
On “Deep Learning” Misconduct

Juyang Weng1,2 a

1Brain-Mind Institute, 4460 Alderwood Dr. Okemos, MI 48864 U.S.A.
2GENISAMA, U.S.A.

Keywords: Neural Networks, Machine Learning, Error Backprop, Deep Learning, Misconduct, Hiding, Cheating,
ImageNet Competitions, AlphaGo Competitions.

Abstract: This is a theoretical paper, as a companion paper of the plenary talk for the same conference ISAIC 2022. In
contrast to the author’s plenary talk in the same conference, conscious learning (Weng, 2022b; Weng, 2022c),
which develops a single network for a life (many tasks), “Deep Learning” trains multiple networks for each
task. Although “Deep Learning” may use different learning modes, including supervised, reinforcement and
adversarial modes, almost all “Deep Learning” projects apparently suffer from the same misconduct, called
“data deletion” and “test on training data”. This paper establishes a theorem that a simple method called Pure-
Guess Nearest Neighbor (PGNN) reaches any required errors on validation data set and test data set, including
zero-error requirements, through the same misconduct, as long as the test data set is in the possession of
the authors and both the amount of storage space and the time of training are finite but unbounded. The
misconduct violates well-known protocols called transparency and cross-validation. The nature of the
misconduct is fatal, because in the absence of any disjoint test, “Deep Learning” is clearly not generalizable.

1 INTRODUCTION

The problem addressed is the widespread so-called
“Deep Learning” method—training neural networks
using error-backprop. The objective is to scientifi-
cally reason that the so-called “Deep Learning” con-
tains fatal misconduct. This paper reasons that
“Deep Learning” was not tested by a disjoint test data
set at all. Why? The so-called “test data set” was
used in the Post-Selection step of the training stage.

Since around 2015 (Russakovsky et al., 2015),
there has been an “explosion” of AI papers, observed
by many conferences and journals. Many publica-
tion venues rejected many papers based on superficial
reasons like topic scope, instead of the deeper reasons
here that might explain the “explosion”. The “explo-
sion” does not mean that such publication venues are
of high quality (with an elevated rejection rate). The
author hypothesizes that the “explosion” is related to
the widespread lack of awareness about the miscon-
duct.

Projects that apparently embed such misconducts
include, but not limited to, AlexNet (Krizhevsky
et al., 2017), AlphaGo Zero (Silver et al., 2017), Alp-
haZero (Silver et al., 2018), AlphaFold (Senior et al.,

a https://orcid.org/0000-0003-1383-3872

2020), MuZero (Schrittwieser et al., 2020), and IBM
Debater (Slonim et al., 2021). For open competi-
tions with AlphaGo (Silver et al., 2016), this author
alleged that humans did post-selections from multi-
ple AlphaGo networks on the fly when test data were
arriving from Lee Sedol or Ke Jie (Weng, 2023).
More recent citations are in the author’s misconduct
reports submitted to Nature (Weng, 2021a) and Sci-
ence (Weng, 2021b), respectively.

Two misconducts are implicated with so-called
“Deep Learning”:
Misconduct 1: hiding data—the human authors hid

data that look bad.
Misconduct 2: cheating through a test on training

data—the human authors tested on training data
but miscalled the reported data as “test”.

The nature of Misconduct 1 is hiding. The nature of
the Misconduct 2 is cheating. They are the natures
of actions from the authors, regardless of whether the
authors intended to hide and cheat or not.

Without a reasonable possibility to prove what
was in the mind of the authors, the author does not
claim that the questioned authors intentionally hid and
cheated when they conducted such misconduct.

The following analogy about the two misconducts
is a simpler version in layman’s terms. The so-called

Weng, J.
On "Deep Learning" Misconduct.
DOI: 10.5220/0011957600003612
In Proceedings of the 3rd International Symposium on Automation, Information and Computing (ISAIC 2022), pages 531-538
ISBN: 978-989-758-622-4; ISSN: 2975-9463
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

531



“Deep Learning” practice is like in a lottery scheme, a
winner of a lottery ticket reports that his “technique”
that provides a set of numbers on his lottery ticket has
won 1 million dollars (Misconduct 2, since the win-
ner has been picked up by a lucky chance after lottery
drawing is finished), but he does not report how many
lottery tickets he and others have tried and what is
the average prize per ticket across all the lottery tick-
ets that have tried (Misconduct 1, since he hid other
lottery tickets except the luckiest ticket). His “tech-
nique” will unlikely win in the next round of the lot-
tery drawing (his “technique” is non-generalizable).

In the remainder of the paper, we will discuss four
learning conditions in Section 2 from which we can
see that we cannot just look at superficial “errors”
without limiting resources. Section 3 discusses four
types of mappings for a learner, which gives spaces
on which we can discuss errors. Post-Selections are
discussed in Section 4. Section 5 provides concluding
remarks.

2 FOUR LEARNING
CONDITIONS

Often, artificial intelligence (AI) methods were eval-
uated without considering how much computational
resources are necessary for the development of a re-
ported system. Thus, comparisons about the perfor-
mance of the systems have been biased toward com-
petitions about how much resources a group has at
its disposal, regardless how many networks have been
trained and discarded, and how much time the train-
ing takes.

By definition, the Four Learning Conditions for
developing an AI system are: (1) A body including
sensors and effectors, (2) a set of restrictions of learn-
ing framework, including whether task-specific or
task-nonspecific, batch learning or incremental learn-
ing; (3) a training experience and (4) a limited amount
of computational resources including the number of
hidden neurons.

3 FOUR MAPPINGS

Traditionally, a neural network is meant to establish a
mapping f from the space of input X to the space of
class labels L,

f : X 7→ L (1)

(Funahashi, 1989; Poggio and Girosi, 1990). X may
contain a few time frames.

For temporal problems, such as video analysis
problems, speech recognition problems, and com-
puter game-play problems, we can include context la-
bels in the input space, so as to learn a mapping

f : X ×L 7→ L. (2)

where × denotes the Cartesian product of sets.
The developmental approach deals with space

and time in a unified fashion using a neural net-
work such as Developmental Networks (DNs) (Weng,
2011) whose experimental embodiments range from
Where-What Network WWN-1 to Where-What Net-
work WWN-9. The DNs went beyond vision prob-
lems to attack general AI problems including vision,
audition, and natural language acquisition as emer-
gent Turing machines (Weng, 2015). DNs overcome
the limitations of the framewise mapping in Eq. (2)
by dealing with lifetime mapping without using any
symbolic labels:

f : X(t −1)×Z(t −1) 7→ Z(t), t = 1,2, ... (3)

where X(t) and Z(t) are the sensory input space and
motor input-output space, respectively.

Consider space: Because X and Z are vector
spaces of sensory images and muscle neurons, we
need internal neuronal feature space Y to deal with
sub-vectors in X , Z and their hierarchical features.

Consider time: Furthermore, considering sym-
bolic Markov models, we also need further to model
how Y -to-Y connections enable something similar to
higher and dynamic order of time in Markov mod-
els. With the two considerations Space and Time, the
above lifetime mapping in Eq. (3) is extended to:

f : X(t−1)×Y (t−1)×Z(t−1) 7→ Y (t)×Z(t), (4)

t = 1,2, ... in DN-2. It is worth noting that the Y space
is inside a closed “skull” so it cannot be directly su-
pervised. Z(t − 1) here is extremely important since
it corresponds to the state of an emergent Turing ma-
chine.

In performance evaluation of the developmental
approach, all the errors occurring during any time in
Eq. (4) of each life are recorded and taken into ac-
count in the performance evaluation. This is in sharp
contrast with, and free from, Post-Selection.

4 POST-SELECTIONS

Definition 1 (Training and test stages). Suppose that
the development of a classification system f is divided
into two stages, a training stage and a test stage,
where the training stage must provide a completely
trained system so that given any new input q, not in

ISAIC 2022 - International Symposium on Automation, Information and Computing

532



the possession of the human trainer, the trained sys-
tem must provide top-m labels in L (e.g., m = 5 for top
5) for the input q.

Let us discuss three types of errors.

4.1 Fitting Errors

Given an available data set D, D is partitioned into
three mutually disjoint sets, a fitting set F , a valida-
tion set V (like a mock exam), and a test set T so that

D = F ∪V ∪T. (5)

Two sets are disjoint if they do not share any ele-
ments. The validation set is possessed by the trainer,
but the test set should not be possessed by the trainer
since the test should be conducted by an independent
agency. Otherwise, V and T become equivalent.

Typically, we do not know the hyper-parameter
vector a (e.g., including receptive fields of neu-
rons), thus the so-called “Deep Learning” technique
searches for a as ai, i = 1,2, ...k. Given any hyper-
parameter vector ai, it is unlikely that a single net-
work initialized by a set of random weight vectors w j
can result in an acceptable error rate on the fitting set,
called fitting error. The error-backprop training in-
tends to minimize the error locally along the gradient
direction of w j. That is how the multiple sets of ran-
dom weight hyper-parameter vectors come in. For k
hyper-parameter vectors ai, i = 1,2, ...k and n sets of
random initial weight vectors w j, the error back-prop
training results in kn networks

{N(ai,w j) | i = 1,2, ...,k, j = 1,2, ...,n}.

Error-backprop locally and numerically minimizes
the fitting error fi, j of N(ai,w j) on the fitting set F .

4.2 Abstraction Errors

The effect of abstraction error can be considered as a
lack of the degree of abstraction.

One effect is the genome, or the developmental
program. As monkeys do not have a human vocal
tract to speak human languages and their brains are
not as large as human brains, monkeys cannot abstract
using human languages.

Another effect is age. If one’s learning is not
sufficient (e.g., too young), a human child’s brain net-
work has not learned the required abstract concepts.
Such abstract concepts include where, what, scale,
many other concepts one learns in school, as well as
lifetime concepts such as better education leads to a
more productive life. Therefore, a young child can-
not do well for jobs that require a human adult. We

Figure 1: The effect of degree of abstraction by a neural
network. The horizontal axis indicates the possible value of
the parameters of a neural network, denoted as NN-plane.
The 1-D here corresponds to the 60-million dimension in
(Krizhevsky et al., 2017). The vertical axis is the batch
post-selection error of the corresponding trained network.

call the error as post error, since it is the error after
(i.e., post) a certain amount of training.

Fig. 1 gives a 1D illustration for the effect of
abstraction. If the architecture of a neural net-
work is inadequate e.g., pure classification through
data fitting in Eq. (1), the manifold of post error cor-
responds to that of “without abstraction” (green) in
Fig. 1. Different positions along the horizontal axis
(NN-plane) correspond to different parameters of the
same type of neural networks. The lowest point on
the green manifold is labeled “a”, but as we will see
below, the smallest post error is missed by all error
backprop methods since it typically does not coincide
with a pit in the training data set. This is true be-
cause the test set T and the fitting set F are disjoint,
but the fitting error is based on the fitting set F but the
post error is based on the test set T .

In Fig. 1, the blue manifold is a better than the
green manifold, because the lowest point “e” on the
blue manifold is lower than the lowest point “a” on the
green manifold. They correspond to different map-
ping parameter vector definitions for a. For example,
the green manifold and the blue manifold correspond
to Eq. (1) and Eq. (3), respectively.

Note that Fig. 1 only considers batch post errors
in batch learning, but Eq. (3) and Eq. (4) deal with
incremental learning.

Given a defined architecture parameter vector a,
each searched ai as a guessed a will also give a very
different manifold in Fig. 1, where for simplicity, the
manifold is drawn as a line. In general, the worse a
guessed ai is, the higher the corresponding position on
the manifold but the amounts of increase at different
points of the manifold are not necessarily the same
since the manifold depends also on the test set T .

From this point on, we assume that the architec-

On "Deep Learning" Misconduct

533



ture parameters a have been pre-defined as the so-
called hyper-parameter vector, but their vector values
are unknown. The components in a may include the
number of layers and the receptive field size of each
layer. But we need to realize that age, environment,
and teaching experience greatly change the landscape
in Fig. 1, as we discussed in Sec. 3.

4.3 Validation and Test Errors

Suppose we train a “Deep Learning” neural net-
work N(ai,w j) using error-backprop or reinforce-
ment learning (a local gradient-based method), start-
ing from ai and w j.

The following explanation of the two misconducts
is also in layman’s terms but is more precise. The
so-called “Deep Learning” technique is like finding a
location of many “Neural Network” balls using “oil
wells” data.

An oil well is a drill hole boring in the Earth that
is designed to bring petroleum oil hydrocarbons to the
surface. We use the term “oil well” to indicate that,
like drilling “oil wells”, it is costly to collect and an-
notate data. Like “oil wells”, any data set D is always
very sparse on the NN-plane.

Each “oil well” data contains a location on the
NN-plane and an error height (how good the “oil
well” is or how well the neural network at the NN-
plane location fits the corresponding data that were
used to construct the terrain). All available “oil
wells” data are divided into two disjoint sets, a “fit”
set and a so-called “test” set P =V ∪T .

The training stage of the technique has two steps,
the “fitting” step and the “post-selection” step. The
fitting step uses the “fit” set F . The “post-selection”
step uses the so-called “test” set P = V ∪T , but this
is wrong because the second step of the training stage
must not use the so-called “test” set T . Consequently,
almost all “Deep Learning” techniques have not been
tested at all, as Theorem 3 below will establish.

A real-world plane has a dimension of 2, but a
Neural Network plane, NN-plane, has a dimension of
at least millions, corresponding to millions of param-
eters to be learned by each “Neural Network” ball.
(The original “Deep Learning” paper (Krizhevsky
et al., 2017) has a dimensionality of 200B.) The
“fit” set and “test” set correspond to two heights at
each of all possible locations on the “NN” plane,
called, respectively, the “fit” error and post-selection
error that was miscalled “test error” by (Krizhevsky
et al., 2017). Although “oil wells” are costly, the
more Neural Network balls technique tries, the better
chance to find a lucky ball whose final location has a
low post-selection error.

In the “fitting” step, the technique drops many
balls to many random locations of the NN-plane, typi-
cally many more than the dimension of the NN-plane.
From random locations that the balls landed at, all the
balls automatically roll down (according to its height
or another artificial “reward”) until they get stuck in a
local pit and then they stop. In Fig. 2, the NN-plane
is illustrated as a horizontal line. Balls roll down on
the dashed-line terrain. If we drop only one ball, it
might stop at location a whose fit height is mediocrely
low. If we drop three balls, they may stop at locations
a, b and c, respectively. If we drop even more balls,
we assume that all the vertical dashed lines have at
least one ball that stopped. The fitting step missed
location d, the lowest post-selection error possible,
because it is not in a pit.

In the Post-Selection step: record the so-called
“test” height of every ball at its stopped NN-plane
location. Misconduct 2 means to “post-select” the
luckiest ball whose “test” height is the lowest among
all randomly tried balls. Only this luckiest ball was
reported to the public. Misconduct 1: All less lucky
balls are discarded because their “test” heights look
bad.

In Fig. 2, so-called test height is indicated by
solid-line terrain but it should be called post-selection
error instead. Generally, the solid-line terrain can
cross under the dashed-line terrain, but it is unlikely
at a pit (see d) because (1) the Fit procedure greedily
fits the fitting set F using error-backprop but does not
fit V or T , (2) F , V and T all have many samples.

Because the “post-selection” step is within the
training stage and the “test” data are all used in the
training stage, this technique corresponds to Miscon-
duct 2 (test on training data). Although all the balls
have not “seen” the so-called “test” data when they
roll down a hill, they all have “seen” the “test” data
during the post-selection step of the training stage.

The reported luckiest ball is not generalizable to a
new test due to the two alleged misconducts, Miscon-
duct 1: the technique hides many random networks
that are bad; Misconduct 2: the technique cheats: the
miscalled “test” error is actually a “training” error.

Fig. 2 indicates post-selection errors as horizon-
tal dashed lines. We can see that at least the
maximum post-selection error (Max post) and aver-
age post-selection error (average post) should be re-
ported, not just the luckiest post-selection error (luck-
iest post). The k-fold cross-validation protocol (Duda
et al., 2001) further requires that the roles of the fit set
and the test set be switched by dividing all available
data D into k folds of disjoint subsets.

Because the test set was used in the training stage,
Fig. 2 corrects the so-called “test” errors as post-

ISAIC 2022 - International Symposium on Automation, Information and Computing

534



Figure 2: A 1D-terrain illustration for the fitting error (dashed curve) from the fitting data set and the post-selection error
(solid curve) from the test data set. The luckiest post-selection error d is missed because it is not near a pit of dashed curve.
In the misconduct, only the luckiest post at point c is reported, but at least the average post error and the maximum post error
should also be reported. The test data set was unethically used to find the luckiest post in the training stage.

selection errors.
We define a simple system that is easy to under-

stand for our discussion to follow. Consider a highly
specific task of recognizing patterns inside the anno-
tated windows in Fig. 3. This is a simplified case of
the three tasks—recognition (yes or no, learned pat-
terns at varied positions and scales), detection (pres-
ence of, or not, learned patterns) and segmentation (of
recognized patterns from input). These three tasks of
natural cluttered scenes were dealt with, for the first
time, by the first “Deep Learning” network for 3D—
Cresceptron (Weng et al., 1997).

Cresceptron only trains one network for each task.
But later “Deep Learning” networks train multiple
networks for each task and then use Post-Selection to
select fewer networks. Below, by “Deep Learning”,
we mean such Post-Selection based networks. Later
data sets like ImageNet (Russakovsky et al., 2015)
contain many more image samples but we will see
below that all “Deep Learning” networks simply fit
the training data, validation data and test data and are
without a test at all.

4.4 Pure-Guess Nearest Neighbor

(Weng, 2023) proposed a Nearest Neighbor With
Threshold (NNWT) method to establish that such a
simple classifier beats all Post-Selection based “Deep
Learning” methods since it satisfies even a zero-
requirement on both the validation error and the test
error, using the two misconducts. Here, to be clearer,
the following new PGNN is without the threshold.
Definition 2 (Pure-Guess Nearest Neighbor, PGNN).
PGNN method stores all available data D, the fit set

Figure 3: ImageNet-like annotation. Two annotated win-
dows as two training samples in each cluttered image. The
ImageNet competitions extend to more positions and scales
than such windows. Courtesy of (Russakovsky et al.,
2015).

F, the validation set V and the miscalled test set T .
To deal with the ImageNet Competitions in Fig. 3,
the method uses the window-scan method probably
first proposed by Cresceptron (Weng et al., 1997).
Given the query input from every scan window, PGNN
finds its nearest-neighbor sample in D and outputs the
stored label. PGNN perfectly fits F. For samples in V
and T , PGNN randomly and uniformly guesses a la-
bel using Post-Selection and stores the guessed label.

From a fit set F and a Post set P = V ∪T , the
PGNN algorithm is denoted as G(F,P,e), where e is a
seed for a pseudo-random number.

The training stage of PGNN:
The 1st step Fit(F,B): Store the entire fitting set

F = {(s, l)} into database B, where s and l are the nor-
malized sample and the label from the corresponding

On "Deep Learning" Misconduct

535



annotated window w, respectively. The window scan
has a pre-specified position range for row and column
(r,c) of a scan window, and a pre-specified range for
the scale of the window. The window scan tries
all the locations and all the scales in the pre-specified
ranges. For each window w, Fit crops the image at
the window and normalizes the cropped image into a
standard sample s. All standard samples in B have the
same dimension as a vector in row-major storage.

The 2nd step Post(P,L,e,B): From every query
image q ∈ P, for every scan window w for q, com-
pute its standard sample s. If s is new, guess a label
l for s to generate (s, l), where l is randomly sampled
from L using a uniform distribution, identically inde-
pendently distributed. Store (s, l) into database B.
While Post(P,L,e,B) is not good enough on P, run
Post(P,L,e,B) using the returned new seed e.

Each run of Post corresponds to a new “Deep
Learning” network where each network starts from a
new random set of weights and a new set of hyper
parameters.

The performance stage of PGNN:
Run(P,B): For every query image q ∈ P, for every

scan window w for q, compute its standard sample s.
Find its nearest sample s∗ from B, output the stored
label l associated with the nearest neighbor s∗.

PGNN uses a lot of space and time resources for
over-fitting F and P. It randomly guesses labels for
P=V ∪T until all the guesses are correct. Therefore,
it satisfies the required error for V and T , as long as
the human annotation is consistent. PGNN here is
slower than NNWT in (Weng, 2023) which interpo-
lates from samples in F until the distance is beyond
the threshold (a hyper-parameter). But PGNN is sim-
pler for our explanation of misconduct since it drops
the threshold in NNWT.

To understand why Post-Selections is misconduct
that gives misleading results, let us derive the follow-
ing important theorem.
Theorem 1 (PGNN Supremacy). Given any valida-
tion error rate ev ≥ 0 and test error rate et ≥ 0, using
Post-Selections the PGNN classifier satisfies any re-
quired ev and et , if the author is in the possession of
the test set P =V ∪T and both the storage space and
the time spent on the Post-Selections are finite but un-
bounded, if the Post-Selection is allowed.

Proof. Because the number of seeds to be tried dur-
ing the Post-Selection is finite but unbounded, we can
prove that there is a finite time at which a lucky seed
s will produce a good enough verification error and
test error. Although the waiting time is long, the
time is finite because V and T are finite. Let us
formally prove this. Suppose l is the number of la-
bels in the output set L. For the set of queries in

V and T , there are k (constant) outputs that must be
guessed. The probability for a single guess to be cor-
rect is 1/l0, l0 = ∥L∥, due to the uniform guess in
L. The probability for k guesses to be all correct is
(1/l0)k = 1/lk

0 because guesses are all mutually inde-
pendent. The probability to guess at least one label
wrong is 1−1/lk

0, with 0 < 1−1/lk
0 < 1. The prob-

ability for as many as n runs of Post, all of which do
not satisfy the ev = 0 and et = 0, is

p(n) = (1−1/lk
0)

n −→ 0,

as n approaches infinity, because 0 < 1− 1/lk
0 < 1.

Therefore, within a finite time span, a process of try-
ing incrementally more networks using Post will get
a lucky network that satisfies both the required ev and
et . This is the luckiest network from the Post-
Selection.

Theorem 1 has established that Post-Selections
can even produce a superior classifier that gives any
required validation error and any test error, including
zero-value requirements! Yes, while the test sets are
in the possession of authors, the authors could show
any superficially impressive validation error rates and
test error rates (including even zeros!) because they
used Post-Selections without a limit on resources (to
store all data sets and to search for the luckiest net-
work). It is of course time consuming for a program
to search for a network whose guessed labels are good
enough. But such a lucky network will eventually
come within a finite time frame!

4.5 Absence of Test

Does the Post-Selection step belong to the training
stage?

Theorem 2 (Post-Selection). Between the two stages,
training and test, the Post-Selection step that selects
m required networks from n>m networks (e.g., m= 5
and n = 10000) belongs to the training stage.

Proof. Let us prove by contradiction using Defini-
tion 1. We hypothesize that the conclusion is
not true, then the Post-Selection step that post-selects
from n > m networks belongs to the test stage. Then
in the absence of the Post-Selection step, after being
given any query q, the training stage is not able to pro-
duce only top-m labels, but instead n−m > 0 labels
than required. This is a contradiction to Definition 1.
This means that the conclusion is correct.

Theorem 3 (Without test). Different from Crescep-
tron which trains only one network, a “Deep Learn-
ing” method that trains n ≥ 2 networks and uses the

ISAIC 2022 - International Symposium on Automation, Information and Computing

536



so-called test set T in the Post-Selection step to down-
select m < n networks from n networks is without a
test stage.

Proof. This is true because T is already used in the
training stage according to Theorem 2.

The above theorem reveals that almost all so-
called “Deep Learning” methods cited in this paper,
including more in (Weng, 2021a; Weng, 2021b), in
the way they published, were not tested at all. The
basic reason is that the so-called test set T was used
in the training stage. Because “Deep Learning” is not
tested, the technique is not trustable.

A published so-called “Deep Learning” paper
(Gao et al., 2021) claimed to use an average “test”
error during the Post-Selection step of the training
stage. It reported a drastically worse performance,
12% average error on the MNIST data set instead of
0.23% error that uses the luckiest (MNIST website).
12% is over 52 times larger than 0.23%. (Gao
et al., 2021) still contains Misconduct 2: The aver-
age is only across a partial dimensionality of the NN-
plane w but other remaining dimensionality a of the
NN-plane till uses the “luckiest”. This quantitative
information supports that so-called “Deep Learning”
technology is not trustable in practice. Therefore,
the published “Deep Learning” methods cheated and
hid. “Deep learning” tested on a training set as (Duda
et al., 2001) warned against but miscalled the activi-
ties as “test” and deleted or hid data that looked bad.

5 CONCLUSIONS

The simple Pure-Guess Nearest Neighbor (PGNN)
method beats all “Deep Learning” methods in terms
of the superficial errors using the same miscon-
duct. Misconduct in “Deep Learning” results in
performance data that are misleading. Without a
test stage, “Deep Learning” is not generalizable and
not trustable. Such misconduct is tempting to
those authors where the test sets are in the posses-
sion of the authors and also to open-competitions
where human experts are not explicitly disallowed
to interact with the “machine player” on the fly.
This paper presents scientific reasoning based on
well-established principles—transparency and cross-
validation. It does not present detailed evidence of
every charged paper in (Weng, 2021a; Weng, 2021b).
More detailed evidence of such misconduct is referred
to Weng et al. v. NSF et al. U.S. West Michigan Dis-
trict Court case number 1:22-cv-998.

The rules of ImageNet (Russakovsky et al., 2015)
and many other competitions seem to have encour-

aged the Post-Selections discussed here. Even if the
Post-Selection is banned, any comparisons without
an explicit limit on, or an explicit comparison about,
storage and time spent are meaningless. ImageNet
(Russakovsky et al., 2015) and many other compe-
titions did not ban Post-Selections, nor did they limit
or compare storage or time.

The Post-Selection problem is among the 20
million-dollar problems solved conjunctively by this
author (Weng, 2022a). Since such a fundamen-
tal problem is intertwined with other 19 fundamen-
tal problems for the brain, it appears that one can-
not solve the misconduct problem (i.e., local minima)
without solving all the 20 million-dollar problems al-
together.

REFERENCES

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern
Classification. Wiley, New York, 2nd edition.

Funahashi, K. I. (1989). On the approximate realization
of continuous mappings by neural networks. Neural
Network, 2(2):183–192.

Gao, Q., Ascoli, G. A., and Zhao, L. (2021). BEAN:
Interpretable and efficient learning with biologically-
enhanced artificial neuronal assembly regularization.
Front. Neurorobot, pages 1–13. See Fig. 7.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90.

Poggio, T. and Girosi, F. (1990). Networks for approx-
imation and learning. Proceedings of The IEEE,
78(9):1481–1497.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
geNet large scale visual recognition challenge. Int’l
Journal of Computer Vision, 115:211–252.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Has-
sabis, D., Graepel, T., Lillicrap, T., and Silver, D.
(2020). Mastering Atari, Go, chess and shogi by plan-
ning with a learned model. Science, 588(7839):604–
609.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre,
L., Green, T., Qin, C., Zidek, A., Nelson, A. W. R.,
Bridgland, A., Penedones, H., Petersen, S., Simonyan,
K., Crossan, S., Kohli, P., Jones, D. T., Silver, D.,
Kavukcuoglu, K., and Hassabis, D. (2020). Improved
protein structure prediction using potentials from deep
learning. Nature, 577:706–710.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., and Hassabis, D. (2016). Mastering the game of

On "Deep Learning" Misconduct

537



go with deep neural networks and tree search. Nature,
529:484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., Lillicrap, T., Simonyan, K., and Hass-
abis, D. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through
self-play. Science, pages 1140–1144.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
(2017). Mastering the game of go without human
knowledge. Nature, pages 354–359.

Slonim, N., Bilu, Y., Alzate, C., Bar-Haim, R., Bogin, B.,
Bonin, F., Choshen, L., Cohen-Karlik, E., Dankin, L.,
Edelstein, L., Ein-Dor, L., Friedman-Melamed, R.,
Gavron, A., Gera, A., Gleize, M., Gretz, S., Gutfre-
und, D., Halfon, A., Hershcovich, D., Hoory, R., Hou,
Y., Hummel, S., Jacovi, M., Jochim, C., Kantor, Y.,
Katz, Y., Konopnicki, D., Kons, Z., Kotlerman, L.,
Krieger, D., Lahav, D., Lavee, T., Levy, R., Liberman,
N., Mass, Y., Menczel, A., Mirkin, S., Moshkowich,
G., Ofek-Koifman, S., Orbach, M., Rabinovich, E.,
Rinott, R., Shechtman, S., Sheinwald, D., Shnarch,
E., Shnayderman, I., Soffer, A., Spector, A., Sznajder,
B., Toledo, A., Toledo-Ronen, O., Venezian1, E., and
Aharonov, R. (2021). An autonomous debating sys-
tem. Nature, 591(7850):379–384.

Weng, J. (2011). Why have we passed “neural networks do
not abstract well”? Natural Intelligence: the INNS
Magazine, 1(1):13–22.

Weng, J. (2015). Brain as an emergent finite automaton:
A theory and three theorems. Int’l Journal of Intelli-
gence Science, 5(2):112–131.

Weng, J. (2021a). Data deletions in AI papers in
Nature since 2015 and the appropriate proto-
col. http://www.cse.msu.edu/∼weng/research/
2021-06-28-Report-to-Nature-specific-PSUTS.pdf.
submitted to Nature, June 28, 2021.

Weng, J. (2021b). Data deletions in AI papers in
Science since 2015 and the appropriate proto-
col. http://www.cse.msu.edu/∼weng/research/
2021-12-13-Report-to-Science-specific-PSUTS.pdf.
submitted to Science, Dec. 13, 2021.

Weng, J. (2022a). 20 million-dollar problems for any
brain models and a holistic solution: Conscious learn-
ing. In Proc. Int’l Joint Conference on Neural Net-
works, pages 1–9, Padua, Italy. http://www.cse.msu.
edu/∼weng/research/20M-IJCNN2022rvsd-cite.pdf.

Weng, J. (2022b). 3D-to-2D-to-3D conscious learn-
ing. In Proc. IEEE 40th Int’l Conference on
Consumer Electronics, pages 1–6, Las Vegas,
NV, USA. http://www.cse.msu.edu/∼weng/research/
ConsciousLearning-ICCE-2022-rvsd-cite.pdf.

Weng, J. (2022c). An algorithmic theory of conscious learn-
ing. In 2022 3rd Int’l Conf. on Artificial Intelligence
in Electronics Engineering, pages 1–10, Bangkok,
Thailand. http://www.cse.msu.edu/∼weng/research/
ConsciousLearning-AIEE22rvsd-cite.pdf.

Weng, J. (2023). Why deep learning’s performance data
are misleading. In 2023 4th Int’l Conf. on Artificial
Intelligence in Electronics Engineering, pages 1–10,
Haikou, China. arXiv:2208.11228.

Weng, J., Ahuja, N., and Huang, T. S. (1997). Learning
recognition and segmentation using the Cresceptron.
Int’l Journal of Computer Vision, 25(2):109–143.

ISAIC 2022 - International Symposium on Automation, Information and Computing

538


