
Practical Validation of ORB2 SLAM Mapping on Indoor Logistic 

UAV Application 

Wahyu A. Candra1 a, Rochdi Merzouki2 b and Mohamed Djemai3 c 
1Manufacture Automation and Mechatronics Engineering Dept., Polman Bandung, Jl. Kanayakan 21, Bandung, Indonesia 

2CRIStAL, Professor at Ecole Polytechnique de Lille, Universite de Lille, Lille, France 
3LAMIH, Professor at Universite Polytechnique des Hauts de France, Valenciennes, France 

Keywords: Slam, ORB, ROS, Indoor Logistic, Drone, UAV. 

Abstract: Aiming at complex unstructured environment of manufacture production line and highly requirement to raise 

the production volume, in order to meet the requirement, this study proposes an UAV (Unmanned Aerial 

Vehicle) as one of tools or methods to solve this problem. The UAV drone (Parrot Bebop 2) will perform on 

part delivery from one point to another inside the manufacture plan using spatial area. To support this AIP 

mini manufacture plant is provided by utilize two different rooms as production line and inspection plant. 

This study deals with the proposed ORB-SLAM 2 method to generate initial map between inspection room 

and production line of AIP plant at 3rd floor Polytechnic of Lille. The study showed results while ORB Slam 

combined to bebop drone which less memory size, data delay and monocular type camera performs mapping 

both in the simulation world by ROS Gazebo and real environment world. 

1 INTRODUCTION 

Manufacture plants divided into two type of 

environment, there are structured or unstructured. 

The differences between both are while unstructured 

one requires autonomous level. Otherwise, structured 

environment is best for automated agents. Most of 

conventional manufacture plants are unstructured 

therefore more challenging method are required to 

implement the autonomous application here (Kolski, 

Ferguson, Bellino, & Siegwart, 2006) (Melingui, 

Chettibi, Merzouki, & Mbede, 2013). 

To provide the autonomous application in the 

unstructured environment then SLAM method is 

required. A large number of SLAM techniques have 

been proposed on many applications. Whether 

outdoor or indoor application SLAM, these 

techniques have attracted more and more attention for 

any environments and many robot types (Taketomi, 

Uchiyama, & Ikeda, 2017). 

ORB Slam 2 is considered as one method to be 

implemented in this case since the method shows 

potential result. (Mur-Artal & Tardós, 2017) Since 

 

a  https://orcid.org/0000-0003-0888-6363 
b  https://orcid.org/0000-0001-9153-6078 
c  https://orcid.org/0000-0002-5375-9470 

Bebop 2 drone is used, the mapping could be done 

using monocular camera and suitable for GPS denial 

environment. Currently, many ORB slam application 

used for outdoor activity which GPS use could be 

help the performance of the Slam its self (Lakhal, 

Koubeissi, Aitouche, Sueur, & Merzouki, 2021). 

The study organized in the AIP area at floor 3rd of 

Polytechnique de Lille by using their 2 separate 

rooms. The AIP area represented as unstructured 

plants. One on TP Robotique Industrielle room C-303 

as production line and TP Logique Industrielle room 

C-304 as inspection room. In the scenario of 

delivering small part Bebop drone was sent from 

inspection room to production line and vice versa. 

The remaining of this paper organized as follows. 

In section 2, the SLAM concepts are briefly reviewed 

and model of visual SLAM is formulated. In section 

3, the system requirement and specification are 

discussed. In section 4, the ORB SLAM mapping 

process and the experimental validation using 

simulation and real world are illustrated. Finally, 

conclusions are given in section 5. 
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2 WORKING PRINCIPLES 

In this section the basic principle of visual SLAM is 
discussed. 

2.1 Visual SLAM 

The history of the research on SLAM has been over 
30 years, and the models for solving SLAM problems 
can be divided into two categories: filtering based 
methods and graph optimization based methods 
(Scaramuzza & Fraundorfer, 2011). The map 
building problem for an unknown environment with 
use of on-board sensors while solving the localization 
problem at the same time is known as Simultaneous 
Localization and Mapping. 
 

 

Figure 1: Main Components of Visual Odometry System. 

This SLAM was originally proposed to achieve 
autonomous control of robots in robotics. Then, 
SLAM-based applications have widely become 
broadened such as computer vision-based online 3D 
modelling, augmented reality (AR)-based 
visualization, and self-driving cars, autonomous 
underwater vehicles, planetary rovers, newer 
domestic robots and even inside the human body. 
SLAM methods can be classified at least by used 
sensors and output map type and sometimes they have 
common underlying math methods (e.g. Kalman filter 
or bundle adjustment). SLAM algorithms are tailored 
to the available resources, hence not aimed at 
perfection, but at operational 9 compliance. 
(Taketomi, Uchiyama, & Ikeda, 2017) 

 

 

Figure 2: Featured-based Method SLAM. 

In navigation, robotic mapping and odometry for 
virtual reality or real environment, simultaneous 
localization and mapping (SLAM) is the 
computational problem of constructing or updating a 
map of an unknown environment while 
simultaneously keeping track of a robot’s location 
within it. Popular approximate solution methods 
include the particle filter, Extended Kalman filter, 
Covariance intersection, and GraphSLAM. In a few 
words all these methods are based on Bayesian 
inference provide a technique for random value 
estimation. (Huletski, Kartashov, & Krinkin, 2015) 

2.2 Elements of Visual SLAM 

Basic Modules. The basic modules are composed 
into framework, which consist of Initialization, 
tracking and mapping. 

Initialization is required to define a certain 
coordinate system for camera pose estimation and 3D 
reconstruction in an unknown environment. Then 
tracking and mapping are performed to continuously 
estimate camera poses. In the tracking, the 
reconstructed map is tracked in the image to estimate 
the camera pose of the image with respect to the map. 

In the mapping, the map is expanded by 
computing the 3D structure of an environment when 
the camera observes unknown regions where the 
mapping is not performed before. 

Additional Modules. The following two 
additional modules are for stable and accurate 
performance. It also included in visual SLAM 
algorithms according to the purposes of applications. 
It consists of Relocation and Global map 
optimization. The re-localization is required when the 
tracking is failed due to fast camera motion or some 
disturbances and the global map optimization is 
normally performed in order to suppress the 
accumulative estimation error according to the 
distance of camera movement. 

3 REQUIREMENT AND 

SPECIFICATION 

To perform ORB-Slam mapping by Bebop UAV 
drone, ROS system is implemented by using both 
ROS Gazebo Simulator and Real robot in real world 
application. 

3.1 ROS System 

For working with Parrot Bebop 2 in the ROS 
environment, firstly Ubuntu OS must be installed in 
our workstation. It is because ROS is built from 
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3ebian based packages. The Parrot Bebop 2 required 
Ubuntu 14.04 LTS version as minimum or Ubuntu 
18.04 LTS version as the latest one, however Ubuntu 
16.04 LTS version is the common used version. UAV 
drone that equipped with software driver which able 
to run as well in the ROS platform. 

ROS Navigation is fairly simple on a conceptual 
level. It takes in information from odometry and 
sensor streams and outputs velocity commands to 
send to a robot. Use of the Navigation on an arbitrary 
robot, however, is a bit more complicated. As a pre-
requisite for navigation stack use, the robot must be 
running ROS, have a tf transform tree in place, and 
publish sensor data using the correct ROS Message 
types. Also, the Navigation Stack needs to be 
configured for the shape and dynamics of a robot to 
perform at a high level. (Pyo, Cho, Jung, & Lim, 
2015) 

 

 

Figure 3: ROS Navigation Stack. 

ROS has a package that performs SLAM, named 
Navigation Stack, however, some details of its 
application are hidden, and considering that the 
programmer has some expertise. ROS has a set of 
resources that are useful so a robot is able to navigate 
through a medium, in other words, the robot is 
capable of planning and following a path while it 
deviates from obstacles that appear on its path 
throughout the course. These resources are found on 
the navigation stack (Fabro, Guimarães, de Oliveira, 
Becker, & Brenner, 2016). 

3.2 ORB SLAM 2 System 

ORB-SLAM is the visual SLAM method that utilizes 
ORB-features and doesn’t use any external odometry. 
The ORB algorithm has several features. During 
robot exploration the place recognition database is 
constructed. This database contains bag of words 
representation of the current camera image that is 
bound to the specific position in the map. This 
database allows to perform queries with the set of 
currently observed ORB descriptors to recognize 
current place. Details on the usage of such database 
are described in. Another feature of this SLAM is the 
visibility graph in which vertices are key frames and 
an edge connects two vertices if they share enough 

common features. Such graph is useful for finding 
several frames with the images of the same object 
from different view angles (Mur-Artal & Tardós, 
2017). 
ORB Descriptor 

ORB (Oriented FAST and Rotated BRIEF) are 
binary features invariant to rotation and scale (in a 
certain range), resulting in a very fast recognizer with 
good invariance to viewpoint. ORB was conceived 
mainly because SIFT and SURF are patented 
algorithms. (Calonder, Lepetit, Strecha, & Fua, 2010) 

Oriented-FAST, however, FAST features do not 
have an orientation component and multiscale 
features. So orb algorithm uses a multiscale image 
pyramid. An image pyramid is a multiscale 
representation of a single image that consist of 
sequences of images all of which are versions of the 
image at different resolutions. Each level in the 
pyramid contains the down sampled version of the 
image than the previous level. Once ORB has created 
a pyramid it uses the fast algorithm to detect key 
points in the image. By detecting key points at each 
level ORB is effectively locating key points at a 
different scale. In this way, ORB is partial scale 
invariant. 

Steered BRIEF, allow BRIEF to be invariant to 
in-plane rotation. Matching performance of BRIEF 
falls off sharply for in-plane rotation of more than a 
few degrees. A more efficient method is to steer 
BRIEF according to the orientation of key points. 

rBRIEF is steered BRIEF by applying greedy 
search algorithm for set of uncorrelated tests on it. 
Therefore the result of rBRIEF has significant 
improvement in the variance and correlation over 
steered BRIEF. 
Bundle Adjustment 

ORB-SLAM 2 performs BA to optimize the 
camera pose in the tracking thread (motion-only BA), 
to optimize a local window of key frames and points 
in the local mapping thread (local BA), and after a 
loop closure to optimize all key frames and points 
(full BA). ORB-SLAM 2 use the Levenberg–
Marquardt method implemented in g2o (“general 
graph optimization”). 

Motion-only BA optimizes the camera orientation 
and position. Motion-only BA optimizes the camera 
orientation and all points seen in those key frames. 
Full BA is the specific case of local BA, where all key 
frames and points in the map are optimized, except 
the origin key frame that is fixed to eliminate the 
gauge freedom. 

3.3 UAV System 

Parrot, a France-based company, has been on a hit or 
miss run with the drones they released in the past 
years. The AR.Drone 2.0 and other previous models 
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have had bugs and glitches the company had to iron 
out after their release. 
 

 

Figure 4: Parrot Bebop 2. 

Bebop has on-board sensors for autonomous 
flight through the use of GPS for guidance. The 
Bebop also has a forward-looking camera for aerial 
photography or as sensor input in the Visual SLAM. 
The Wi-Fi communications module of Bebop allows 
manual control and control by a ROS package called 
“bebop autonomy”. 

Bebop 2 has hardware specification as followed; 
Dual core processor with quad-core GP, 8GB flash 
storage system, Built-in GPS: GPS + GLONAS, 
performance of 1280kW motor. It has also 14 
megapixels wide-angle CMOS camera with 3 photo 
formats: RAW, JPEG, DN and Full HD 1080p video 
with unique digital image stabilization. It is 
embedded with ultrasound sensor, altimeter sensor, 
IMU sensor and optical flow camera. Bebop equipped 
with 802.11a/b/n/ac Wi-Fi, Wi-Fi MIMO with 
2.4GHz antennas. 

4 IMPLEMENTATION AND 

RESULTS 

4.1 ROS Setup 

Git is a tool for installation, programming and 
developing version of program. Prior to start 
programming use some related source of package 
links that will be used on this topic as stated in the 
previous section. 

Parrot-Sphinx aims to run Parrot Bebop 2 both in 
the Gazebo simulation environment by firmware the 
driver of drone on PC and as well run real robot at the 
same time. 

To perform both simulation and real environment, 
the main core running in ROS platform is by monitor 
and diagnose the nodes and topics using rqt_graph as 
sown. 

 

Figure 5: Node and Topics Graph. 

To have proper result both in simulation and real 
world, TF transformation must be set up where origin 
of of TF before mapping is odom and after mapping 
process is map. 

4.2 Simulation Environment 

Simulation World. Prior to work in simulation, the 
environment, it is called world in the gazebo 
simulator, must be prepared. It can be constructed 
from either model of Gazebo or own built in model. 
In our work, the world is built based on the building 
layout of TP Robotique Industrielle room C-303 and 
TP Logique Industrielle room C-304 of Polytech Lille 
as drawn at Figure .  
 

 

Figure 6: Production Room World Simulation in Gazebo. 

Room C303 has 6x9 m2 in area which consist of 
5 arm-robot with production plant installed. Room C-
304 has an area 6x6 m2 which consist of inspection 
plant table and surrounded by laboratory benches. 
The mapping path which departed from inspection 
table to production room then went back to inspection 
room took about 100 m with coverage area about 115 
m2 and surrounded wall area about 261 m2. 

Simulation Mapping. For the simulation, the 
mapping process, using Parrot Bebop 2 and ORB-
SLAM, took about 1 hour for the 115 m2 of coverage 
area. 
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Figure 7: World Simulation for ORB-SLAM Mapping 

Progress in RVIZ. 

And result of simulation mapping showed as 
below, 

 

  

Figure 8: 2D Mapping Result in RVIZ. 

4.3 Real Environment 

In the real robot and environment, we don’t create 

simulation world. The mapping actions were taken 

directly use Parrot bebop drone in real environment 

as seen at Figure . 

 

 

Figure 9: Real Environment 3D Map. 

 

Figure 10: Real robot 3D mapping progress in RVIZ. 

 

Figure 11: Real Environment 3D Point Cloud Mapping. 

Table 1: Real robot and environment mapping process. 

Attempt Duration Bag file File 

1st 58 min. 232 GB corrupted 

2nd 32 min. 128 GB corrupted 

3rd 40 min. 160 GB good 

 

For real robot and environment, the best mapping 

process took about 40 minutes and resulted 160GB of 

recorded bag file. However, the map file its self only 

consumed 1% of the bag file. 

5 CONCLUSIONS 

The result showed better in Simulation than in real 
world environment. It is due to real world has more 
un-controllable variable such as, variety of light along 
with drone’s path and dynamically human obstacle. 

The result showed less efficient while ORB Slam 

method combined into Bebop 2 drone. The lacked 

results due to less memory, data transmission delay 

and monocular type specification of used Bebop 2 

drone. 

For further research, required other SLAM 

method which probably uses less data or use other 

UAV which has better data transmission and 
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improved camera specification such as stereo camera 

or RGB-D camera. 
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