
original ET data. According to (Chai & Draxler, 
2014), the RMSE model has been widely used in 
many studies to examine the model performance. 
Because of uncertainties reported by Willmott & 
Matsuura, (2005), other models were applied. The 
Mean Percentage Error (MAPE) statistic measure 
was also applied in order to evaluate the quantity of 
error in the forecasted values of ET. 

This widely used Measure is used when the 
amount of the predicted values remain higher than 
zero (Myttenaere, Golden, Grand, & Rossi, 2016, 
Khair, Fahmil, Hakim, & Rahim, 2017). The Mean 
Absolute Error (MAE) was also applied. This 
measure is calculated from an average error, and it is 
frequently used to examine the vector to vector 
models (Willmott & Matsuura, 2005). The model 
accuracy was checked by the use or Pearson’s 
correlation of coefficient. This model is explained by 
Mukaka, (2012), as the method that is used to 
evaluate the likely two-way linear connection 
between two continuous variables. Zero value of the 
Correlation coefficient indicates that there is no linear 
association between the two variables. However, 

between +1 or -1 indicate a perfect correlation and 
this strength can be found anywhere between +1 and 
-1. The positive value indicates the direct relationship 
between two values and the negative value indicates 
that there is an inverse relationship between two 
values. Results and discussion. 

3 RESULTS AND DISCUSSION 

3.1 ARIMA Model Selection  

The data from 2001 to 2018 was fitted to 
AUTOARIMA using “R” and a portmanteau test 
called Ljung-Box was done to test the excellence of 
the time series model. According to Burns, (2002), 
this test is mostly used, and should the significant 
autocorrelation not be found on model residuals, the 
model is considered perfect. If the values of 
correlation of residuals for various time lags is not 
significantly different from zero, the model is then 
considered adequate for use in forecasting. On one 
hand, Figure 2(a &b) shows the Akaike’s Information 
Criteria (AIC) graph that indicates that  there is no 
significant correlation because all the bars do not 
exceed the dotted line 95% confidence levels and  

 
Figure 2: Autocorrelation Function (ACF) and Histogram 
of residuals of residual of Keiskammahoek Irrigation 
Scheme as a ideal fitted model for data series of ET from 
2001 to 2018. 
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according to (Widowati, Putro, Koshio, & 
Oktaferdian, 2016), and (Gautam & Sinha, 2016)  the 
residue is random. The best selected ARIMA model 
to forecast ET is ARIMA (1,0,0). On the other hand, 
Figure 9(b) presents residuals which are evenly 
dispersed. The normal distribution of residuals 
indicates that the selected ARIMA model is free of 
overfitting  (Reza & Debnath, 2020).  

3.2 ARIMA Model Training 

The training of the ARIMA model was done by 
selecting data from 2001 to 2015 as a training set of 
data. One of the important aims of slitting data to 
training and testing is to use the testing part of the 
time series to check the sign of the variable’s 
parameters, and to investigate whether they are 
significant or not 

3.3 ARIMA Forecasting 

In this study, the training of the ARIMA model was 
done by selecting data from 2001 to 2015 as a training 
set of data. One of the important aims of slitting data 
to training and testing is to use the testing part of the 
time series to check the sign of the variable’s 
parameters, and to investigate whether they are 
significant or not.  

Figure 3(a-c) depicts the prediction results using 
ARIMA, ANN and Hybrid models. After the training 
of the models was done using 15 years time series 
data from 2001 to 2015, the next step was to predict 
ET using the remaining 3 year data from 2016 to 
2018. Thus, the data set from 2016 to 2018 was used 
as the testing part of the time series Prediction. This 
was important in forecasting because the testing part 
is forecasted and then forecasting results are 
compared with the actual results. The black line 
represents the training part of the time series data 
(2001 to 2018) and the ET forecasted results (2016 to 
2018) indicated by the blue line with the dark grey 
and light-grey shadings, indicating the 80% and 95% 
confidence levels of the forecasted time series. The 
ARIMA model constructed for this data is the 
ARIMA (1,0,0) and NNAR (1,1,2)(12) for ANNs. 

The Zhang P. G., (2003) proposed this model 
shown by figure 3(d) because of its the ability to 
forecast both linear and nonlinear underlying 
processes. The Kaiskammahoek irrigation scheme is 
no exception to real world time series contains both 
linear and nonlinear correlation structures. The black 
line indicates the training data set for a 15-year period 
(2001 to 2015); the blue line indicates the forecasted 
ET results, and the grey shading indicating the 95%  

 
Figure 3: Forecasted ET for 3-year period from 2016 to 
2018 using the ARIMA (a), ANN (b), Hybrid (ARIMA-
ANN) (c) and the ever-aged models (d). The black line in 
Figure 3 (a-c) represents the data from 2001 to 2015 and the 
blue line presents the 3 year forecast, with 95% confidence 
levels grey lines (a &c) and figure 3(d) with a black line 
representing 3 years averaged (ARIMA, ANN and Hybrid) 
models. 

confidence levels for the three year period (2016 to 
2018). 

Consecutively Figure 3(d) shows the prediction of 
3 combined ARIMA, ANN and Hybrid models 
averaged using the summation methods. The black 
line shows combined prediction part from 3 models 
used from 2016 to 2018. This was done to see if the 3 
averaged models could improve the forecast as such 
has been proven by other researchers. This study has 
employed 3 different model systems and showed its 

Evapotranspiration Prediction Using ARIMA, ANN and Hybrid Models for Optimum Water Use in Agriculture: A Case Study of
Keiskammahoek Irrigation Scheme, Eastern Cape, South Africa

281



performances in terms of the correlation coefficient 
“R”. However, it is always important to also average 
the forecast in order to improve the forecast accuracy 
(Bates & Granger, 2017, Clemen, 1989).  

3.4 Correlation Statistics 

To check the correlation of the prediction portion 
person correlation (Lin, 1989), was employed with 
ET predicted variables against the ET observed 
variables. Figure 3 (a-d) depicts the scatter diagram 
of the original ET and forecasted ET, represented by 
the black dots falling on the 45 line through the origin. 

 

 

 

 
Figure 4: Scatter plot between observed and forecasted ET 
show diagram of the actual ET versus the forecasted annual 
ET using ARI-MA (1,0,0)(1,1,0)[12] (a), NNAR(1,1,2)[12] 
(b), Hybrid (ARIMA-ANN's) (c) and the averaged (d) 
models (with validation period, 2016 to 2018). 

The correlation of the forecasted for all the 4 
forecasting models applied shows a strong correlation 
coefficient with ARIMA (R = 0.94), ANN (R= 0.86), 
Hybrid (R = 94) and the averaged models with (R = 
0.94). Based on the R values for all the 3 models and 
the averaged model, it is evidence that there is higher 
linear relationship between the forecasted results and 
the original time series data. Correlation Coefficient 
suggest other 3 used forecasting modelling ARIMA 
and Hybrid to be more correlated compared to lower 
value of ANN (0.86). 

3.5 Model Comparison 

Table 1 below shows the three models employed in 
this study to forecast ET at Keiskammahoek 
Irrigation Scheme, namely ARIMA, ANNs and 
Hybrid (ARIMA-ANN), and average of the three 
models. The model forecast capabilities are compared 
by using model performance statistics such as Root 
Mean Square Error (RMSE), Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), 
and Correlation Coefficient (R). The results presented 
in this table indicate that Hybrid model outperforms 
other models with RMSE = 33.80, MAE = 27.02, 
MAPE = 17.31 and R = 0.93.  It is also noticeable that 
the Mean Absolute Percentage Error-values for 
ARIMA and Hybrid seem similar, considering 
ARIMA (MAPE = 17.26) and Hybrid (MAPE = 
17.31). Since the hybrid model is made up of a 
combination of ARIMA and ANNs, it is possible that 
this model will perform better than the other models 
because it is expected to be capable of capturing both 
linearity and non-linearity in the time series. In terms 
of the correlation coefficient, ARIMA seems to 
outperform the others models, with a correlation 
coefficient of R = 0.94. 
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Table 1: Comparison of the ARIMA, ANN, Hybrid and 
Combined Models: RMSE, MAE, MPE, and R. 

Models RMSE MAE MAPE R 

ARIMA 37.58 32.37 17.26 0.94 

ANN 44.18 35.88 24.35 0.86 

Hybrid 33.80 27.02 17.31 0.94 

Combined 34.68 28.00 18.15 0.94 

 
These results are interesting as they agree with 

results found by (Zhang P. G., 2003), who archives 
higher accuracy of time series prediction through use 
of Hybrid (ARIMA-ANN) models.  

The three utilized models were further averaged 
to see if prediction accuracy could be reached. It has 
been shown in previous studies that combination of 
multiple forecasting methods leads to increase of the 
forecasting accuracy (Clemen, 1989). Therefore, in 
this study, the predictions obtained from the three 
models used were combined by using the summation 
method. The results of the COMBINED models 
indicated in Table 1 show better results of ARIMA 
and NNAR. These observations are encouraging as 
they are consistent with results of studies on the 
combination of several time series forecasting 
methods. Similar what is obtained in this study, 
Hyndman & Athanasopoulos, (2018),  also pointed 
out that combining forecasts often lead closer to, or 
better than, the best component method.  

4 CONCLUSIONS  

The possibility to predict evapotranspiration (ET) is 
essential as it can affirm perfect planning, design and 
operation of any irrigation scheme. Thus, the main 
aim of this study was to predict evapotranspiration 
(ET) at Keiskammaheok, Irrigation Scheme located 
in the province of Eastern Cape of South Africa using 
3 time series forecasting models, namely (ARIMA), 
(ANN), and the Hybrid (ARIMA-ANN) models. The 
18 years (2001-2018) remotely sensed ET data was 
extracted from a cloud-built software called Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
Tera/ Aqua 16-day dataset. Using four model models 
performance measures, namely, Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), and the 
Correlation Coefficient (R). It could be concluded 

that the Hybrid (ARIMA-ANN) guarantees the 
steadfast ET prediction for Keiskammahoek 
irrigation Scheme. The model outperformed other 
models with less values (RMSE =33.80, MAR = 
27.02, MAPE = 17.31 and R = 0.94). This indicates 
that the combination of ARIMA and ANN is a better 
option because such hybrid models are able to capture 
both linearity and non-linearity in the time series of 
ET, which in turn produce better results. This work 
will assist the Keiskammahoek irrigation scheme 
management to plan effectively. 

Future work may include further checking other 
variables in order to assess whether these reported 
drought in this region like Normalized Different 
Vegetation Index (NDVI) to assess vegetation state, 
Normalized Deference Water Index (NDWI) which is 
the availability of water in plants and Normalized 
Difference Different Index (NDDI) in order to check 
the drought state in the study site. 
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