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Abstract: This paper aims to identify valuable semantic concepts and predict descriptions automatically for medical 
images to assist doctors in image reading. A simple framework called MedCC is proposed for medical image 
concept detection and caption prediction. MedCC employed multiple fine-grained multi-label classification 
(MLC) models trained on manually annotated datasets, which contain image-concept pairs of different 
semantic types, such as Imaging Type, Anatomic Structure, and Findings. We validate the performance of 
MedCC based on the open sourced concept detection dataset and achieved the best F1 score of 0.419, which 
is comparable with the SOTA models. Combining the detected concepts into sentences according to the 
manually defined sentence patterns resulted in a BLEU score of 0.257, which still has room for improvement. 

1 INTRODUCTION 

Diversified medical imaging technologies have 
produced massive medical images of multiple modes, 
providing rich evidence and perspectives for clinical 
diagnosis. The automatic processing and analysis of 
multimodal medical images can help relieve the 
doctors’ pressure of image reading and effectively 
improve the efficiency and accuracy of Clinical 
Decision Support (CDS). 

Due to the highly heterogeneous nature of medical 
images, such as various anatomic structures, 
abnormalities, and diagnostic procedures, it is crucial 
and challenging to identify comprehensive and 
interpretable biomedical semantic concepts as well as 
fluent descriptions for providing clear understanding 
of medical images. Considering these problems, 
concept detection and caption prediction have gained 
increasing attention in recent years. The former task 
aims to identify various biomedical entities from 
medical images (Miranda, Thenkanidiyoor, and 
Dinesh 2022), and the latter further predicts brief 
expressive textual descriptions. 
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This paper aims to interpret medical images using 
clinically significant concepts and descriptions. Our 
contributions are summarized as follows: (1) We 
proposed MedCC, a simple and useful framework for 
identifying medical image concepts and predicting 
concise captions. The transfer learning-based multi-
label classification (MLC) model (Szegedy et al. 
2016) was employed as our baseline concept 
detection model. (2) To retrain multiple MLC models 
separately with fine-grained semantic concepts, we 
divide concepts into three categories based on their 
semantic types, namely Imaging Types, Anatomical 
Structure, and Findings. Then we manually re-
annotated the open sourced medical images with 
different types of concepts via a self-developed 
platform. (3) We review the expression of 3256 image 
captions and conclude two major sentence patterns 
for combining detected concepts to readable 
sentences. 

In section 2, we summarize the recent works on 
concept detection and caption prediction for medical 
images. Section 3 provides an overview of proposed 
MedCC framework, and introduces the main 
functional modules in detail. In section 4, we 
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specifically describe our experimental data, 
experimental settings and the evaluation criteria. 
Section 5 shows the experimental results on the open 
sourced ImageCLEFmedical 2021 dataset, and a 
preliminary case analysis was conducted. Section 6 is 
a brief summary and outlook of this work. 

2 RELATED WORK 

ImageCLEF hosts annual challenges for medical 
image concept detection, medical caption prediction, 
Tuberculosis type detection and multi-drug resistance 
detection. As one of the representative tracks, the 
ImageCLEFmedical Caption 2021 challenge consists 
of two tasks: Concept Detection and Caption 
Prediction, with the goal of mapping visual 
information of radiology images to textual 
descriptions of different granularity (Pelka et al. 
2021). The concept detection task aims to identify 
semantically relevant UMLS (Bodenreider 2004) 
Concept Unique Identifiers (CUIs) from radiology 
images, whereas the caption prediction task requires 
describing the entirety of a medical image and 
generating coherent reasonable captions.  

The methods of concept detection mainly include 
multi-label classification, sequence-to-sequence 
learning, entity recognition from captions, and 
similarity-based image-text searching approaches 
(Miranda, Thenkanidiyoor, and Dinesh 2022). It is 
worth noting that due to the heterogeneity and 
similarity of medical images, the concept detection 
technology used in natural images cannot be applied 
directly for medical images. Heterogeneity refers to 
the fact that one concept may have completely 
different image characteristics, which are constructed 
by different imaging techniques. The similarity 
means that similar appearances may be associated 
with difference concepts. Therefore the concept 
detection model needs to identify the inter concept 
similarities and intra concept heterogeneity. 
Supervised learning such as multi-label classification 
(MLC) (Rio-Torto et al. 2022), convolutional neural 
network (CNN) (Beddiar, Oussalah, and Seppänen 
2021), and concept retrieval were commonly used for 
detecting medical concepts. (Rio-Torto et al. 2022; 
Serra et al. 2022).  

Concept detection is also the premise of image 
caption prediction. Using natural language processing 
(NLP) technology to combine a group of concepts is 
the most concise method to produce textual 
descriptions of images. Further, these captions can be 
used as components for generating imaging reports. 
Transformer-based models are generally selected as 

image decoders to generate semantically coherent 
captions. (Dalla Serra et al. 2022) 

3 METHODOLOGY 

The motivation of this work is to build a simple 
architecture that provides comprehensible semantic 
concepts and descriptions for interpreting multimodal 
radiology images. Figure1 shows our workflow of 
Medical Image Concepts Detection and Captions 
Prediction (Abbreviated as MedCC); including the 
analysis and transformation of the ImageCLEF 
dataset consisting of elaborately collected medical 
images, concepts, and descriptions from PMC 
literatures, as well as methods for medical concept 
detection and caption prediction. 

A transfer learning-based MLC method is utilized 
as baseline for modelling overall concepts. In 
addition, considering the distinction of concepts with 
different semantic types, we further divided the 
original concept detection dataset into three subsets 
according to their semantic types, which supported us 
to train fine-grained MLC models and reveal clinical 
insights of radiology images.  

 
Figure 1: Workflow of proposed MedCC framework. 
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3.1 Data Analysis and Transformation 

3.1.1 Details of Dataset  

The ImageCLEFmedical 2021 track (Ionescu et al. 
2021) released a collection of 3,256 radiology images 
with 3,256 captions and 1,586 no duplicate UMLS 
CUIs (Concept Unique Identifiers). The training set 
contains 2756 radiology images with captions and 
concepts extracted from PMC literatures. Figure 2 
shows a training sample of medical image with 
associated caption and concept CUIs. Specifically, 
concepts in the training set are automatically labelled 
from image captions, and then filtered and mapped to 
UMLS CUIs. While the development set consists of 
500 radiology images annotated by professional 
radiologists.  

 
Figure 2: A sample of medical images from the training set 
of ImageCLEFmedical Caption track, each with the 
associated caption and CUIs. 

According to the officially provided CUIs, we 
backtracked biomedical terms from the 
UMLS2020ab thesaurus, and collected TUIs (Unique 
Identifier of Semantic Type) together with semantic 
type strings for each term. We observed that most 
images were accompanied with concepts on behalf of 
imaging modality, such as the Diagnostic Procedure 
or Medical Device, and some concepts representing 
the anatomic structures or clinical findings.  

Table 1 shows the distribution of high-frequency 
concepts, and it is evident that the semantic types of 
these concepts are relatively concentrated on a few 
specific TUIs. For example, terms like ‘Tomography, 
Emission-Computed’, ‘Plain x-ray’, ‘Magnetic 
Resonance Imaging’ and ‘Ultrasonography’ have the 
same semantic type, i.e. T060 that refers to the 
Diagnostic Procedure. Similarly, terms like ‘Lesion’, 
‘Thickened’ and ‘Mass of body structure’ belongs to 
the T033 that refers to Finding; while terms like 
‘Appendix’, ‘Right Kidney’ and ‘Spinal epidural 
space’ that associated with body parts or organ 
components can be classified as Anatomic Structure. 
Obviously, medical concepts of different semantic 
types can reveal the clinical significance of medical 
images from different perspectives. 

Table 1: Part of high-frequency UMLS concepts in the 
ImageCLEFmedical caption 2021 collection. The 
abbreviations are as follows: CUI refers to Concept Unique 
Identifiers, TF refers to Term Frequency, TUI refers to 
Unique Identifier of Semantic Type, and SEMTYPE refers 
to Semantic Type. 

CUI TF Term 
String 

TUI SEMTYPE 

C00403
98 

1400 Tomography
, Emission-
Computed

T060 Diagnostic 
Procedure 

C00244
85 

796 Magnetic 
Resonance 
Imaging

T060 Diagnostic 
Procedure 

C13066
45

627 Plain x-ray T060 Diagnostic 
Procedure

C00416
18

373 Ultrasonogr
aphy

T060 Diagnostic 
Procedure

C00099
24 

283 Contrast 
Media 

T130 Indicator, 
Reagent, or 
Diagnostic Aid

C05775
59 

274 Mass of 
body 
structure

T033 Finding 

C00029
78

119 angiogram T060 Diagnostic 
Procedure

C02211
98

108 Lesion T033 Finding 

C13226
87 

107 Endoscopes, 
Gastrointesti
nal Tract, 
Upper Tract 

T074 Medical 
Device 

C02054
00

92 Thickened T033 Finding 

.. .. .. .. .. 
C00036
17 

52 Appendix T023 Body Part, 
Organ, or 
Organ 
Component

C02281
34 

50 Spinal 
epidural 
space

T030 Body Space or 
Junction 

C00166
58

47 Fracture T037 Injury or 
Poisoning

C00058
89

47 Body Fluids T031 Body 
Substance

C02276
13 

47 Right 
kidney 

T023 Body Part, 
Organ, or 
Organ 
Component

3.1.2 Data Transformation 

As previous experiences show that too many labels 
may reduce the accuracy of the classifier, an 
alternative strategy is to divide the label set into 
multiple subcategories for training fine-grained 
multi-label classification models. In this work, we 
manually divided the original concepts into three 
categories according to the UMLS semantic types, 
namely Imaging Type (IT), Anatomic Structure (AS), 
and Finding (FD). Concepts that do not belong to the 
above categories are classified as ‘others’.  

A secondary data annotation was performed based 
on the official training set as well as development set 
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via a self-developed medical data annotation platform. 
As shown in Figure 3, there are three sources of 
relevant concepts for a given radiology image. The 
first category contains the original ImageCLEF 
concepts annotated by official tools and radiologists. 
These concepts are semantically related but are often 
incomplete because many images have only one label. 
We take such concepts as preferred labels. As long as 
there are preferred concepts assigned to the three 
major categories, i.e. Imaging Type (IT), Anatomic 
Structure (AS) and Finding (FD), we no longer 
expand them to ensure the accuracy. The second 
source of concepts are automatically annotated from 
the given image captions using the MetaMap tool 
(Aronson 2001) and the UMLS 2020ab vocabulary. 
Therefore, we call them candidate META tags, which 
are more comprehensive but also introduce noise 
words. If the preferred concepts are insufficient for a 
given image, we seek for appropriate concepts from 
META tags for supplementing corresponding 
categories. The third source provides alternative 
supplementary concepts summarized manually from 
the high-frequency ImageCLEF concepts. The 
purpose of collecting such concepts is to facilitate 
dragging and supplementing high-frequency words 
that are not included in the caption and concept 
annotations during manual annotation.  

Graduate students majoring in medical imaging 
were invited to annotate images by consulting visual 
information, textual descriptions and the three kinds 
of concepts described above. The labelling protocol 
is that each radiology image should be assigned at 
least one IT label, zero or more AS labels, and zero or 
more FD labels. In addition, ImageCLEF concepts 
that are indefinite to be classified in the above 
categories can be assigned to the ‘Others’.  

By collecting the annotated image-concept pairs, 
three subsets were constructed for training 
subsequent fine-grained MLC models. These re-
annotated subsets consist of same images from the 
original training set and development set, but differ in 
related concepts. Table 2 shows the amount of 
concepts in different subsets. It can be seen that the 
smallest subset is the Imaging Type, which contains 
99 no duplicate concepts related to imaging 
diagnostic procedure and devices. The other two 
subsets include 786 and 854 concepts respectively, 
about half of the original concept scale. Empirically, 
with the same number of medical images, the more 
concentrated the semantic concepts to be predicted, 
the more effective the multi-label classification 
model will be trained. Our subsequent experiments 
also verified this issue. 

 
Figure 3: Data flow in the process of secondary data 
annotation; there are three sources of related concepts for a 
given medical image, i.e. the official ImageCLEF concepts, 
META tags and supplementary concepts. 

Table 2: Count of concepts in different subsets, in which the 
CNT refers to the counted number of no duplicate concepts 
in the corresponding subset. 

Subset CNT Concept Sample 
Imaging 

Type 99 C0040398 Tomography 
Emission-Computed 

Anatomic 
Structure 786 C0228134 Spinal epidural 

space 

Finding 854 C0577559 Mass of body 
structure 

3.2 Concept Detection 

3.2.1 Transfer Learning-Based Multi-Label 
Classification 

Multi-label Classification (MLC) is a common 
method for concept detection of medical images. 
However, limited scale of annotated medical images 
prevent us from training effective deep models from 
scratch. Therefore, the MLC method based on 
transfer learning (Szegedy et al. 2016) was used to 
assign multiple concept CUIs to medical images.  

Consider a dataset including 𝑛  unique concepts C = {𝑐ଵ, 𝑐ଶ, … 𝑐௡}  that appear in the context of 
medical images, a MLC model predicts a set of 𝑙 
labels Y = {𝑦ଵ, 𝑦ଶ, … 𝑦௟}, Y ⊂ C  associated with a 
given image X (Miranda, Thenkanidiyoor, and 
Dinesh 2022). Previous studies generally 
implemented MLC using CNN networks that pre-
trained on the ImageNet dataset (Russakovsky et al. 
2015). Specifically, the output sigmoid layer has n 
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nodes representing the concepts to be predicted, and 
produces a set of n probabilitiesP = {𝑝ଵ, 𝑝ଶ, …𝑝௡}, 
inwhich 𝑝௜  is the probability of the input image 
associated with the concept 𝑐௜.  

To compare the classification effects of different 
CNN networks, two classic models, i.e. the Inception-
V3 (Szegedy et al. 2016) and DenseNet 201 (Huang 
et al. 2017) were separately used as the backbone 
network of our MLC framework. The parameters of 
the pre-trained CNN model were transferred as the 
initial parameters of the MLC model.  

We reuse the pre-trained CNN architecture, 
replace the layers used for classification, and retrain 
the network to predict multiple relevant concepts of 
medical images. The convolutional layers realizes 
image feature extraction. The last learnable layer and 
the classification layer are used for classification, 
which combine the image features into class 
probabilities and predict highly correlated concepts. 
To obtain the distribution of the relevant probability 
of medical concepts, the network should be retrained 
as a regression task. Specifically, the final fully 
connected layer, the softmax layer, and the 
classification output layer were transformed into a 
fully connected layer and a regression layer. Then we 
fine tune the weights based on medical images, and 
assign concepts with probabilities above a certain 
threshold to the test images. 

3.2.2 Fine-Grained Multi-Label 
Classification 

Inspired by the idea of multimodal data fusion, we go 
further to train multiple fine-grained MLC models 
based on the secondary annotation subsets, which 
label the same images with a smaller number but 
more focusing concepts. The transformation of CNN 
networks are same as Section 3.2.1. Therefore, three 
types of semantic concepts can be obtained for each 
medical image. Further, the late fusion strategy is 
employed together with predefined threshold and 
concept selecting rules to fuse the predicted results. 
The concept selection strategy would be introduced in 
detail in the experiments section. 

3.3 Pattern-Based Caption Prediction 

To obtain readable image captions, a simple and 
direct way is to combine the semantic concepts 
identified in the previous stage, simulating that 
human beings compose sentences by keywords. 
According to the expression characteristic of captions 
in the ImageCLEF dataset, a few sentence patterns are 
concluded for combining identified concepts to 

descriptions, see Table 3. Obviously, the accuracy 
and comprehensiveness of concept detection will 
directly affect the quality of synthesized sentences. 

Table 3: Pre-defined sentence patterns for combining 
concepts as captions. 

Pattern Caption Sample 
<Imaging Type> of 
<Anatomic Structure>  
demonstrate/show/suggest 
<Finding> 

FigID_synpic31919: Longitudinal 
sonographic image of the left kidney 
shows hyperechoic renal pyramids 
with faint shadowing. 

<Imaging Type> 
demonstrate/show/suggest 
<Finding> in/of/within 
<Anatomic Structure >

FigID_synpic41602: Axial CT 
images demonstrate a rounded mass 
in the right upper quadrant. 

4 EXPERIMENTS 

4.1 Dataset 

Both of the original ImageCLEF dataset and the 
secondary re-annotated dataset are utilized as our 
experimental data for the subsequent comparative 
experiment.  

For the original daDallataset, 3,256 radiology 
images were separately resized to 299*299 pixels for 
training Inception V3, and 224*224 pixels for the 
DenseNet model. Concept CUIs associated with 
overall images are collected as the label set. We used 
the official 2756 training images for the training 
process. The development set containing 500 human-
labelled images is randomly divided equally into 
validation set and test set, each collection contains 
250 images and related text descriptions. 

For the secondary re-annotated dataset, each 
subset contains the same 3,256 radiology images and 
associated concepts of different semantic types. We 
did the same resize processing for the images as 
mentioned above. The division of training set, 
validation set and test set is also the same as above. 

4.2 Experimental Settings 

All experiments were implemented on a Windows 
Sever 2012 R2, with detailed configurations of 
Intel(R) Xeon(R) Gold 6130 64 CPU, 512GB 
memory, and NVIDIA Tesla P100 16GB * 4 GPUs. 

The transfer learning-based MLC model trained 
on the original ImageCLEF dataset was taken as the 
baseline model. The label set contains more concepts 
to be predicted, resulting in a larger scale of the 
corresponding concept probability matrix. During the 
training process, pre-trained models including 
DenseNet201 and Inception v3 were re-trained on the 
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current dataset. The parameters were set as follows: 
both models used the SGDM as Gradient descent 
algorithm, the epoch is set as 30, the initial learning 
rate is 0.005 with a drop period of 20. We further fine-
tuned the models based on the validation set. Then, 
predicted concepts with high probabilities above the 
predefined threshold were selected as the preferred 
labels for a given test image. The concept selection 
rules according to the output score matrix includes the 
Term Frequency, the Threshold of probabilities and 
the Top Rank of probabilities. Based on the validation 
set, we gradually adjusted the threshold from zero to 
0.5, and the lowest term frequency is set to 5, while 
the top rank of probabilities ranges from 1 to 5, 
increasing by 1 each iteration. 

As comparative experiments, both of the 
DenseNet and Inception v3-based MLC models were 
separately trained and verified on the three secondary 
annotated subsets. The parameters were set as 
follows: the Gradient Descent algorithm include 
SGDM, ADAM and RMS; the epoch is set as 20, 
initial learning rate is 0.001 with the drop period of 
20. The threshold gradually increased from zero to 
0.5 with an interval of 0.1, the term frequency is set 
to 10 while the top rank ranges from 1 to 5, with an 
interval of 1. Then with refer to the late fusion 
strategy, the best results of the above methods are 
combined as predicted concepts for test images.  

Finally, the preferred concepts are filled into the 
sentence template to form a comprehensible 
description. A classical Dual path CNN model 
(Zheng et al. 2020) was taken as a comparison 
method.  

4.3 Evaluation Criteria 

In this study, the evaluation criteria follows the 
ImageCLEFmedical 2021 track (Pelka et al. 2021). 
For the concept detection task, balanced precision and 
recall trade-off were measured in terms of F1 scores 
between predicted and ground truth concepts, which 
were calculated by the Python's scikit-learn library. 
The caption evaluation is based on BLEU score 
(Papineni et al. 2002), an automatic evaluation 
method for machine learning that implemented by the 
Python’s NLTK (v3.2.2) BLEU scoring method. 

5 RESULTS 

Based on re-annotated subsets, we validated the 
performance of fine-grained MLC models separately. 
Preliminary results show that the Inception V3 model 
outperforms DenseNet in predicting Imaging Type 

labels, with an F1 score of 0.9273. However, the 
identification of other types of concepts, such as 
Findings, is far from satisfactory. One possible reason 
is that hundreds of candidate labels in a training 
subset are still too many to adequately train an 
effective MLC model compared to a limited number 
of thousands of images.  

Intuitively, it is understandable that images of 
similar cases may have similar anatomical structures 
or findings labels. However, since the images in the 
original ImageCLEF dataset come from PMC 
literatures, and the diversity and heterogeneity of 
image content as well as context determine that it is 
not suitable for specific disease detection tasks, which 
makes it difficult to predict accurate body parts, 
organs, or findings.  

Table 4 shows the experimental results of our 
MLC models on the concept detection task. Among 
them, MLC_baseline represents the MLC model 
trained on the overall concept set based on the 
Inception-V3 backbone network. The MedCC_FD 
represents the fine-grained MLC model trained on the 
subset including the Findings (FD) concepts, similar 
to this, MedCC_* represents the combination of the 
concepts predicted by different MLC models. We 
also combined the fine-grained predicted concepts 
with the baseline.  

Unexpectedly, the fine-grained MLC model 
trained based on the subset of Imaging Types, i.e. 
MedCC_IT obtained the best F1 score of 0.419, 
indicating that concepts of this type have a high 
coverage in radiology images, and are relatively 
concentrated and suitable for training an effective 
classification model. Whereas MedCC_FD and 
MedCC_AS that predicted body-related concepts or 
clinical findings introduced more unmentioned words 
and reduced the overall score. However, previous 
experience gained through manual annotation 
suggests that some unmentioned terms are also worth 
referring to interpret given medical images. Figure 4 
shows an example in the validation set. For a given 
medical image, MedCC produced a few medial 
concepts as well as a concise caption, in which red 
concepts are consistent with the Ground Truth (GT), 
and unmatched concepts such as ‘Appendix’, ‘Mass 
of body structure’ are also meaningful and related to 
the given image.  

Table 5 shows the performance of MedCC on the 
caption prediction task. A Dual path CNN model was 
taken as baseline, and achieved a BLEU score of 
0.137. Due to the limited predefined sentence patterns 
and the influence of concept detection results, our 
pattern-based caption prediction model received a 
BLEU score of only 0.257. Case analysis shows that 
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the sentences generated by MedCC are coherent and 
in line with the logic of medical image description. 
However, it still does not meet doctors’ need for 
quick reading and reasonable interpretation of 
images. 

Table 4: Experimental results of MedCC on the concept 
detection task. 

Method F1  
MedCC_FD 0.019
MedCC_AS 0.037

MedCC_IT_AS_FD 0.327
MedCC_IT_FD 0.355
MedCC_IT_AS 0.370
MLC_baseline 0.380

MedCC_baseline 0.396
MedCC_IT_baseline 0.400

MedCC_IT 0.419 

Table 5: Experimental results of MedCC on the caption 
prediction task. 

Method BLEU 
Dual Path CNN 0.137

MedCC_Pattern1 0.203
MedCC_Pattern2 0.257 

 

 
Figure 4: An example in the validation set, comparing the 
concepts and captions predicted by MedCC with official 
Ground Truth. 

6 CONCLUSIONS 

This article introduces MedCC, a simple architecture 
that provides understandable semantic concepts and 
descriptions for interpreting multimodal radiology 
images. The MLC method based on transfer learning 
is mainly used to detect UMLS concepts for medical 
images. We manually annotated three subsets 
according to different semantic types of concepts, 
namely Imaging Type, Anatomic Structure and 
Finding. Then we trained multiple fine-grained MLC 
models based on different subset separately for 
identifying semantic concepts of specific types. 
Further, the detected concepts were combined into 
sentences according to predefined sentence patterns.  

Through this study, we acquired a more intuitive 
and in-depth understanding of biomedical concepts 
related to the clinical interpretation of radiology 

images. In order to obtain more relevant concepts for 
medical images, the set of semantic concepts should 
be more focused and specific, which is crucial for 
training effective models. In addition, it is still worth 
exploring how to generate more readable and 
reasonable descriptions on the basis of clear and 
clinically significant concepts. 
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