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Abstract: The paper presents a comparation of some methods based on signal processing, for detection and classification 
of the changes in the states of physical processes. The investigated processes generate mechanical vibrations, 
which are properly managed for computer-based processing. As a case study, the incipient faults in bearings 
are considered. Five signal processing methods are promoted, which are based on statistical processing, signal 
modelling, spectral analysis, time-frequency image processing, and information modelling. Statistical 
processing method considers ten features based on statistical moments of various orders. The method of signal 
modelling involves models with parameters estimated by an Kalman estimator. The method of spectral 
analysis considers the power spectrum of the vibration’s signals. The method based on time-frequency 
analysis considers the short-time Fourier transform and Choi-Williams transform for feature extraction. The 
information-based method is based on information source identification and processing. The classifier is based 
on similarity comparation using a distance-based classifiers. The novelty/contribution of the paper is the 
evaluation of the methods for change detection and diagnosis, all based on signal processing paradigm. Each 
of the considered method has advantages and disadvantages and depends on available data. The involved 
techniques could be applied also in process monitoring and conditioning. 

1 INTRODUCTION 

In the operation of production processes, defects in 
various elements of the components may occur. Their 
incipient detection and limitation of interruptions in 
production are of major importance in engineering 
practice. Fault detection refers to such 
problems/defects in the context of physical and – very 
often – industrial processes. However, the use of this 
expression may be limiting or inappropriate, as 
possibly giving rise to mis interpretation in certain 
cases. For example, changing the state of a variable 
in the process can also be achieved without being 
defective, by changing the regime and/or the load in 
the process under study. 

Change detection based on the recording and 
processing of a single signal, in the simplest case, is 
done by checking the "dynamic" range of the signal 
(peak-peak value) or, in more complex cases, on the 
extraction of features and the application of change 
detection methods. 

By detecting the change of a state is meant the 
activity of sensing/ identifying the change of a state 
(usually undesirable) in the operation of a system. 
The processed signals are taken from the process or 
are obtained from the use of a model, through 
simulation. Such signals can be vibration signals, 
sound waves of different frequencies (e.g., audio, 
ultrasonic), and even electrical signals from the 
investigated system. 

There are processes in which harmonic signals are 
available (by measurements) and affected  by  a 
greater or lesser number of noises, so they have a 
random behavior. If the changes in these signals 
correspond to defects in action elements, process or 
sensors, methods based on signal-model-based can be 
applied. A representative example is the vibration 
monitoring application which allows, by measuring 
position, speed or acceleration, the detection of  non-
equilibrium or defective bearings.  

An example of a complex process, in which the 
detection of change and  the detection of defects and 
diagnosis are important activities are the case of a 
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wind turbine, where faults can be in the mechanical 
part (external blades, reducer box) or in the electrical 
part (generator, converter, transformer, etc.). Another 
case is of a rolling mill, where the mechanical part is 
important in the quality of the product and is the part 
dominated in the generation of defects, sources of 
vibration signals, (Precup et al., 2015), (Seeliger et 
al., 2002). 

In the field of Change Detection and Diagnosis 
(CDD) methods, two categories are important, 
(Zhang & Jiang,  2008). The methods based on 
model, process and/or measured signals, and methods 
based on measured data. From the various available 
methods, in this work it will be considered the 
analytical method, based on the processing of the 
vibration signals. Other examples and details are 
available through the references (Isermann, 2006), 
(Patton, et al, 1989), (Venkatasubramanian, et al, 
2008), (Ypma, 2001), (Zhang, 2010). 

The structure of the detection method by 
analyzing the signal model assumes a mathematical 
model for the signal, one can calculate specific 
parameters such as: amplitudes, phases, frequency 
spectra and  correlation functions, for the frequency 
of  the signal. By comparison with the features 
observed in normal function, analytical syndromes 
are generated. Signal models can be parametric 
(amplitudes for certain frequencies or specific type 
models) or nonparametric (frequency spectra or 
statistical correlation functions),  (Iserman, 2006). 

The detection of the changes by methods of 
processing their signatures can be solved by several 
methods, some of which are direct (i.e. the signal is 
processed directly and the processed values have 
physical significance) or indirect (values are 
processed transformed into different spaces from the 
original ones, where the processed data may or may 
not have physical significance, (Timusk, et al, 2008). 
In direct methods, the observed values are directly 
calculated by calculating statistical quantities (most 
often) or gradient-based criteria. These methods are 
often applied in process monitoring applications by 
processing vibrations and audio signals. The methods 
are simple to understand and simple to implement, 
sometimes with very good results, but less good in the 
case of non-stationary signals or time-varying or 
interdependent events (defects).  

Indirect methods, based on transformations, are 
more complex, but the calculations for decision 
making in the new spaces of observations are simpler. 
Compared to direct methods, indirect methods give 
better results. The following types of transformations 
can be exemplified here: time-frequency 

transformations and entropic transformations (based 
on the evolution of entropy).  

The signals can be processed in the time domain, 
in the frequency domain or in the combined/mixed 
time-frequency domain. Each of these areas has 
advantages and disadvantages, so a robust solution 
involves a combination of methods from the fields 
presented, (Popescu et al, 2017). 

The paper is organized in five sections. The next 
section presents the general structure of the methods 
used for data processing and a short analysis of data 
used in the testing stage. Section 3 presents the 
principles of the promoted methods. Section 4 
presents some results of the computer-based 
experiments. Finnally, the conclusion section ends 
the paper.   

2 THE STRUCTURE OF THE 
METHODS 

The problem of change detection and classification of 
faults in bearings is considered. The data used for 
experiments are from (CWR, 2022). There are four 
classes of signals, associated to four 
states/cases/faults: F0- free of faults, F1- fault in ball, 
F2 – fault in inner ring, and F4-fault in outer ring. For 
each state/fault, a record of 200,000 samples is 
available, which corresponds to an observation 
interval of ten [s]. The motor speed is 1797 rpm, and 
the working conditions are without mechanical load.  

A test vector is considered with frames of 5,000 
samples for each record, which is explored with a 
sliding window of length w, variable from 100 to 
5,000 samples, depending on the performance of the 
detection. The bigger window the less precise is the 
point change detection.  

The structure of the data processing is presented 
in Fig.1. Data are pre-processed by filtering and 
scaling to [-1,1] interval. The next block computes the 
features, and the classifier estimates the state/fault. 
The input waveforms are quite similar, so the most 
important block is the feature selector. A primary 
frequency analysis shows an overlapping in 
frequency domain, which will generate difficulties for 
a right classification. This is a reason to explore more 
than a method for CDD, as in the case of the present 
paper, and to promote combination of methods from 
the same domain or from different domains. 

 
Figure 1: The structure of data processing. 
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3 THE METHODS 

Five methods are considered for this work. Some are 
used as references, e.g., statistical method, and others 
are based on advanced processing techniques, as 
those based on time-frequency techniques.  

3.1 The Statistical Method 

The basic theory and the computation of the statistical 
moments are presented in (Gustafson, 2007), 
(Shanmugan and Breipohl, 1988), and (Barkat, 2005). 
Examples of the method under various simulation 
scenarios are presented in (Basseville, 1997), 
(Aiordachioaie, 2013). 

Ten statistical features are used: the mean, the 
dynamic range, the median, the variance, the mean of 
the absolute values, the root mean squares, the peak 
value, the crest factor, the skewness, and the kurtosis.  

Fig. 2 presents the evolution of the feature set, for 
an observation window with 500 samples. The 
evolution of the features indicates the moment of 
change. The process diagnosis depends on the 
performance of the classifier. 

 
Figure 2: Features of the statistical method. 

3.2 The Signal Modelling Method 

The principle of the method is to design an 
autoregressive moving average  (ARMA) signal 
model, (Kay, 1993), (Poor, 1994), (Bozic, 2021) and 
to estimate its parameters in each observation 
window. A change in one or more parameters 
indicates a change in the structure of the process.  

The equation of the ARMA (Ma, Mb) model is 
 

𝑦ሺ𝑛ሻ  ∑ 𝑎ሺ𝑛ሻ𝑦ሺ𝑛 െ 𝑘ሻெೌୀଵ ൌ∑ 𝑏ሺ𝑛ሻ𝑣ሺ𝑛 െ 𝑗ሻெ್ୀଵ  𝑣ሺ𝑛ሻ  (1)

 
where y(n) is the modelled signal, and v(n) is 
Gaussian white noise. A Kalman estimator is used for 
the estimation of the parameters, (Haykin, 2002).  

Fig. 3 presents an example of the first five 
parameters of the ARMA(5,5) model, during the test 
with windows (of length 500 sample). More details of 
the used method are available in (Aiordachioaie, 
2014). 

 
Figure 3: Features of the signal model-based method. 

3.3 The Spectral Analysis Method 

For each sliding data window, a power spectrum is 
computed and analysed. The features vector is 
composed of eight features: the mean and the 
variance in frequency, the third and fourth order 
centred statistical moments, the median, the energy in 
frequency domain, and the mean and the variance 
over the amplitude values. The basic equations are 
presented in (Aiordachioaie, 2022a). 

Fig. 4 presents the evolution of the feature set, 
over a test vector composed of 40 windows. The 
evolution allows the detection of the changes in the 
test vector.  

The method based on the features of power 
spectra is called SF (Spectral Features) and the 
method based on power spectra only is referred a SD 
(Spectral Direct) in Table 1. In the case of SD method, 
the spectral lines could be labelled as direct features. 
The SD method needs a higher resolution than SF.  
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Figure 4: Evolution of the features in frequency domain. 

3.4 Time-Frequency Analysis Method 

The methods based on time-frequency transforms 
(TFT) represent effective solutions for the detection 
of change of in vibratory processes, since it is 
detected the change in the frequency domain and the 
moment of change in time domain, when they have 
occurred. The approach is indicated for intermittent 
and dynamic faults. Time-frequency analysis covers 
a major area related to the non-stationary signals 
(including transient ones) by the ability to detect and 
to locate them.  

Three most used methods are based on the short-
time Fourier transform (STFT), quadratic time-
frequency transform (e.g., Wigner transform) and 
wavelet transform (WT). Some good references are 
(Auger, 1991), (Boashash, et al, 2014), and (Cohen, 
1989).  

Let consider a signal x(t) and a sliding observation 
window w(t). By discretization, a time-frequency 
matrix is generated. The basic equations for the above 
transforms are  

 𝑋ሺ𝑛, 𝑓ሻ ൌ ∑ 𝑥ሺ𝑘ሻ𝑤ሺ𝑘 െ 𝑛ሻ𝑒ିଶగஶୀିஶ (2)
 
for STFT, and 
 𝑊ሺ𝑛, 𝑓ሻ ൌ ∑ 𝑥ሺ𝑘ሻ𝑥∗ሺ𝑛  𝑘ሻ 𝑒ିଶగஶୀିஶ (3)
 
for Wigner transform. In experiments, the Choi-
Williams transform (CWT) is used to decrease the 
interference terms, (Barry, 1992), (Flandrin, et al, 
1996). In the case of WT, the signal x(t) is 
decomposed following the mother wavelet 𝜑, and the 
coefficients alk define the matrix of interest, (Mallat, 
1989), and (Daubechies, 1992).  

An efficient approach is to consider the 
coefficients of the TFT as elements of a digital image, 
and thus to obtain a time-frequency image (TFI). 
Each observation window generates a TFI, which is a 
matrix or a 2D signal. 

Seven features are considered for an image as: the 
mean, the variance, the skewness, the kurtosis, the 

coefficient of variations, the spectral flux, the 
frequency of the maximum amplitude. The 
computation expressions are available in 
(Aiordachioaie, 2022b).  

Fig. 5 presents a set of TFI based on STFT. It is 
about windows 1, 13, 27 and 39 from the set of 40. 
On the x axis the index of the window is presented, 
and on y axis the frequency in Hz. The size of the TFI 
is 6001x50 pixel. 

Fig. 6 shows a set of four TFI based on CWT for 
the same set of windows. The time variable is 
considered on the x axis. The size of the TFI is 
500x500 pixel. This approach has a higher precision 
referred to the previous one. By analysing and 
classifying the content of the image, the change and 
diagnosis could be easily solved. 

 
Figure 5: Time-frequency images for STFT. 

 
Figure 6: Time-frequency images for CWT. 

The Fig.7 and 8 presents the evolution of some 
features for the methods of time-frequency 
approaches. A change in the signal is detected by one 
or more changes of the selected features. 
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Figure 7: Feature evolution for STFT based method. 

 
Figure 8:  First four features for CWT based method. 

3.5 The Information Processing 
Method 

Functions based on entropies is used for each data 
window, e.g., Renyi entropy. A source identification 
process is necessary before computation of the 
entropies, to estimate the probabilities of the basic 
elements. The approach can be applied directly to the 
vibration signals (1D signals) or to time-frequency 
images (2D signals) as in the present approach.  

The set of the features has the Shannon entropy, 
the Renyi entropy of order 2 and 3, (Baraniuk, 2001), 
the multiscale entropy, (Humeau-Heurtier, 2016), the 
crest factor, the variance of the probabilities, the 
maximum amplitude of data, and the Lempel-Ziv 
complexity (Aiordachioaie & Popescu, 2020), 
(Karmeshu, 2003), and (Aiordachioaie, 2021).  

The most used entropy is the Renyi entropy of 
order α, defined as 

 𝐻𝑅ఈሺ𝑋ሻ ൌ ଵଵିఈ 𝑙𝑜𝑔ଶ ∑ 𝑃ఈୀଵ , 𝛼 ് 1  (5)
 
where Pi are the probabilities of the samples from the 
set X. For an image I, a normalized expression is used 
for Renyi entropy as 
 𝐻𝑅ఈሺ𝑰ሻ ൌ ଵଵିఈ 𝑙𝑜𝑔 ∑ ∑ ቀ ூሾ,ሿ∑ ∑ ூሾᇲ,ᇲሿቁఈ   (6) 
 
Fig. 9 presents the first four features obtained by 
using information-based approach. This method is 
called “Info” in Table 1. The challenge is to properly 
design the change detection criteria, in a trade-off 
between the change point detection and 
computational resource and complexity. 

 
Figure 9: The information-based features. 

4 EXPERIMENTS RESULTS 

The above methods were evaluated with a vector 
composed from four segments, one for a state/fault, 
each of 5,000 samples.  

The results of the classification/recognition rates 
(RR) are presented in Table 1, for both used distances, 
Euclidean and Manhattan. Three values of the length 
w of the observation window were considered, i.e., 
500, 2,500 and 5,000 samples. The number of the 
used features nf is also presented.  

The low values of some methods are explained by 
the non-stationarities of the test signals. The highest 
values of classification rates were obtained by the 
ARMA method, which needs at least 5,000 samples 
to properly estimate the parameters of the model. 

Table 1: Results of the classification. 

RR [%] 
No. Type Euclidean Manhattan w nf
1. Stat 72.50 47.50 500 10
2. ARMA 67.50 52.50 500 10
3. SF 70.00 75.00 500 8
4. SD 80.00 90.00 500 w
5. STFT 75.00 50.00 500 7
6. CWT 40.00 40.00 500 7
7. Info 47.50 45.00 500 8

  
8. Stat 75.00 50.00 2500 10
9. ARMA 87.50 62.50 2500 10
10. SF 75.00 75.00 2500 8
11. SD 100 62.50 2500 w
12. STFT 50.00 50.00 2500 7
13. CWT 50.00 50.00 2500 7
14. Info 50.00 50.00 2500 8

  
15. Stat 75.00 50.00 5000 10
16. ARMA 100 50.00 5000 10
17. SF 75.00 75.00 5000 8
18. SD 75.00 50.00 5000 w
19. STFT 50.00 50.00 5000 7
20. CWT 50.00 50.00 5000 7
21. Info 50.00 50.00 5000 8
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5 CONCLUSIONS 

The main objective of the work was to present a set 
of CDD methods based on signal modelling 
paradigm. The basic structure of the data processing 
has two blocks: one for the computation of the 
features and another one for classification, based on 
distance functions. The block of feature selection 
based, e.g., on feature variance and on the sensitivity 
of CDD criterion is not considered here. The 
complexity of the methods is not considered here. 

Five methods were considered. Each method has 
pros and cons, and a good approach is to combine 
them to obtain the highest recognition rate. 

A special attention was paid to time-frequency 
representations, by developing and adapting features 
from time or frequency domains.  

The computer-based experiments indicate a need 
to select the region of interest before computing the 
features for CDD. This will be the next research step 
to follow. 
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