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Abstract: Relevant sounds such as alarms are sometimes involuntarily ignored, a phenomenon called inattentional 
deafness. This phenomenon occurs under specific conditions including high workload (i.e., multi-tasking) 
and/or cognitive fatigue. In the context of aviation, such an error can have drastic consequences on flight 
safety. The present study used an Oddball paradigm in which participants had to detect rare sounds in an 
ecological context of simulated flight. Cognitive fatigue and cognitive load were manipulated to trigger 
inattentional deafness, and brain activity was recorded via EEG. Our results showed that alarm omission and 
alarm detection can be classified based on a time-frequency analysis of brain activity. We reached a maximum 
accuracy of 76.4% when the algorithm was trained on all participants and a maximum of 90.5%, on one 
participant, when the algorithm was trained individually. This method can benefit from explainable artificial 
intelligence to develop efficient and understandable passive Brain-Computer Interfaces, to improve flight 
safety by detecting such attentional failures in real-time and giving appropriate feedback to pilots, according 
to our ambitious goal: providing them reliable and rich human/machine interactions.  

1 INTRODUCTION 

Increased operational capabilities of aircraft had 
considerably modified the pilots’ missions. These 
changes concern an increase in the time spent 
onboard and the complexity of technologies or 
operations, particularly in the military domain. These 
long periods of intense and sustained cognitive 
activities induce cognitive fatigue that is one of the 
major risks of incidents/accidents in aviation (e.g., 
Dönmez & Uslu, 2018; Marcus & Rosekind, 2017).    

Cognitive fatigue has been shown to occur when 
the costs of cognitive effort to perform the activity are 
higher than the expected benefits (e.g., Boksem & 
Tops, 2008; Kurzban et al., 2013). In this case, after 
performing an effortful task, disengagement from the 
current task or unwillingness to sustain the effort on 
a second task is likely (Inzlicht et al., 2014; Müller & 
Apps, 2019). Previous studies found that cognitive 
fatigue can impair cognitive performance, leading to 
impaired ability to suppress irrelevant information 
(selective attention found by Faber et al., 2012), alter 
the automatic motor response (online action control 

found by Salomone et al., 2021), and more generally 
disrupt attentional processes (Boksem et al., 2005). 

The influence of cognitive fatigue on 
electrophysiological activities has been also reported 
as, for example, an increase of the spectral power of 
δ, θ, and α frequency bands but a decrease of the 
spectral power of β band, as well as a decreased 
amplitude of ERP components such as P300, N100 
and N200b (e.g., Boksem et al., 2005; Barwick et al., 
2012; Borghini et al., 2012; Zhao et al., 2012; 
Wascher et al., 2014 ; Sabeti et al., 2017; Schmidt et 
al., 2009). However, these findings are not always 
replicated, and some authors do not report any 
impairment of performance with cognitive fatigue 
(e.g., Ackerman & Kanfer, 2009; Boksem et al., 
2005; Lorist et al., 2005; Möckel et al., 2015; Trejo et 
al., 2007). Unknown is whether the decreased 
performance or electrophysiological changes 
associated with cognitive fatigue are caused by a 
progressive deterioration of the cognitive resources or 
by an inadequate recruitment of unaltered cognitive 
processes, and this is the issue we address here. 
Moreover, we aimed at developing a passive brain-
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computer interfaces (pBCI) based on explainable 
classification and explainable machine learning to 
infer the influence of cognitive fatigue on 
inattentional deafness in the context of flying. To 
achieve these ends and following previous studies 
(Dehais et al., 2019, 2018), we asked participants to 
perform an alarm-detection task during repeated 
landing sessions on flight simulator. To accentuate 
the presence of cognitive fatigue, we also 
manipulated the mental workload. Most originally, 
we tested whether a real flight glider-instruction prior 
the experiment influence performance in the alarm 
detection task on flight simulator. We hypothesized 
that (a) cognitive fatigue impairs alarm detection as a 
function of the mental workload (b) cognitive fatigue 
modulates electrophysiological activities and (c) 
these modulations can be used as a predictor of a loss 
in pilot’s efficiency. 

2 METHODS 

Twenty-four pilot-students were recruited for the 
experiment (mean age: 22.6 years old, SD = 2.0; 
flight experience: 75.6 hours, SD = 79.6 hours, 
including 44.7 hours of glider experience, SD = 58.9 
hours). Half of the participants had normal daily 
activities without any training flight during the whole 
day of the experiment (NFBE group), and the other 
half had an instruction flight just before the 
experiment (IFBE group).   

In a first time, participants were asked to evaluate 
their level of subjective fatigue (with Visual 
Analogous Scales of fatigue and sleepiness, VASf, 
and VASs), sleepiness (Karolinska’s Sleepiness 
Scale), and alertness (Samn-Perelli scale). Then, they 
performed a Stroop task and an arithmetic task to 
assess their cognitive control.   

In a second time, participants had to perform 6 
identical and successive landings in a flight simulator 
(on a glider) while performing an alarm detection task 
(i.e., auditory Oddball). In this task, they had to detect 
rare sounds (i.e., target) and press a key on the 
joystick as fast and accurate as possible. In average, 
100 sounds were played during a landing, among 
which 75 were standard sounds (i.e., to be ignored) 
and 25 had to be responded to. The landing was 
composed of 2 phases: a low cognitive load phase 
(i.e., corresponding to the downwind leg of the 
approach: they had to pilot the glider and perform the 
Oddball task) and a high cognitive load phase (i.e., 
composed of the base leg, the final and the landing: 
they had to pilot the glider, perform the Oddball task, 
and perform a backward counting task). Brain activity 

was recorded by a Bionic-EEG (32 passive 
electrodes).   

After the experimental task, they had to perform 
again the cognitive tests and the subjective 
evaluations. 

3 MAIN FINDINGS 

3.1 Alarm Detection Task 

Performance was analyzed with mixed-design 
ANOVAs, 2 (Group: NFBE, IFBE) x 2 (Time on 
Task: beginning—the first three landings, end—the 
last three landings) x 2 (Cognitive Load: low, high) 
with group as the only between-participants factor.  

In the low cognitive load condition, participants 
were faster and more accurate to detect alarms than in 
the high cognitive load condition. A lack of 
attentional resources is thus associated with higher 
rates of inattentional deafness. Surprisingly, we found 
better alarm detection in the IFBE group than in the 
NFBE group. One possible explanation to this finding 
is that participants of the IFBE group were more 
trained to detect alarms due to the prior instruction 
flight, compared to NFBE group participants. No 
difference of alarm detection rate was observed 
throughout successive landings.   

3.2 Electrophysiological Signatures 

Data were analyzed with mixed-design ANOVAs, 2 
(Group: NFBE, IFBE) x 3 (Electrode: Fz, Cz, Pz) x 2 
(Sound: target, standard) x 2 (Cognitive Load: low, 
high) x 2 (Time on Task: beginning, end) with group 
as the only between-participants factor.  

3.2.1 ERP Analyses 

We found that the amplitude of the P300 component 
was higher with target sounds (i.e., rare alarms) than 
with standard sounds (i.e., frequent sounds to ignore) 
only in the low cognitive load condition. Moreover, 
for target sounds, we found an increase of the P300 
amplitude under high cognitive load condition 
compared to the low cognitive load condition.   

No effect of cognitive fatigue was observed on the 
amplitude of the P300 component. Possibly, our task 
was not sufficiently difficult to increase cognitive 
fatigue and to observe modifications on ERPs. 
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3.2.2 Frequency Analysis 

Results showed that the spectral power of δ band 
tended to vary as a function of the temporal window. 
The spectral power was larger at the beginning 
compared to the end of the task. The effect of 
cognitive load was observed on the β spectral power 
for the NFBE group. β spectral power was larger for 
high cognitive load condition than for low cognitive 
load condition. These results are correlated with 
slower latencies in alarm detection observed under 
high cognitive load conditions.   

3.3 Subjective Scales and Cognitive 
Tests 

No differences were observed between the beginning 
and the end of the experimental session for the Visual 
Analogous Scale of Fatigue, the Samn-Perelli scale 
and the Karolinska scale.   

Performance in the Stroop task was analyzed with 
mixed-design ANOVAs, 2 (Group: IFBE, NFBE) x 2 
(Session: pre, post) x 2 (Congruency: congruent, 
incongruent), with group as the only between-
participants factor. We found a significant 
congruency effect (i.e., better performance on 
congruent trials compared to incongruent trials). Most 
interestingly, the NFBE group performed better than 
the IFBE group (i.e., 96.3% vs. 94.6%). The 
interference score increased after the experimental 
task only in the IFBE group. These results suggest a 
decrease of cognitive control for participants of the 
IFBE group compared to the NFBE group. 
Performing the same activity before and during the 
experiment could lead participants to be less accurate 
particularly when they had to inhibit automatic 
responses. The control of automatic response and 
more generally the cognitive control seems to depend 
on the nature of the preceding task.  

To summarize, we cannot conclude that cognitive 
fatigue is responsible for the observed modulations of 
electrophysiological activities. However, it is 
possible that the manipulation of cognitive load 
during sustained activity influences brain activity, as 
suggested by the modulation of the δ and β frequency 
bands. These manipulations could have resulted in a 
significant modulation of the subjective cognitive 
fatigue in other conditions (i.e., longer runs, more 
complex weather conditions, more landings...). In the 
low cognitive load condition, participants benefit 
from more attentional resources to process target 
sounds than in in the high cognitive load condition. 
These differences do not exist for standard sounds 
that must be ignored. In other words, cognitive 

fatigue could seem to impair performance as a 
function of attentional resources available. The 
frequency analysis can also be explained in term of 
decrease in attentional resources, but the differences 
between the beginning and the end of experiment 
could also reflect a lack of motivation at the end of 
the experiment.   

3.4 Single Trial Classification of Alarm 
Detection or Omission and 
Decision-Making Tress 

To compare electrophysiological signals between 
alarm detections and alarm omissions, we focused our 
analyses on the high cognitive load condition. Data 
were analyzed with 2 (Group: IFBE, NFBE) x 2 
(Time on Task: beginning, end) x 3 (Electrode: Fz, 
Cz, Pz) x 2 (Response: hit, miss) ANOVAs with 
group as the only between-participants factor. 80% of 
trials were used to train classifiers and 20% were used 
to test them.   

The spectral power of the δ frequency band and 
the α frequency band was larger for hit trials 
compared to miss trials. The differences between hit 
and miss trials were significant only at the beginning 
of the session. Moreover, the spectral power of the 
mid-β frequency band in the NFBE group was larger 
for hits than for missed alarms at the beginning of the 
session. We then classified trials with respect to alarm 
omission or detection and we reached a maximum 
averaged performance of 76.4% (range: 57.7% — 
90.5%) in participant-specific single-trial 
classification from the spectral power of δ and α 
frequency bands with Support Vector Machines 
classifier. Frequency features, and more specifically 
δ and α bands, implemented in a support vector 
classifier formed an efficient tool to assess auditory 
alarm misperception in simulated flight conditions. 

4 CONCLUSIONS 

A way to improve the experimentation domain 
consists of putting the classification work above in a 
virtuous cognitive loop; to do so, we need explainable 
classification methods to be able to interpret the 
knowledge acquired. Such an understandable 
information, which can be either numerical, 
symbolic, or logical, constitutes the support of rich 
human/machine interactions and justifies the 
interpretability criterion providing a good level of 
confidence at the operational level. For instance, the 
Classification and Regression Trees (CART) 
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algorithm delivers logical rules as the criteria 
separating alarm omission and detection from values 
on the four centered electrodes Cz, Pz, Oz and Fz. 
Starting from a normalized form of these rules which 
is easily explainable as a Boolean expression, we can 
generate the appropriate code in a static context or in 
dynamic context. In a static context, once EEG values 
are available, one can predict attention failure 
regardless to the software involved as the 
implementation context (Python, Java, Matlab, …); in 
a dynamic context, this is more interesting: since one 
can define an active role for electrodes taken as agents 
with a dedicated level of knowledge. That way, one 
can reengineer completely these rules according to 
electrodes as both actuators and sensors. That way, 
one can improve the experimentation domain by of 
putting the classification work in the loop thanks to a 
multi-agent model. Active electrodes become virtual 
agents (sensors and actuators) connected together 
thanks to logical connectors as firing rules. including 
other actuators (red light alarm, sounds, …). Domain-
specific scenarios and doctrines can be defined. 
thanks to explainable classification. From that 
situation awareness, one can expect connect more 
powerful automatic decision mechanisms. In effect, 
abnormal behavior detection is the first step of the 
sense-making process relayed by decision-making. 
For instance, the purpose is to trigger a sequence of 
actions to be engaged, whether these actions are 
automatic or not. As a use-case, one can mention the 
situation in a cockpit characterized by a loss of 
attention of the pilot and his/her inability to continue 
his/her current mission. That is, the operator did not 
consciously detect the alarm although his brain 
processed the signal. It is therefore necessary to 
inform the operator that he has omitted the alarm (by 
feedback) and to adapt the work environment with the 
explainable AI to help him in his task so that he comes 
back in the loop.  
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