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In recent years, reinforcement learning algorithms for financial asset trading have been extensively studied.
Since in financial markets the state observed by the agent is not exactly equal to the state of the market, which
could affect the performance of reinforcement learning strategies, the trading decision problem is a Partially
Observable Markov Decision Process(POMDP). However, few studies have considered the impact of the de-
gree of Markov property of financial markets on the performance of reinforcement learning strategies. In this
paper, we analyze the efficiency and effectiveness of Monte Carlo(MC) and temporal difference(TD) methods,
followed by analyze how T'D(A) combines the two methods to reduce the performance loss caused by partially
observable Markov property with the bootstrap parameter A and truncated horizon 4. Then considering the
non-stationary nature of the financial time market,we design a stepwise approach to update the trading model
and Update the model online during the transaction. Finally, we test the model on IF300(index futures of
China stock market) data and the results show that 7D(A) performs better in terms of return and sharpe ratio
than TD and MC methods and online updates can be better adapted to changes in the market, thus increasing
profit and reducing the maximum drawdown.

1 INTRODUCTION

Over the past few decades, financial trading has been
a widely studied topic, and various trading meth-
ods have been proposed to trade in financial markets
such as fundamental analysis (Singhvi, 1988; Abar-
banell and Bushee, 1998), technical analysis (Lim
et al., 2019; Murphy, 1999) and algorithmic trading
(Schwager, 2017; Chan, 2013) and so on. In recent
years, reinforcement learning has been widely applied
in many areas and has achieved remarkable success
in several application fields, including autonomous
driving (Cultrera et al., 2020; Shalev-Shwartz et al.,
2016), games (Littman, 1994; Vinyals et al., 2019),
resource scheduling (Mao et al., 2016). At the same
time, the technology is increasingly being used in fi-
nancial transactions to generate higher returns (Deng
et al., 2016; Carapugo et al., 2018; Huang, 2018; Lei
et al., 2020; Moody et al., 1998).

Neuneier et al. (Mihatsch and Neuneier, 2002)
combines the Q-learning algorithm in reinforcement
learning with neural networks to make trading deci-
sions. In the process, they modeled the trading pro-
cess as a Markov decision process (MDP), with in-
stantaneous profit as the reward function. Inspired by
DOQN in solving game problems, Chien Yi Huang et
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al. (Huang, 2018) modeled the trading decision prob-
lem as an MDP process and adopted DQN for the
model to make trading decisions. Stefan Zohren et al.
(Zhang et al., 2020) also modeled the trading decision
problem to MDP and used three reinforcement learn-
ing algorithms to test in a variety of financial markets,
and all achieved higher performance than traditional
technical indicator strategies.

The above study defaults that the trading deci-
sion process is an MDP, i.e., the state of the finan-
cial market environment is observed by the agent is
be Markovian. And the TD method that exploits the
Markov property of the environment is used for train-
ing. However, there are many factors that affect the
price changes of financial assets, including economic
development level, money supply, interest rate, infla-
tion level, balance of payments, population structure,
etc. from a macro perspective. Specific to the price
impact of a single financial asset, it includes the com-
pany’s industrial strength, financial status, bullish and
bearish behavior of participating traders, and even fi-
nancial news, market sentiment and other factors. Ob-
viously, according to the public data available in the
market, the above effective information affecting the
price of financial assets cannot be fully covered. And
the state would be informationally perfect only if it re-
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tained all information about the history and thus could
be used to predict futures as accurately as could be
done from the full history. In this case, the state S; is
said to have the full Markov property. But in finan-
cial market environment, the states of agents can not
be Markov but may approach it as an ideal. There-
fore, financial asset trading is not a standard Markov
decision process, but a typical partially observable
Markov decision process.

Furthermore, the TD method exploits Markov
property of the environment (Sutton and Barto, 2018),
so the effectiveness of the TD method is poor in the
financial market environment that does not fully meet
the Markov property. Although the MC method does
not exploit the Markov property, it can only be used
for non-continuous tasks and can only be updated un-
til the end of the curtain, so the efficiency is low and
requires huge training data for training. Therefore, for
financial trading problems with high training speed
requirements and tight data, MC method is not appli-
cable.

Recently, some scholars have considered the par-
tially observable Markov property of financial mar-
kets. Chenlin et al. (Chen and Gao, 2019) modeled
the transaction decision problem to POMDP and used
LSTM to make the POMDP close to the MDP and
improve the impact of partial observability. Although
some scholars want to improve the performance im-
pact of some observable financial markets, no studies
have optimized the RL training method to reduce the
performance degradation caused by partial observ-
ability.

In this paper, to address the above issues, we de-
scribe the trading decisions problem as a POMDP and
acknowledge that the agent cannot fully observe the
information of the financial market. At the same time
the TD(A) method, which combines TD and MC, is
used for training to improve the performance degra-
dation brought by partial observables and to investi-
gate the effects of the bootstrap parameters A (which
could trade off TD and MC) and the truncated hori-
zon h (which colud regulating the time period of boot-
strap) on performance. At the same time, considering
the non-stationary nature of the financial time mar-
ket, in order to be able to adapt the strategy to the
changes of market conditions as much as possible, we
use a stepwise approach to update the strategy and
make the strategy update online in the test set. Ex-
perimental results of our idea on IF300 data show that
the TD(A) method outperforms the TD and MC meth-
ods, and that online updating avoids generating large
maximum retractions.
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2 METHODY

In this section, we model the trading decisions as
POMDP and introducing our settings of RL including
state spaces, action spaces and reward functions, and
describe the RL algorithm used in this paper, PPO.
Then we analyze the characteristics of RL training
methods, TD, MC and TD(A) method. Finally, we
study how does the bootstrapping parameters A with
truncated horizon & affect the efficiency and effective-
ness of the TD(A) method.

2.1 POMDP Formalisation

In financial markets, security prices are influenced by
many factors, such as macroeconomic policies and
microeconomic activities, which contain information
about unpredictable events and the trading behavior
of all market participants. Therefore, it is difficult for
an agent to observe the complete information of the
financial market and the trading process can be con-
sidered as a POMDP.

POMDRP is a generalization of Markov decision
process. The POMDP is proposed mainly because in
realistic environments, the state observed by the in-
telligence is not equal to the full state of the current
environment, which can affect the learning efficient
and effective of reinforcement learning strategies.

Therefor, we model the transaction decision prob-
lem as a POMDP in which the agent interacts with the
environment at discrete time steps. At each time step
t, the agent obtains the observed value of the environ-
ment as the agent state S;. The more historical infor-
mation this state can represent, the higher the degree
of Markovian properties it contains. The agent se-
lects an action A; according to this state, and receives
a reward R, returned by the environment at the next
time step, while the agent enters the next state Sy .
A trajectory T = [SQ,A(),RI,Sl,Al,Rz,SQ,AQ,R3,...]
is generated during the interaction of the agent with
the environment. At time step ¢, the objective of RL
is to maximize the expected return, denoted as G, at
time t.

T
Gi=Y v 'R (1)
k=t+1
State Space. The characteristics of financial markets
are always contained in the historical prices of assets,
and technical indicators are extracted from the charac-
teristics of prices, so this paper not only uses spreads
as the characteristics of the state space but also uses
technical indicators as part of the state space. A list
of our features is below:

* Normalised spread series,
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e Action at t — 1 moment A;_|

* MACD indicators shows the relationship between
exponential moving averages of security prices on
different time scales.

MACD, = DEA; — DIF, 2)
DIF, = m(Pr—lZ:r) - m(pt—26:t) 3)
DEA; = m(DIF;,_o.;) 4)

m(x;—n ) is an exponentially weighted moving av-
erage of x with time scale n, p; is close price at
time ¢.

* RSI indicators is overbought (above 80) or over-
sold (below 20) by measuring the recent rise or
fall in contract prices

B AUL

~ AUL+ADL
AUL is sum of the returns from the last n time
steps, ADL is sum of the losses of the last n time

steps. We set the periods n is 20 days. days in our
state representations.

RSI *100% (5)

Action Space. A discrete action space is used, a sim-
ple action set {—1,0,+1}, where each value directly
represents a position, i.e. -1 corresponds to a short
position, 0 to no position and +1 to a long position.
Reward Function. The reward function depends on
profits R, which defined as

R; =az(Pz—Pt—1)—bp Pt(at—at—l) (6)

Transaction costs are necessary because transaction
fees and slippage are inevitable in real transactions,
and defining transaction costs in the reward func-
tion is a major advantage of reinforcement learning.
bp(basis point) is a parameter used to calculate trans-
action fees and slippage.

2.2 RL Algorithm

PPO is proposed to solve the problem of perform-
ing one asymptotic update for each data sample ob-
tained from PG interaction with the environment,
and optimizing a “surrogate” objective function using
stochastic gradient ascent. PPO consists of two net-
works: an actor network that outputs the policy and
a critic network that uses the action value function to
measure the goodness of the chosen action in a given
state. We can update the policy network by maximiz-
ing the “surrogate” objective function.

LCLIP(G) —

7
E; [min(rl(O)AAl,clip(r,(O)7 1—¢,1 —|—8)A,)} 2
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where A, is the advantage function defined as:
A =8+ (W81 +-+ (W) T8 ()

8t :R,+’YV(S,+1\O))—V(S;|(0) (9)

Whereas standard policy gradient methods per-
form one gradient update per data sample(Zoph et al.,
2018), PPO update more times by add r;(6) which de-
note the probability ratio to the formula

TI:e(a,|S,)
at‘S,)
To compute the advantage functions, we use the

critic network and train the network using gradient
descent minimizing TD-error

L(w) = E[(G, - V(S/|0))] (11)

r(0) =

= (10)
Ty

old (

There are many methods to calculate the cumula-
tive discount return G; in the current state, such as
MC, TD and TD(A). Different application scenarios
should choose different calculation methods, because
the efficiency and effectiveness of the models differ
between different calculation methods.

2.3 RL Training Methods
2.3.1 Monte Carlo

The Monte Carlo method requires sampling se-
quences from the interaction of the agent with the
environment and solves the reinforcement learning
problem based on the average sample return, which
is defined as follows.

Gy =Rig1 +YR12 + VR +--+Y 'R (12)

The Monte Carlo method must wait until the end
of the episode to be updated, because only then is
the return known. But some applications have long
episodes, and postponing all learning until the end of
the episode is too slow. The financial trading decision
problem is one such task with a long sequence, so the
efficiency of MC is lower. However, they may be less
harmed by violations of Markov properties. This is
because they do not update their value estimates based
on the value estimates of subsequent states. In other
words, this is because they do not perform bootstrap.

2.3.2 Temporal Difference

Temporal Difference methods update their estimates
based to some extent on other estimates. They learn a
guess from a guess, which is called bootstrap method.
The formula is as follows

G; =Rit1 +WVi(se41) (13)



TD exploits Markov property, their aim is to find
fully correct estimates of the maximum likelihood
model for Markov processes.Therefore, TD is less ef-
fective for non-Markov environments. However the
TD method only needs to wait one time step to up-
date, and it learns from each transition without regard
to what action is subsequently taken, whereas the MC
method must wait until the end of an episode to up-
date. Therefore, the efficiency of TD method is better
than MC method.

233 TD(\)

TD(A) methods unify and generalize TD and MC

methods. TD(A) methods update with A-return which

utilizes multi-step jackpot with bootstrapping. The
formula is as follows:
T—i—1

Gr=(1-1) Y M 'Gup+ATTIG (14)

n=1

Gritn =Rip1 +VR2+ ...+
’Yn_lRH»n + ’YthJrnfl (St+n)

The TD(A) method approximates the MC method
when lambda equals 1, and it approximates the TD
method when lambda equals 0. MC converges slowly
but has better effectiveness with partially observ-
able Markov decision process, while TD converges
quickly but has poor effectiveness with partially ob-
servable Markov decision process. By adjusting boot-
strapping parameter A it is possible to balance TD and
MC and reduce the performance degradation caused
by partially observable Markov.

However, lambda-returns depend on n-step re-
turns for arbitrarily large n, and thus can be com-
puted only at the end of the episode, as in the MC
method. But, the longer the reward time, the weaker
this dependence becomes, since each delayed step
drops lambday. Then, approximations can be made
by truncating the sequence after some time steps and
replacing subsequent missing rewards with estimates.
Therefore the the truncated horizon 4 the greater the
proportion of estimated values.

In general, we define the truncated A-return for
time ¢, given data only up to some later horizon, A,
as

5)

h—t—1
Gh, = (1-2) Y MG+ NG
n=1

(16)
O0<=t<h<=T.

2.3.4 Performance Analysis of TD())

To illustrate the idea of TD(A) methods could reduce
the impact of performance degradation brought by
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partially observable Markov property, we choose dif-
ferent bootstrapping parameter A and truncated hori-
zon h for the experiment. For these illustrative exam-
ples, we trained the model 2000 times on three years
of historical data, and we consider the average cumu-
lative returns of the first 100 epochs as the evaluation
index of efficiency , and the average cumulative re-
turns of the last 100 epochs as the evaluation index of
effectiveness. The experimental results are shown in
Figure 1.

As can be seen in 1(a), when considering the effi-
ciency of the model, the more available value of A is
on the left side because at this time the 7 D(A) method
tends to TD method, while when considering the ef-
fectiveness of the model, as can be seen in 1(b), the
more available value of A is on the right side, because
at this time the 7D(A) method tends to MC method,
but when A equals to 1, the efficiency and effective-
ness drops sharply because TD(A) methods produce
a pure Monte Carlo, which converge slower and train-
ing iterations 2000 times still for convergence to a bet-
ter position.

When the truncated horizon 4 is small, the time
period of bootstrap is shorter, the weight of the esti-
mate is larger, and the effectiveness is poorer. As the
field of truncated horizon increases, the time period
for performing the bootstrap increases. There is a sig-
nificant change in state during this time period and the
loss generated by this change can propagate and affect
multiple state updates, so the efficiency is higher.

3 EXPERIMENTS AND RESULTS

We design experiments to test our ideas. In this sec-
tion, we present the experimental setup. Then the per-
formance of the 7D(A) method, MC and TD methods
are compared.

3.1 Description of Dataset

We use data on IF300, our dataset ranges from 2002 to
2022, which are shown in Figure 2. We use 11 years
of data for training to get the model. We then retrain
our model every 3 years, using 3 years of data to up-
date the parameters. And for the next 3 years, make
the model parameters are fixed or updated online as a
way to perform trading simulations. So in total, our
test set is from 2013 to 2022.

3.2 Training Schemes for RL

In our work, we use the 7D(A) method and con-
sider effectiveness and efficiency separately of the re-
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Figure 1: The efficiency and effectiveness of TD(A) varies

with bootstrapping parameter A and truncated horizon 4:(a)
efficiency. (b)effectiveness.

000

Figure 2: Daily closing price of IF300.
inforcement learning strategy and choose different pa-
rameters.

On the train data set, in order to be able to train a
model with the best possible initialization, we chose
the parameters for 6000 training iterations when the
effectiveness of the TD(A) method was good.

On the test data set, we consider the effectiveness
of the RL methods and retrain our model offline 2000
times at every 3 years. Model parameters are then
fixed for the next 3 years.

Furthermore, considering the non-stationary na-
ture of the financial time market, in order to be able to
adapt the strategy to the changes of market conditions
as much as possible. Model parameters are then up-
dated online for the next 3 years, and in order to avoid
the model training time is long and thus miss timing
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of financial asset trading, which leads to a large loss,
the parameters of TD(A) should be chosen when ef-
ficiency is better, and the model is updated in the test
set by training 100 epochs in this paper.

Table 1: Values of hyperparameters for different different
methods.

Hyperparameter Value

learning rate o 0.001

discount factor y 0.99
bootstrapping parameters A with 0.2

efficiency
truncated horizon & with efficiency 240
bootstrapping parameters A with 0.6
effectiveness
truncated horizon i with effectiveness 240
parameter accounting for transaction 1
fees and slippage bp

3.3 Experimental Results

We test both Buy and Hold and our methods between
2013 and 2022, and We evaluate the performance
of this trading strategy using annualised trade return,
maximum drawdown and Sharpe ratio metrics.

¢ ER: the annualised trade return focuses on the
profitability of a trading strategy.

ER = E(R,) %240 (17)

e MDD: the maximum drawdown represents the
maximum loss from any peak in the trading pro-
cess,

¢ SR: the annualised Sharpe ratio compares the re-
turn of a trading strategy with its risk.

We show our results in Table 2, where volatil-
ity scaling is used for each method. This allows the
volatility of the different methods to reach the same
target, so we can directly compare these metrics such
as annualised, maximum drawdown and sharpe ratio.
And due to MC only could update until the end of the
curtain, it cannot update online.

Figure 3 illustrates the profit curves for the Buy
and Hold and different RL training methods for the
test period 2013 to 2022. And Buy and Hold refers
to a long position that begins during the test period
and continues through the end of the test period. The
Buy and Hold also represents the change in price of
the IF300.
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Table 2: Experiment results for the trading strategies volatility targeting.

Trading strategy Update method Method ER MDD Sharpe
MC 0.288 0.564 0.855
offline TD 0.284 0.504 0.833
RL TD()\) 0.315 0.562 0.937
. TD 0.296 0.472 0.869
online
TD(L) 0.336 0.518 1.003
Buy and Hold / / 0.096 1.013 0.281

TD(A) with offline
e

Profit Rate

0.5

0.0

0.5

21304 21404 01503 WE03 203 21803 2903 22003 222 2050
Date

Figure 3: The cumulative trade returns for different trading
strategies and methods.

We can see that the RL algorithm provided bet-
ter performance for buy and hold for most of the time
except for the period from May 2014 to June 2015.
This is because the price of the IF300 continued to
rise during this period. Therefore, the smartest trad-
ing strategy in these situations is to hold long posi-
tions and keep them. However, in other periods of
high price volatility, the buy-and-hold strategy per-
formed the worst. the RL algorithm was able to per-
form better in these markets by going long or short at
a reasonable point in time.

Table 2 shows the performance results of Buy and
Hold, and the different RL training methods when up-
date the model offline and online in the test set quan-
tificationally. The Buy and Hold has the lower an-
nualised trade return 0.096 than the RL Algorithm.
And the T D () method outperforms both MC and TD
method under financial markets with partially observ-
able Markov properties. The annualised trade return
of TD(A) is 0.315 when update strategy offline and
0.336 when update strategy online. At the same time,
online updates increase the profitability and decrease
the MDD compared to offline updates. This is be-
cause the online update allows the strategy to avoid
taking a large-loss action when it encounters a similar
state later in the trading process after experiencing a
large-loss state. These show that online updates allow

better reduce of MDD compared to offline.

The Sharpe ratio is an indicator that evaluates a
combination of profit and trading risk. It can be seen
from Table 2 that the 7D(A) method when update on-
line has the highest Sharpe ratio (1.003). Therefore,
a good performance in term of the Sharpe ratio is ex-
pected for the TD(A) method with update online.

4 CONCLUSIONS

In this paper we analyze the specificity of financial
transactions and model the transaction decision pro-
cess as a partially observable Markov decision pro-
cess. We discuss the respective performance charac-
teristics of MC and TD methods and demonstrate that
TD method is more influenced by the Markov prop-
erties of the environment, and the lower the Markov
property degree, the less effective the strategy model
trained using the TD method is. On the contrary, MC
method is less affected by Markov property, but MC
method puts the learning at the end of the curtain,
so the efficiency is poorer. Therefore, in this paper,
we use TD(A), which combines the two methods, for
testing and analyze the effect of parametric lambda
and truncated horizon i on TD(A). Considering the
non-stationary nature of the financial time market, We
test the model with update online for IF300 data from
2003 to 2022 and verify that the RL strategy outper-
forms the Buy and Hold and that the 7D(A) method
outperforms MC and TD. Furthermore, online up-
dates allow the model to keep up with changes in fi-
nancial market conditions as much as possible.

In the next work, we will investigate adding a fea-
ture extraction model before the RL model and inves-
tigate more technical indicators so that the states can
represent more historical information. Second, differ-
ent reward functions, such as using Sharpe ratio DDL,
are considered so that the model can improve prof-
itability while also considering factors such as risk.
In addition, to further validate the effectiveness of our
model, we will extend the experiment to other mar-
kets, such as stocks, futures, FX, etc.
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