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Abstract: Unmanned Aerial Vehicles (UAVs) are becoming a popular solution for a plethora of tasks, ranging from
supporting and extending communication to monitoring and exploring areas of interest. At the same time,
Reinforcement Learning (RL) has become an excellent candidate technique to face complex scenarios where a
model of the environment is not always available. Nevertheless, fully autonomous applications can have some
drawbacks under certain unpredictable circumstances. Thus an active human element could facilitate handling
such scenarios. All these things considered, and after an in-depth literature analysis, we focused on Mixed
Human-UAV reinforcement learning applications that would benefit from introducing the human-in-the-loop
component by pointing out their strengths, weakness, and new challenges.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly
becoming a key technology to solve a wide range
of problems due to their high mobility in three-
dimensional space, easy deployment, and relatively
low cost. Some examples include UAVs used as aerial
stations to provide services after a natural disaster or
for network access in remote areas, for emergency
communications and rescue support, when perform-
ing surveillance tasks in risky and dangerous areas,
and also for cargo and goods delivery to supply food
and medical goods and in the agricultural field to
monitor and facilitate farming activities.

Autonomous UAV. As UAV application fields are
increasing in recent years, a general research trend is
aiming at developing autonomous UAVs able to make
their own real-time decisions, thus ensuring a highly
responsive autonomous system in dynamic and even
unknown possible scenarios. Indeed, a high degree
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of automation could lead UAVs to (co)operate with-
out the need for constant device-to-device communi-
cation and to avoid complex and slow human remote-
controlled maneuvers.

An excellent approach that has proven extremely
effective in various complex problems is Reinforce-
ment Learning (RL). In recent years, a number of
problems have been successfully solved by Deep Re-
inforcement Learning (DRL), which is an integration
of deep neural networks in RL. In fact, it has been
shown that agents trained through DRL were able to
obtain super-human performance in extremely com-
plex games such as the classic Atari games, Go, Dota
2, and complex robotics problems.

Multi-UAV Reinforcement Learning. UAVs are
designed to operate in shared and dynamic airspace,
hence cooperation is desirable and necessary.

We are thus interested in Multi-UAV systems, i.e.,
teams or fleets of UAVs (Ali et al., 2021; Duflo et al.,
2020) cooperating to achieve the desired goal. By
leveraging a team of UAVs, tasks can be executed
faster and more efficiently than by using a single UAV.
UAVs also need to achieve their goal while avoiding
conflicts and collisions with other UAVs and objects
in the environment, since they are deployed in shared
airspace and safety (including ground safety) is of ut-
most importance.
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Most of the relevant RL and DRL literature targets
single-agent systems. However, in this paper, we fo-
cus on the application of RL in a multi-agent system
(MAS), known as Multi-Agent Reinforcement Learn-
ing (MARL) (Jafari et al., 2020), and more specifi-
cally on Multi-UAV RL techniques.

There are a number of reinforcement learning
techniques applied to the multi-agent scenario. For
example, independent Learners (Tan, 1993) are used
for UAV trajectory planning and time resource alloca-
tion in a multiple UAV-enabled network (Tang et al.,
2020). A slightly different problem such as trajec-
tory planning for Multi-UAV assisted Mobile edge-
computing (EG), (Wang et al., 2021), can be faced
with Multi-Agent Deep Deterministic Policy Gradi-
ent (MADDPG) (Lowe et al., 2017) algorithm. More-
over, an extension of the famous Deep Q-learning al-
gorithm (Mnih et al., 2013) to the Multi-agent case
is applied for autonomous forest fire fighting (Hak-
sar and Schwager, 2018): this approach is based on
an exploratory strategy led by an optimal heuristic
function. Other scenarios may arise where (D)RL can
be efficiently deployed, e.g., leader-follower systems
(Hung and Givigi, 2017), long-term communication
coverage (Liu et al., 2020a), Mobile Crowd Sensing
(MCS) (Liu et al., 2019).

2 OVERVIEW OF Multi-UAV RL
METHODS

In this section, we present a brief review of the lit-
erature on Reinforcement Learning applied to Multi-
UAV systems. Initially, we investigated major con-
ferences such as AAMAS (International Conference
on Autonomous Agents and Multiagent Systems),
ECML (European conference on machine learning),
ICML (The International Conference on Machine
Learning), NeurIPS (Neural Information Processing
Systems), but without relevant matches. Thus we
moved to a keyword search on scientific databases
such as IEEE Xplore, ScienceDirect, MDPI and
Springer. Our interest was focused on the following
keywords: UAVs, Multi-UAVs, Reinforcement learn-
ing, Drones, Multi-agents and a combination of them.
As a consequence of our analysis and as shown in Fig-
ure 1, this topic is recent and rapidly growing.

Additionally, the European Drone Outlook Study
(Undertaking, 2017) forecasts an increase in the drone
marketplace of EUR 15 billion annually by 2050 and
they estimated at least EUR 200 million in addi-
tional funding in Research & Development within 5
to 10 years from the study. Furthermore, they expect
around 7 million consumer leisure drones to operate

Figure 1: Number of publications per year (2016 to 2021)
given the research keywords.

across Europe and around 400 thousand for govern-
ment and commercial missions in 2050. The above-
mentioned data reveals the interest in this emerging
sector and therefore the need to find new solutions for
their uses. (Undertaking, 2017) also points out the
sectors which will benefit the most as being agricul-
ture, energy, E-commerce, delivery and transport.

By analyzing the literature, our aim is to high-
light the most popular research directions and group-
specific problems into macro classes such as Cover-
age, Trajectory generation, Computation Offloading
and Communication. In this regard, we noticed a lack
of work including human supervision on autonomous
UAVs in case of unexpected events. Although ma-
chine learning (ML) and in particular RL are excellent
tools capable of automating the agents’ behavior, hu-
mans still play an important role in supervising UAVs.

Mixed Human-Robot Teams. Fully autonomous
agents are prone to errors, as they cannot cope with
the amount of knowledge required to successfully
perform a task in a real-world environment. Sev-
eral studies investigated the level of autonomy (LOA)
adopted by agents in mixed human-robot settings
(Wu et al., 2018). The autonomy is most often an-
alyzed in terms of a dynamic framework in which the
agents learn to adapt their LOA to the task at hand,
e.g., mixed-initiative interaction settings (Allen et al.,
1999), adaptive autonomy (Suzanne Barber et al.,
2000) and collaborative control (Fong et al., 2001).
MAS with autonomous agents are sensitive to a range
of issues related to their performance for computer vi-
sion tasks, such as object detection, imperfect knowl-
edge of the system, and lastly ethical issues resulting
from non-explainable AI decisions.

During our literature research, we found only
one work focusing on mixed human-robot teams for
multi-UAVs systems (WANG et al., 2020). In the
latter, the authors build a transparent human-UAV
framework where they study the behavior of hetero-
geneous UAVs equipped with different capabilities.
This framework is based on the requirements of Ob-
servability, Predictability, and Directionality (OPD),
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which must be met for each agent on the team to
understand the intentions and behaviors of the other
members, contrary to previous approaches which fo-
cused on improving the level of autonomy (LOA) of
team members. In this work, agents can mitigate
this problem by being aware of the state and actions
of other agents. An optimal policy for the leader-
follower problem is learned through deep reinforce-
ment learning (DRL), while a path planner is used to
take into account the presence of enemies threats in
dynamic environments. These policies help humans
by providing hints or warnings if the Human user,
a.k.a. Manned Aerial Vehicle (MAV), approaches
dangerous areas. MAV behaviors are understandable
and controllable, allowing humans to observe, predict
and direct them.

3 OPEN SCIENTIFIC
CHALLENGES &
APPLICATIONS

In our analysis of the current state of the art on
reinforcement learning for Multi-UAV systems, we
found a lack of work considering the presence of
one or more human agents within the environment.
When considering mixed human-robot interactions,
the issue of interpretability becomes crucial for a hu-
man operator to understand and guide autonomous
UAVs. This problem is well addressed in the field
of explainable-AI (XAI), whose aim is to stir from
the classical black-box approach in favor of a more
user-friendly system. We advocate that mixed human-
robot teams are fundamental for solving complex
tasks in a shared aerial environment and the related
research activities should proceed in this direction. In
the following section, we present some promising re-
search lines and industrial applications that can ben-
efit from more in-depth studies in this field. All the
presented applications can be built using a MARL
framework and focus on the supervision and/or col-
laboration applied by a human operator on multiple
UAVs for a range of different scenarios.

3.1 Challenges

Some research directions are here considered to in-
vestigate the feasibility and safety of a human-UAV
hybrid RL system.

Explainable UAVs Behaviour. To supervise au-
tonomous UAVs, humans need to understand the

decision-making process of AI models. For this rea-
son, we want to avoid the classic black-box approach
in favor of a more understandable method (WANG
et al., 2020). UAVs can hardly have full autonomy
to solve difficult tasks regardless of the human inter-
vention, and this becomes even more evident when
ethical reasons are involved in decisional processes:
human-in-the-loop is still crucial in this case. There-
fore, UAVs need to cooperate with human users ac-
cording to protocols that should be as clear as possi-
ble in order to avoid misunderstanding issues between
drones and humans’ behaviors. As a result, research
should focus on the balance between the autonomy
level of UAVs and human control: in this regard, it
is essential to represent the behaviors learned by the
drones through DRL in some formalism that is clear
and understandable to a human operator.

Knowledge Representation. To the best of our
knowledge, there is a noticeable lack of works mod-
eling the presence of a human in the context of RL,
which mainly relies on the Markov Decision Process
(MDP) formalism for its problems description. For-
mally an MDP is defined by the tuple (S ,A ,P ,R ),
where the elements are respectively the state and the
action spaces of agents and the transition and reward
functions of an environment. Extending an MDP to
take into account the human-in-the-loop factor could
be a very difficult challenge. Several works such
as (Gateau et al., 2016) involving both humans and
UAVs, model the former through a Mixed Observ-
ability MDP (MOMDP). MOMDP is an extension of
MDP with partial observations and stochastic poli-
cies. In the literature the use of MOMDP is usually
associated with Planning algorithms, while their ap-
plication in Mixed Human-UAV are still unexplored.
Furthermore, we need also to consider that standard
agents in a generic RL problem require a number
of learning interactions with the environment much
higher than their human counterparts. On the other
hand, a non-human agent provided with high compu-
tational capability can predict some specific informa-
tion that may easily be neglected by a human agent.

Conflict Resolution. When dealing with UAVs,
Air traffic monitoring (ATM) becomes an unmanned
ATM, i.e. UTM, and in this latter case obviously
more particular and additional safety constraints are
required with respect to the ATM case. Thus, when an
emergency event arises in a given UTM scenario with
autonomous UAVs, a responsive human intervention
can be necessary and resolutive. Autonomous to hu-
man control switch is desirable when a severe and
not delayable fault is happening and a manually man-
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aged system is extremely required. In these particular
conditions, the human user should directly control the
faulty UAV in order to allow manual emergency ma-
neuvers. Acting in this way, motions or even landing
operations can be performed in complete safety while
the other UAV swarm members fly along new paths
which are recomputed online by applying (D)RL de-
confliction algorithms (Isufaj et al., 2021). This ap-
proach can be applied to any kind of conflict-risky
or emergency scenario which can occur at any flight
phase, namely either during the ongoing flight or in
takeoff or landing phases.

3.2 Applications

Among the plethora of available applications for UAV
systems, we want to focus attention on some of those
who could benefit from adding a human-in-the-loop
element.

UAV Relay Networks. Data gathering, edge-
computing, and information flow are crucial in mod-
ern scenarios and present a number of challenges tied
to the hostile nature of the environment. Centralized
networks control is the preferred structure in state-
of-the-art systems, however, it does not guarantee an
adequate level of robustness when dealing with dis-
turbing phenomena such as interference and commu-
nication jamming (Wang et al., 2020). On the other
hand, a decentralized Multi-UAV system can be de-
ployed in order to guarantee a sufficient amount of
autonomous behavior. The system can leverage the
reinforcement learning framework’s ability to focus
on multiple goals concurrently such as maximizing
the physical connectivity among UAVs and the area
of coverage. Finally, the system can be supervised
and controlled by a human agent on the field only by
transmitting high-level actions, e.g. move forward, in-
stead of coordinating the whole UAVs team.

Improved UAVs Surveillance. A possible applica-
tion of Multi-UAVs systems and DRL could be per-
sistent coverage and surveillance (Liu et al., 2020b).
In this context, the UAVs must monitor a certain area
through the use of sensors such as onboard RGB cam-
eras, trying to organize themselves in order to offer
adequate coverage and therefore also trying to min-
imize the overlap of the monitored sub-areas. In a
standard application, individual UAVs can send noti-
fications in case of suspicious events in a given zone
and proceed again with their workflow. In an alter-
native version of the same application but with the
human-in-the-loop component, the human operator
could be asked to take control of the UAV through

teleoperation, following the notification. In this case,
the human operator would be able to control the UAV
and therefore follow and accurately track the event.
In this way, it is also possible to reduce the amount
of data exchanged, as the UAV is only delegated to
send notifications while the real-time streaming of the
monitored environment can be activated following the
human intervention.

4 CONCLUSION

In this work, we describe various UAVs applications
and highlight some evidence showing that the UAV
sector is constantly growing in the last few years. In
particular, we focus on a literature analysis related to
RL approaches applied to Multi-UAV systems. As
a result, we identify a shortage of works concerning
the human role as possible collaborator or supervi-
sor in complex mixed scenarios involving unexpected
and not easily predictable events: most of the time
these particular conditions are challenging and prob-
lematic to be managed by the UAVs autonomously.
Finally, we propose some alternative solutions to ex-
isting problems, trying to indicate how the presence of
a human operator can be crucial and have a positive
contribution in finding a valid and possibly optimal
solution.
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