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Abstract: Introducing drones into urban airspace poses several air traffic management (ATM) challenges. Among these 
is how to monitor and de-conflict (potentially high-density / low predictability) drone traffic. This task might 
exceed the capabilities of the current (human-based) air traffic control system. One potential solution lies in 
the use of Machine Learning (ML) to predict drone conflicts. This study explored via low-fidelity offline 
simulations the potential benefits of ML for drone conflict prediction, specifically: how well can a simple ML 
model predict on the basis of instantaneous traffic pattern snapshot, whether that pattern will result in an 
eventual airspace conflict? Secondly, how is model performance impacted by such parameters as traffic level, 
traffic predictability, and ‘look-ahead’ time of the model?  
Using a deep learning neural network approach, this study experimentally manipulated traffic load, traffic 
predictability, and look-ahead time. Using limited trajectory data (aircraft state) and a limited neural network 
architecture, results demonstrated (especially with structured traffic) large potential ML benefits on airspace 
conflict prediction.  Binary classification accuracy generally exceeded 90%, and error under the most 
demanding scenarios tended toward false positive (i.e. incorrectly predicting a conflict). The current work is 
abstracted from Hilburn (2020), which provides further detail. 

1 INTRODUCTION 

The possible introduction of drone traffic into urban 
airspace has many in the air traffic management 
(ATM) community wondering how to accommodate 
such a fundamentally new type of aircraft, whose 
potential numbers and unpredictability might 
overwhelm current human-based methods for 
managing air traffic (Duvall et al., 2019; European 
Union, 2016). One possible solution lies in the use of 
Machine Learning (ML) techniques for predicting 
(and possibly resolving) drone conflicts in high 
density airspace. 

The aim of this research was not to develop an 
optimised ML model per se, but to experimentally 
explore via low-fidelity offline simulations the 
potential benefits of ML for drone conflict prediction, 
specifically: how well can a simple ML model predict 
on the basis of instantaneous traffic pattern snapshot, 
whether that pattern will result in an eventual airspace 
conflict (defined as entry into a stationary prohibited 
zone)?  
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Secondly, how is model performance impacted by 
such parameters as traffic level, traffic predictability, 
and ‘look-ahead’ time of the model?  

2 METHOD 

2.1 Airspace and Traffic Assumptions 

This effort started from several assumptions. First 
was the focus on the ‘edge case,’ or worst-case 
scenario. If ML were able to predict conflicts under 
the most challenging possible assumptions, real 
world results would likely be better. For reasons of 
this analysis, traffic assumptions therefore included 
the following (TERRA, 2019): 

• Urban Air Mobility (UAM) scenario —
envisions short flight times, and frequent 
trajectory changes; 

• High traffic density—this is implicit in 
predicted future urban drone scenarios, but we 
intended to push the limits of traffic level; 
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• Lack of intent information—no flight plan 
information (regarding filed destination, 
speed, altitude, heading changes, etc) would 
be available. Instead, only the minimal 
(instantaneous) state information would be 
provided; 

• Random drone movements—ML conflict 
prediction would be trivial if all drone 
movements were completely predictable. In 
reality, VLL drone operations will have a fair 
amount of structure and determinism. 
However, we intentionally introduced a high 
level of randomness in drone movements, 
again to test the worst case scenario for ML; 

• Prohibited airspace— was represented as 
static no-go regions (e.g, around security 
sensitive areas). This analysis included a 
single, static “no drone zone,” and conflicts 
were defined as penetrations of this zone. 

2.2 Methodological Assumptions 

This effort set out to test ML conflict prediction using 
the most challenged methods. Specifically, this meant 
that whatever ML model we used, must have no 
ability to look either forward or backward in time, nor 
make use of any other information beyond the simple 
instantaneous state of each drone. For research 
purposes, the conflict prediction problem was 
simplified to one of pattern recognition. We used a 
supervised learning approach, and in particular a 
fairly limited architecture: the standard deep learning 
(i.e., multi hidden layer) artificial neural net. Whereas 
enhancements to the neural net approach (including 
RNN, CNN, and LSTM enhancements) would be 
expected to show better time series processing and 
thus better classification performance, we set out to 
use a simpler neural net architecture, to establish 
baseline worst case model performance. Moreover, 
we set out to train different models (36 in all) so that 
model performance could be compared 
experimentally, to assess the impact of traffic level, 
traffic randomness, and look-ahead window range, on 
ML conflict prediction performance. 

2.3 Test Scenarios and Traffic Samples 

The urban drone environment was represented by a 
20 x 20 grid of 400 total cells. Each cell was either 
occupied or empty.  Developmental testing 
established the number and size of restricted areas, so 
as to produce a reasonable number of Prohibited Zone 
(PZ) incursions. It was decided to use a single, 
stationary PZ, as shown in 1. One simplifying 

assumption was that altitude was disregarded, and 
drone movements were only considered in two 
dimensions (the PZ was assumed to be from the 
surface upward). Second, there were no speed 
differences between drones. Finally, conflicts were 
only defined as airspace incursions into the PZ, not as 
losses of separation between drones (drones were 
assumed to maintain vertical separation).  

 
Figure 1: Snapshot, traffic sample of 16 birthed drones 
(note PZ). 

Traffic samples were built from three different kinds 
of drone routes, as shown in Figure 2. 

 
(a) Through-routes. 

 
(b) TCP-routes. 

 
(c) Bus-routes. 

Figure 2: The three types of drone routes. 

Notice that drones could only fly on cardinal 
headings (North, South, East, or West). Through-

PZ 
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routes transited the sector without any heading 
change. TCP-routes (i.e. Trajectory Change Point 
routes) added probabilistic heading changes to 
through-routes. After a random interval of 3-6 steps, 
TCP-route drones would either continue straight 
ahead, or make a 90° left/right heading change. The 
random TCP function was nominally weighted to 
50% no heading change (i.e. continue straight ahead), 
25% left turn, and 25% right turn. Finally, the ten 
possible Bus-routes (5 routes, flown in either 
direction) were pre-defined TCP trajectories. Bus-
route drones all entered the sector after sample start 
time, except for bus-routes 9 and 10 (which flew a 
square pattern in the centre of the sector, and were 
birthed already on their route). 

As discussed later, analysis compared “random” 
and “structured” route conditions, as an experimental 
manipulation. The random condition used TCP-
routes exclusively. The structured condition used a 
random combination of through-routes and bus-
routes.  

Each traffic sample consisted of 40 time steps. 
First appearance of each drone was randomly timed 
to occur between steps 1 and 15. Each drone 
maintained current heading by advancing one cell per 
time step (no hovering). This meant that a through-
route drone would transit the sector in 20 steps. Each 
traffic sample also consisted of 4, 8, or 16 birthed 
drones (this was also an experimental manipulation, 
as described later). Because birth time was 
randomized, the actual number of instantaneous in-
sector drones could vary. 

Analysis used a 3x2x2 experimental design and 
varied the following factors: 

• Aircraft count (4 vs 8 vs 16)— the total 
number of birthed aircraft; 

• Look-ahead time (Low vs High)— Snapshot 
time, in number of steps before conflict; 

• Traffic structure (Low vs High)— 
Randomised vs semi-structured traffic flows. 

2.4 Neural Network Design 

Neural network modelling was done in 
NeuralDesigner v2.9, a machine learning toolbox for 
predictive analytics and data mining, built on the 
Open NN library. Modelling used a 400.3.1 
architecture (i.e., 400 input nodes, a single hidden 
layer of 3 nodes, and a single binary output node), 
with standard feedforward and back propagation 
mechanisms, and a logistic activation function. Each 
of the 400 total cells was represented as an input node 
to the network. Each input node was simply coded on 
the basis of occupation, i.e. a given cell was either 

occupied (1) or empty (0). The output node of the 
ANN was simply whether the traffic pattern evolved 
into an eventual conflict (0/1). Maximum training 
iterations with each batch was set to 1000. 

2.5 Procedures 

The overall flow of the traffic generation, pre-
processing, and ANN modelling process is shown in 
Figure 3. Using a traffic generation tool, preliminary 
batches of 5000 traffic samples each were created. 
Separate batches were created for each combination 
of aircraft count and structure level. For each batch, 
samples were then automatically processed to 
identify conflict versus non-conflict outcomes, 
extract multiple look-ahead snapshots (for 1-6 steps) 
from conflict samples, and extract matching yoked 
snapshots from non-conflict samples. Target outputs 
were then labelled, and sample groups were fused into 
a final batch file. This batch file was then randomly 
split 60/40 into training and testing sub batch files.  
  After training each of the 36 networks with its 
appropriate training sub batch file, each network was 
tested on its ability to classify the corresponding test 
sub batch file.  

 
Figure 3: Overview, traffic creation and model testing 
procedure. 

3 RESULTS 

3.1 Binary Classification Accuracy 

The simplest performance measure is classification 
accuracy. That is, what percentage of samples was 
correctly classified as either conflict or no conflict? 
The ANN models each had a simple binary output: 
either an eventual conflict was predicted, or was not. 
This is a classic example of a binary classification 
task, which is characterized by two ‘states of the 
world’ and two possible predicted states. A binary 
classification table, as shown in Figure 4, allows us to 
identify four outcomes: True Positive (TP), True 
Negative (TN), False Positive (FP), and False 
Negative (FN). According to Signal Detection Theory 
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(Green & Swets, 1966), these outcomes are referred 
to, respectively, as: Hits, Correct Rejections, False 
Alarms, and Misses. 

 
Figure 4: Binary classification outcomes. 

These four classification outcomes allow us to define 
the following rates: 

• Accuracy— the rate of proper classification, 
defined as:  ACC = [TP+TN] / 
[TP+FN+TN+FP] 

• Error Rate = 1-ACC = [FN+FP] / 
[TP+FN+TN+FP] 

• True Positive Rate (aka sensitivity) = TP / 
[TP+FN] 

• True Negative Rate (aka specificity) = TN / 
[TN+FP] 

For structured traffic, there seemed to be a ceiling 
effect on classification performance. Classification 
accuracy approached optimum (falling no lower than 
.948) regardless of traffic or look-ahead time. This 
means that, with structured traffic, the ANN model 
was able to predict almost perfectly which traffic 
samples would result in conflict. This was not 
surprising. As discussed earlier, under structured 
traffic the majority (84%) of drones would be 
predictable by the second step after sector entry. By 
step 3, the only uncertainty would be whether the 
other 16% were on through-routes or bus-routes. 

Random traffic, however, showed some variations 
in model performance. Classification performance 
with random traffic was still impressively high, 
ranging from .72 to .98, and generally well above 
chance levels. However, under random traffic we 
began to see ML performance declines with both 
look-ahead time and traffic count (classification 
performance worsened with each), and a trend toward 
a three-way interaction between traffic, structure, and 
look-ahead.  

Figure 5 shows the effect of both look-ahead and 
aircraft count, on overall classification accuracy. Data 
are somewhat collapsed in this view. Look-ahead (1-
6) is binary split into Low (1-3) and High (4-6). 
Aircraft count includes only the extremes of 4 and 16. 

Besides a main effect of both look-ahead (longer 
look-ahead worsened performance) and aircraft count 
(higher count worsened performance), there is a slight 
trend toward a look-ahead x aircraft count interaction. 
Notice the interaction trend, whereby longer look-
ahead had a greater cost under high traffic. 

 
Figure 5: Effect of aircraft count and look-ahead on overall 
classification performance, random traffic only. 

3.2 Sensitivity and Specificity  

For a finer-grained view, see the three panels of 
Figure 6. These present classification performance 
under random traffic, for low, medium, and high 
aircraft count (from left to right panel). Each panel 
also shows the impact of look-ahead, from 1-6 steps. 

 

 

 
Figure 6: Classification performance, sensitivity, and 
specificity, for random traffic (low to high, top to bottom). 
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Notice that the pattern of Sensitivity (the TPR) 
and Specificity (TNR) vary by aircraft count. 
Basically, ML overall performance worsened with 
look-ahead time, but the underlying patterns (TPR, 
TNR) differed by aircraft count. For low traffic, 
Sensitivity fell disproportionately (i.e., the model 
tended toward FN rather than FP). For high traffic, 
Specificity fell (the system tended toward FP rather 
than FN).  At the highest level, this interaction trend 
suggests that the ANN model tended to 
disproportionately false positive under the most 
demanding traffic samples. 

3.3 The Extreme Scenario 

To test one final, and even more challenging case, 
we generated traffic and trained / tested an ANN 
model, using random traffic, 24 aircraft, and a look-
ahead of 6 (see Figure ).  

 
Figure 7: The extreme scenario: 24 drones, random traffic, 
and a six-step look-ahead. 

Classification accuracy remained surprisingly high in 
this condition (in fact, slightly above the 16 drone 
sample).  Also, this extreme scenario extended the 
trend toward Specificity decrement seen in the three 
panels of Figure 6. 

Table 1: Results summary, binary classification 
performance, extreme scenario. 

Classification accuracy 0.739 

Error rate 0.261 

Sensitivity (TP) 0.705 

Specificity (TN) 0.758 

False Positive Rate (FP) 0.242 

False Negative Rate (FN) 0.295 

 

3.4 Summary of Results 

In terms of conflict prediction performance, results 
from our ML model can be summarized as follows: 

• With structured traffic, overall model 
performance was nearly perfect; 

• With structured traffic, no effect of traffic 
count nor look-ahead could be found; 

• For random traffic, the model still performed 
quite well; 

• For random traffic, traffic count and (more so) 
look-ahead had a clear impact on overall 
classification accuracy; 

• This look-ahead effect on accuracy revealed 
subtle differences in other parameters. For low 
traffic, Sensitivity (TP rate) declined more 
than did Specificity (TN rate). For high traffic, 
this was reversed, In other words, longer look-
ahead worsened overall classification 
performance, but low traffic was biased 
toward false negatives, and high traffic was 
biased toward false positives; 

• Even under the most challenging conditions 
(random, high traffic, long look-ahead), ML 
classification accuracy was still fairly high 
(76.5%); 

• Even with random traffic, classification 
performance was generally well above 
guessing level, far better than chance; 

• The ANN approach continued to show robust 
classification performance, even when 
presented an extreme case of 24 drones, 
random traffic, and long look-ahead. 

4 CONCLUSIONS 

Even with minimal data (i.e., nothing more than 
instantaneous traffic snapshot), and a limited neural 
network architecture (without any explicit time series 
processing capability), neural network modelling 
demonstrated potential benefits in predicting and 
classifying drone trajectories in the urban 
environment. We would expect ML methods, once 
deployed, to show even better performance, for two 
main reasons. 

First, and as noted elsewhere, advanced ML 
methods exist that can make better use of memory, 
time series processing, time delays, and memory 
erase functions. Static ANNs, which are limited in 
their ability to handle time series data, have clear 
limitations in predicting dynamic air traffic patterns. 
Related ML methods such as recurrent neural 
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networks, convolutional neural networks, time delay 
neural networks, and long short term memory would 
all likely show better predictive performance. 

Second, ML would presumably perform better 
with meaningful real world data, rather than 
stochastically generated flights. The neural network 
approach (as with all ML methods) assumes that there 
are some underlying patterns in the data which the 
network can uncover. However, the pattern and 
structure in our generated traffic were fairly low level. 
For example, our use of standard bus-route 
trajectories added some regularity to drone traffic 
movements. Nonetheless, this is a fairly shallow level 
of pattern and meaning. As an analogy, think of actual 
bus routes, that might run between residential and 
employment centres. The route itself is one level of 
pattern, but the direction and timing of movements 
also have some deeper meaning (to bring people to 
work at one time, and home at another). In our traffic 
sample, it is as if the buses run on the proper fixed 
routes, but are launched at random times and in 
random directions.  Our paradox is therefore: how 
well can we assess machine learning for actual drone 
patterns, before there are actual drone patterns? 
Presumably, machine learning will do better once we 
have meaningful real-world data on drone traffic 
patterns, rather than randomly generated samples. 

In summary, this analysis intentionally used 
limited data, and simple architectures, to enable 
experimental control over factors related to 
classification. Despite these limitations, neural 
network modelling provided encouraging first 
evidence that ML methods can be very useful in 
helping predict conflicts in the urban drone scenario. 
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