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Abstract: Hyperspectral data contains rich information but also has the problem of data redundancy, so it is necessary 
to extract features from the data according to the application requirements to obtain useful waveform 
information. Traditional hyperspectral data feature selection approaches rely on band screening and other 
methods, which are imprecise and inefficient. Feature selection of hyperspectral data can be viewed as an 
optimization process, and the Slime mould algorithm (SMA) in machine learning is an effective optimization 
algorithm that simulates the foraging behavior of mucilaginous bacteria. In this paper, SMA is applied to the 
feature selection of hyperspectral data, correlation information between the bands and the results is added to 
the initial sampling process of the SMA, which speeds up the convergence of SMA and reduces the error of 
feature selection. Based on the feature bands selected by this improved SMA, a hyperspectral soil heavy metal 
inversion model was constructed, and the model was evaluated using three distinct evaluation methods: root 
mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The 
experimental results demonstrate that the optimized model has faster convergence and less result error during 
the feature selection phase, and that the final inversion model is more accurate. 

1 INTRODUCTION 

Hyperspectral data is the reflectance data of a sample 
at multiple wavelengths obtained by measuring the 
sample using a hyperspectral device, which has 
hundreds of continuous bands. Since there are 
differences in the reflectivity of matter for different 
wavelengths of light, the subtle differences between 
substances can be expressed through these hundreds 
of bands (Bioucas-Dias et al., 2013). At the same 
time, as a type of high-dimensional data, 
hyperspectral data has the issue of redundant data, it 
is required to extract features for the useful band 
information within in (Xu et al., 2021). 

Feature selection entails selecting the most 
relevant variables from the data and eliminating other 
variables that are weakly associated, hence enhancing 
the accuracy of the model. In general, the feature 
selection of the data is generally through two ways, 
The first is the direct selection method, such as Liu et 
al. direct selection of the feature band by the nature of 

the substance (Liu et al., 2019), but its band selection 
scheme is predefined, so its application scope is 
limited. The other is the application of machine 
learning algorithms for band selection, such as Lasso 
regression algorithm (Li et al., 2018), Distance 
Correlation (Li et al., 2012), Recursive Feature 
Elimination (Gregorutti et al., 2017), etc. M.,Imani et 
al. proposed a Fast Feature Selection Methods can 
achieve the image classification accuracy (M. & H., 
2014), but there are still issues with the inversion of 
the material. Zhang et al. applied the Ant Colony 
Optimization to the feature selection process for soil 
inversion of remote sensing pictures without taking 
convergence speed into account (Zhang et al., 2019). 

From an alternative viewpoint, the feature 
selection problem can be viewed as an optimization 
problem, i.e., selecting the few variables that have the 
highest correlation with the results from multiple 
variables; consequently, the band extraction process 
of Hyperspectral can be viewed as an optimization 
process. Li et al. proposed the Slime Mould Algorithm 
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(SMA) in 2020 as an new population intelligence 
optimization algorithm (Li et al., 2020). By varying 
the weight, they simulated the positive and negative 
feedback processes in the slime mold foraging 
process. The approach has been frequently applied to 
optimization problems because of its convergence 
precision and stability. For instance, Wei et al. 
successfully applied it to The Optimal Reactive 
Power Dispatch (ORPD) proble (Wei et al., 2021). 

In response to the above problems, the improved 
SMA is applied to the feature selection of 
hyperspectral data, and a hyperspectral soil heavy 
metal inversion model is developed based on the 
feature bands extracted by the optimized algorithm in 
this paper. 

The main contributions of this paper are as 
follows. 

1) By treating the feature selection problem as 
an optimization problem, the SMA is applied 
in feature selection of hyperspectral data to 
obtain useful bands information. 

2) further improvement of SMA is achieved by 
adding the correlation information between 
the bands and the results to the initial 
sampling process of SMA by using the 
Spearman's rank correlation coefficient. 

3) On the basis of the Support Vector Machine 
(SVM) regression algorithm, three 
hyperspectral soil heavy metal inversion 
models were built and evaluated using three 
distinct evaluation methodologies. 

The rest of the paper is organized as follows. In 
the second section, the algorithm is optimized and an 
inverse model is developed. A series of experiments 
and analyses are given in the third section. Finally, 
the fourth section summarizes the paper. 

2 METHOD 

2.1 Slime Mould Algorithm (SMA) 

The SMA is a metaheuristic algorithm with great 
merit-seeking abilities and rapid convergence (Li et 
al., 2020). The operation of the SMA consists of three 
main stages. The first is random diffusion to find the 
food with the strongest odor, then approaching 
diffusion toward the food with the strongest odor, and 
finally completing the wrapping of the target. The 
mathematical operation may imitate the random 
motion with directionality displayed by slime bacteria 
during their quest for food, and when this random 
motion tends to be stable, the slime bacteria position 
is the optimal value chosen by the slime bacteria 

algorithm. This motion's iterative pattern can be 
described by Eq. (1). 
 𝑋(𝑡 + 1) = 𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧𝑋 + 𝑣 ∗ 𝑊 ∗ 𝑋 (𝑡) − 𝑋 (𝑡) , 𝑟𝑎𝑛𝑑 < 𝑝 𝑣 ∗ 𝑋(𝑡), 𝑟𝑎𝑛𝑑 < 𝑝  (1) 

 
where the parameters of p are as follows： 
  𝑝 = 𝑡𝑎𝑛ℎ|𝑆(𝑖) − 𝐷𝐹| (2) 

 
Among Eq. (2), 𝑆(𝑖) is the fitness score of the 𝑖-

th particle in this iteration, and 𝐷𝐹  is the optimal 
fitness score since the beginning of the iteration.𝑈𝐵 
and 𝐿𝐵 are the upper and lower boundaries of the 
optimization search space, while 𝑧  is a threshold 
parameter with a relatively low value. 𝑋  is the 
position of the slime bacteria with the highest 
concentration of food odor found at the current 
moment, i.e., the current optimal solution. 𝑣  is a 
random value in the interval [-𝑎, 𝑎], and the value of 𝑎 is as follows. 

 
 𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛((− _ ) + 1) (3) 
 

As the iteration count grows, 𝑣  declines linearly 
from 1 to a random value between 0 and 1. 

The expression for 𝑊 in Eq. (1) is shown below: 
 𝑊 = 1 + 𝑟 ∙ 𝑙𝑜𝑔 ( ) + 1 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑜𝑛𝑠1 − 𝑟 ∙ 𝑙𝑜𝑔 ( ) + 1 , 𝑜𝑡ℎ𝑒𝑟𝑠  (4)  
Eq. (4) is contingent on 𝑆(𝑖)'s size being in the 

top half of all particles' rankings during the current 
iteration. The best fitness score for this iteration is 𝑏𝐹, while the poorest fitness score is 𝑤𝐹.  

During the preceding procedure, the particle 
positions gradually converge to the optimal aim as the 
number of iterations increases. 

2.2 Application of SMA to Feature 
Selection 

The hyperspectral data can be considered as a series 
of high-dimensional vectors 𝐴 = 𝑎 , 𝑎 … 𝑎 … 𝑎
， where 𝑎  is the spectral reflectance of the 𝑖-th 
band. Feature selection on hyperspectral data consists 
of selecting 𝑚  elements from 𝑛  elements to 
construct a new vector set 𝐵 = 𝑏 , 𝑏 , … , 𝑏 (𝑚 <𝑛) . In the ensuing modeling phase, vector 𝐵  is 
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modeled in place of vector 𝐴, thereby eliminating 
redundant data. 

The application of the traditional SMA is still 
limited to the selection of optimal values within a 
certain range, whereas the feature selection problem 
is to select the most pertinent variables from the data. 
Therefore, the algorithm must be further optimized to 
address the feature selection problem. 

In terms of the nature of the problem, the selection 
behavior of the data variables can be understood as a 
process of binarization, i.e., being selected when the 
value is 1 and not being picked when the value is 0. 
Therefore, the optimization issue can be transformed 
into a problem involving feature selection.  

For the band selection model of hyperspectral 
data, the dimensionality of the particles is first 
determined to ensure that the number of dimensions I 
of the particles equals the number of bands n of the 
data. In addition, the upper limit 𝑈𝐵 and lower limit 𝐿𝐵  of search seeking must be set to 1 and 0 
correspondingly, and a threshold 𝜆 must be set so 
that each 𝑋  satisfies Eq. (5), thereby expressing the 
relationship between the selection of particles and the 
selected ones. 

 

 𝑋 = 0, 𝜆 < 0.51, 𝜆 ≥ 0.5 (5) 
 

By configuring this relationship, the particle 
values are binarized in order to select the desired 
band. In addition, the fitness score within the SMA 
must be specified. In the process of selecting features 
for hyperspectral data, the level of the fitness score 
corresponds to the merit of various band selection 
schemes. Here, the partial least squares regression 
(PLSR) model, which requires few setup parameters 
and is efficient, is introduced for quantitative 
evaluation of feature selection schemes. Specifically, 
the data corresponding to the specified bands are 
modeled with the data to be inverted using PLSR, and 
the root mean square error (RMSE) score of the 
resulting model is utilized as the fitness value. As a 
result, the level of the fitness score can express the 
advantages and disadvantages of different band 
selection schemes. 

 

 𝑅𝑀𝑆𝐸 = ∑ (𝑦 − 𝑦 ) (6) 
 

Where 𝑦  and 𝑦  represent the true value and 
predicted value of the 𝑖-th sample respectively. This 
band selection strategy is more successful when 
RMSE has a smaller value. 

2.3 Sampling-Optimized Slime Mould 
Algorithm (SO-SMA) 

When band selection is performed for hyperspectral 
data, the initial sampling process of SMA discussed 
above is a uniform sampling with a threshold of 0.5. 
However, for hyperspectral data, the value of each 
band has a considerable effect on the findings, 
therefore the threshold needs to be continuously 
modified for different bands. In this research, the 
Spearman’s rank coefficient of correlation is used to 
express the effect of each band on the results. In the 
initial sampling process of the SMA, the acceptance-
rejection sampling with correlation coefficient as the 
threshold is used in place of the original uniformly 
distributed sampling to improve the initial state of the 
algorithm and increase the directionality in the feature 
selection process. The algorithm after sampling 
optimization strategy has the potential to expedite the 
convergence of the algorithm for feature selection. 

The Spearman's rank correlation coefficient 
which is denoted by the Greek letter 𝜌 in this work 
is used to estimate the correlation between two 
variables 𝑋 and 𝑌, where the correlation between 
the variables can be described using a monotonic 
function (Schober et al., 2018). The correlation 
coefficient between two variables can be either +1 or 
-1 if one of their respective sets of values can be 
adequately represented by the other variable as a 
monotonic function (i.e., the two variables have the 
same trend of change). 

Suppose that the two random variables are 𝑋 and 𝑌 respectively, the number of their elements are both 𝑁. The 𝑖-th value taken by 𝑋 and 𝑌 is denoted by 𝑋  and 𝑌  respectively. 𝑥  and 𝑦  are the ordered 
set of elements in 𝑋  and 𝑌 . 𝑑  is a ranking 
difference set after the corresponding subtraction of 
the elements in the sets 𝑥  and 𝑦 . Finally, as shown 
in Eq. (7), a simpler procedure is used to calculate 𝜌.  
 

 𝜌 = 1 − ∑( )  (7) 
 

 𝑑 = 𝑥 − 𝑦 ，1 ≤ 𝑖 ≤ 𝑁 (8) 
 

After computing the Spearman's rank correlation 
coefficient independently for each band, it is 
necessary to linearly deflate the absolute values of the 
acquired correlation coefficients in order to give a 
more effective sampling optimization. In this paper, 
the maximum value of correlation coefficient after 
linear reduction is 0.8 and the minimum value is 0.2. 
Eventually, they become the selected thresholds for 
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each band in the feature selection process. As shown 
in the Eq. (9). 

 

 𝑋 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝜆 < 𝑡ℎ𝑟𝑒𝑈𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝜆 ≥ 𝑡ℎ𝑟𝑒  (9) 

 
Eq. (9) permits the selection of the band with the 

highest absolute correlation coefficient with an 80% 
chance during the initial phase of the SMA. Similarly, 
the band with the lowest correlation with the result 
has a 20% chance of being chosen in the initial 
procedure ，which brings the algorithm's random 
distribution near to the distribution of the correlation 
coefficient. 

 
Figure 1: The probability of each band being selected 
before algorithm optimization. 

 
Figure 2: The probability of each band being selected after 
algorithm optimization. 

In Fig. 1 and Fig. 2, 𝑝 is the probability of the 
band being selected. As shown in the picture, the 
sampling-optimized SMA (SO-SMA) is more 
relevant for different bands and the correlation 
between the bands and the outcomes influences the 
selection of different bands. 

2.4 Inversion Method 

In this study, the inversion model is built with the 
SVM regression algorithm, a branch of the normal 
SVM algorithm. The objective of the SVM regression 
algorithm is to locate the ideal hyperplane that brings 
the data closest to the hyperplane and enables 

regression analysis via data fitting. The advantage of 
the SVM regression algorithm is that only a small 
number of support vectors are required to establish 
the optimal hyperplane, and the kernel method 
endows the data with a nonlinear regression 
approach; therefore, it has a distinct advantage when 
dealing with small samples of high-dimensional 
hyperspectral data (Yuan et al., 2017). In the 
subsequent experiments, this paper uses the SVM 
regression algorithm to model the inversion of 
hyperspectral soil heavy metals based on the data 
extracted by the SMA and the SO-SMA in the 
previous paper. 

2.5 Model Evaluation Method 

In this study, three evaluation metrics, root mean 
square error (RMSE), mean absolute error (MAE), and 
coefficient of determination (R2), are chosen to evaluate 
the inversion model constructed using SMA 
following the initial sampling optimization. RMSE is 
defined by Eq. (6), MAE and R2 are defined as 
follow.   𝑀𝐴𝐸 = ∑ 𝑦 − 𝑦   (10) 

 
 𝑅 = 1 − ∑ ( )∑ ( )  (11) 

 
Where 𝑦  and 𝑦  represent the true value and 

predicted value of the 𝑗-th sample respectively, 𝑦  
is the average of the true value, and 𝑁 is the number 
of samples. The three evaluation indices are identified 
by the letters C and P in the bottom right-hand corner 
of the model training and prediction data sets (from 
the initials Calibration and Prediction, respectively). 
That is, we've lettered the assessments of the training 
data sets 𝑅 , 𝑅𝑀𝑆𝐸  and 𝑀𝐴𝐸 , and the 
assessments of the prediction data sets 𝑅 , 𝑅𝑀𝑆𝐸  
and 𝑀𝐴𝐸 . 

3 EXPERIMENTAL EVALUATION 

3.1 Study Area and Datasets 

As shown in Fig. 3, the area chosen for this study is 
situated on the northern bank of the Yangtze River in 
the Chinese city of Nanjing, Jiangsu Province. The 
presence of nearby heavy industrial facilities may 
result in the enrichment of heavy metals in the 
surrounding soil. In this paper, 134 ground soil 
sampling sites in the study region were selected, and 

Feature Selection of Hyperspectral Data Using an Improved Slime Mould Algorithm

647



modeling inversions were done based on the relevant 
data of laboratory-measured heavy metal 
concentrations and the hyperspectral data of the 
sample sites' corresponding locations.  

 
Figure 3: Study area and location of sampling points. 

Three different types of soil heavy metals were 
statistically examined. The results are displayed in 
Table 1. 

Table 1: Descriptive statistics of heavy metal concentration. 

 Cd (mg/kg) Cu (mg/kg) Hg (10-3mg/kg) 
Max 50.995 148.1 175.65 
Min 19.3 80.0 37.3 

Mean 33.34 106.38 101.49 
Std 6.29 11.58 21.60 

3.2 Rate of Convergence 

In this paper, we use SMA and SO-SMA for feature 
selection of hyperspectral data of three different 
heavy metals. From the results of the feature selection 
of part (a) and part (b) in Fig. 4, it can be inferred that 
the SO-SMA is indeed consistent with fast 
convergence in terms of feature selection of spectral 
data, and the RMSE error is also reduced. For the 
convergence results of part (c) in Figure 3, SMA and 
SO-SMA only took a fewer number of iterations to 
get a smaller RMSE due to the limited data of the 
measured samples and the weak content of Hg in the 
soil, which caused SO-SMA to lack a noticeable 
advantage. 

The intention of the Spearman's rank correlation 
coefficient utilized in this research for the 
construction process of acceptance-rejection 
sampling is to circumvent the inadequacies of 

Pearson correlation coefficients. This is due to the 
fact that the Pearson correlation coefficient may not 
fulfill the normal distribution in the case of a small 
sample size, and therefore fails to meet the common 
assumption of its correlation coefficient. The 
Spearman's rank correlation merely demands that the 
observations of the two variables be paired rank-rated 
information or that the rank information be derived 
from observations of continuous variables. 
Consequently, regardless of the general distribution 
pattern of the two variables and the sample size, the 
Spearman rank correlation coefficient may be utilized 
to assess the correlation between the two variables. In 
the optimization process of the SMA, this paper 
stretches the absolute value of the Spearman's rank 
correlation coefficient and applies it to the initial 
sampling process of the SMA, thereby transforming 
the uniform distribution in the band selection process 
into a dynamic distribution that varies according to 
the relationship between the band and the result. 
Therefore, the SO-SMA achieves superior outcomes 
in the hyperspectral data feature selection procedure. 

3.3 Model Evaluation 

Based on the original data, the data after feature 
selection by SMA, and the data after feature selection 
by SO-SMA, and using the SVM regression 
algorithm, hyperspectral soil heavy metal inversion 
models (SVM, SMA-SVM and SO-SMA-SVM) were 
built in this paper. In addition, Recursive Feature 
Elimination (REF), a classic feature selection 
approach in machine learning, is also frequently 
utilized in band extraction of hyperspectral data; 
therefore, this study establishes an RFE-SVM 
inversion model based on this algorithm. Firstly, all 
of the samples were separated into training sets and 
test sets. The training set was used to tweak the 
model's parameters and establish the model, while the 
test set was used to assess the model's generalization 
capacity. Tabulated in Table 2 are the precisions of 
the 4 models. Finally, the inversion model was 
evaluated using the RMSE, MAE, and R2 assessment 
indices. 

From the inversion model accuracy table, it is 
clear that the SVM regression method suffers from 
overfitting throughout the inversion model 
development process and is therefore incapable of 
completing the soil heavy metal inversion accurately 
and effectively. In addition, the REF-SVM model 
developed based on REF can only partially mitigate 
the overfitting issue, and the accuracy is low, so the 
effect of the inversion process is not adequate. In 
contrast, the SMA-SVM and SO-SMA-SVM models 
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built by using the SMA for feature selection of 
hyperspectral data both weakened the overfitting 
phenomenon. Comparing the SMA-SVM and SO-
SMA-SVM models, the SO-SMA-SVM model 

generated after the initial sampling optimization 
provides more accurate end findings than the SMA-
SVM model.

 
Figure 4: Comparison of optimal RMSE changes in every iteration. 

 

Figure 5: Inversion scatter diagram of SO-SMA-SVM model. 

Table 2: Regression results of SVM, SMA-SVM and SO-SMA-SVM. 

 

Metal Method    𝑅  𝑅𝑀𝑆𝐸  𝑀𝐴𝐸  𝑅  𝑅𝑀𝑆𝐸       𝑀𝐴𝐸    
Cd SVM 0.99 0.09 0.09 0.48 3.60 2.96 

REF-SVM 0.99 0.09 0.08 0.51 3.41 2.84 
SMA-SVM 0.97 0.15 0.12 0.53 3.53 2.77 

SO-SMA-SVM 0.89 2.03 1.69 0.61 3.02 2.06 
Cu SVM 0.84 4.35 2.26 0.43 6.39 8.28 

REF-SVM 0.83 4.28 2.15 0.47 6.37 7.75 
SMA-SVM 0.83 4.21 2.35 0.59 6.33 6.98 

SO-SMA-SVM 0.81 4.85 2.74 0.62 6.21 6.35 
Hg SVM 1.00 0.10 0.10 0.49 11.49 9.31 

REF-SVM 0.99 0.10 0.10 0.49 11.12 9.02 
SMA-SVM 0.95 0.11 0.12 0.51 10.45 8.77 

SO-SMA-SVM 0.94 0.14 0.16 0.63 9.34 7.21 
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4 CONCLUSIONS 

This work employs the SMA method for feature 
selection of hyperspectral data in order to overcome 
the problem of data redundancy encountered during 
the information extraction process of hyperspectral 
data. This paper replaces the uniformly distributed 
sampling in the initial randomization process of the 
SMA with acceptance-rejection sampling during the 
feature selection procedure, thereby incorporating the 
relationship between the waveband and the result into 
the algorithm during the optimization phase and 
enhancing the algorithm's convergence speed and 
precision. In addition, we applied the SO-SMA to the 
hyperspectral soil heavy metal inversion modeling 
procedure, and the final experimental results 
demonstrated that the final results of the optimized 
sampling feature selection algorithm were superior to 
those of the most fundamental uniformly distributed 
sampling feature selection scheme, and diminished 
the overfitting phenomenon in the conventional SVM 
model. Therefore, before selecting features for the 
bands of hyperspectral data, it is essential to consider 
the correlation coefficient of each band for the 
outcomes.  
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