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Abstract: Most networks evolve in time. We study the structure of interaction with time. Compared with the tradition-
al public transport, the flexibility of public bikes and the randomness of users' riding behaviours make the 
riding route and riding time full of uncertainty. It is the task of scientific research to explore the regularities 
behind these uncertainties. By mining the data of user's riding trajectories; we construct the temporal net-
work and the 24-layer multilayer network respectively. The topological characteristics of network presents 
double peak. There is a strong correlation between the topological parameters, including positive and nega-
tive correlations. Furthermore, bike ridings among stations distribute heterogeneously and the hourly flow 
of stations distributes heterogeneously. Transport system is a typical complex system. This research pro-
vides new evidence for empirical research on temporal network, multilayer network and transport network.  
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1 INTRODUCTION 

In recent years, researches on transport networks 
have been receiving close attention by the physics 
community. Transport system is a typical complex 
system. Scientists use the thoughts and methods of 
network to study traffic problems. For example, traf-
fic congestion problems (Jang et al., 2019), invul-
nerability research (Zhang et al., 2018; Cats et al., 
2020) and key road identification (Feng et al., 2019).  

Traditional public transport systems, composed 
of buses and subways, have fixed routes, fixed 
mileage, fixed running time, and fixed running 
interval. We study the public transport system 
composed of bikes in this paper. Compared with 
traditional public transport systems, the randomness 
of individual users' riding behavior makes the riding 
routes, riding mileage and riding durations full of 
uncertainty. It is the task of scientific research to 
explore the regularities behind these uncertainties.  

 Traditional studies on complex network 
consider time-independent structures, but most 
networks evolve in time (Porter, 2020). In this paper, 
we study the temporal network, structure of 
interaction with time. The time-dependent nature of 

the network reflects the nature of system, and these 
time-dependent behaviors are manifestations of 
human behavior. Citi Bike of New York is a public 
bikes system. Based on user's riding data, the flow 
information among stations and the time information 
of user's riding are excavated. We analyze the flow-
weighted temporal network and the 24-layer 
multilayer network respectively, to capture the 
unobservable characteristics of networks under the 
static model.  

 The paper is arranged as follows. We introduce 
related works on transport networks in the second 
part. In the third part, we introduce the public bike 
system of Citi Bike, and the modeling method of the 
temporal network and the definition of the 24-layer 
multilayer network are given. Then the topological 
characteristics of the networks are analyzed in the 
fourth part. Finally, we summarize the conclusion. 

2 RELATED WORKS 

Recent years, the application of network ideas to the 
study of public transport has become a research 
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hotspot. Sienkiewicz et al. established the public 
transport network of Polish cities, and found the 
small world and hierarchical characteristics (Sien-
kiewicz et al., 2005). Ferber et al. studied the public 
transport systems in major cities such as Los Ange-
les, and found that: the networks show the character-
istics of small world or scale free (Ferber et al., 
2009). Derrible et al. analyzed the urban subway 
system and found that most of the subway networks 
are scale free (Derrible et al., 2010). Taking streets 
of London and highways of American for instance, 
Viana et al. applied multidimensional scaling meth-
ods to visualize the small world characteristics of the 
network (Viana et al., 2011). Xu et al. analyzed the 
public transport of Chinese cities and found that 
these public transport networks have small world 
features (Xu et al., 2013). Gallotti et al. studied the 
public transport in Britain from the perspective of 
multi-layer network (Gallotti et al., 2015). Using 
methods of network, Bona et al. analyzed the public 
transport of Curitiba in Brazil, and found the charac-
teristics of small world and scale free (Bona et al., 
2016). Using the network approach, Ren et al. ana-
lyzed the public transport of Shenyang and found 
that the network is scale free (Ren et al., 2016). 
Candelleri et al. analyzed the public transport of 
Florence in Italy and Attica in Greece, and the net-
works were found to be potentially vulnerable (Can-
delleri et al., 2019). Yang et al. developed a network 
analysis model to study the accessibility of public 
transport (Yang et al., 2019). Using smart card data, 
they examined the association between public 
transport in Wuhan and urban accessibility. Ma et al. 
established a bus-subway network, constructed a 
vulnerability operator, and studied the impact of 
rainstorm on urban public transport (Ma et al., 
2019). Based on the network model, Yu et al. stud-
ied the spatial and temporal distribution of the metro 
passenger flow in Nanjing (Yu et al., 2020). Wang et 
al. analyzed the bus systems in Hohhot by using 
network modelling, and the network has the charac-
teristics of small world and robustness (Wang et al., 
2020). Cao et al. analyzed the public transport in 
Changsha and found that the network has scale-free 
characteristics but does not satisfy the small world 
characteristics (Cao et al., 2020).  

The researches on the above mentioned public 
transport networks are mainly focused on the bus 
and subway systems. These traditional public 
transport systems have fixed routes, fixed mileage, 
fixed running time, and fixed running interval. Un-
like them, bikes are more convenient. Public bikes 
have recently entered the field of public transport as 
a new sharing tool. The public bikes take on the 

functions of public transport, enrich the types of 
public transport, and enhance the efficiency of pub-
lic transport.  

 In the past years, scientists have used thoughts 
of networks to study the public bike system in Lon-
don and some cities of China. Munoz et al. studied 
the London public bike system from the perspective 
of network (Munoz et al., 2018). Communities were 
regarded as nodes. If there were public bike riding 
trajectories between communities, the corresponding 
nodes were connected. Saberi et al. regarded public 
bike stations as nodes of the network. If there was 
riding behaviour between stations, the nodes were 
connected. They found that the cumulative degree 
distribution of London public bike network is power 
law (Saberi et al., 2018). Using the same modelling 
method, Wei et al. studied public bike system of 
Yixing city, and found that the degree distribution 
and strength distribution of the network obeys nor-
mal distribution (Wei et al., 2019). Yao et al. con-
structed a public bike network of Nanjing, with sta-
tions as nodes and the number of rides between sta-
tions as the edge weight. They found that the degree 
distribution of the network is power law (Yao et al., 
2019). In addition, Shi et al. used the same method 
to build the public bike network of Hangzhou. They 
divided the network community by different modu-
lar algorithm (Shi et al., 2019).  

Citi Bike is the largest bike sharing program in 
the United States. The existing literature on the Citi 
Bike system is mainly on traffic flow prediction. 
Based on clustering and geographically weighted 
regression, Bao et al. constructed the relationship 
between traffic flow and various factors. They found 
that the split riding model gave a better prediction 
(Bao et al., 2018). Wang et al. predicted bike de-
mands based on the feature model with contextual, 
correlation and user features (Wang et al., 2018). 
Using graph convolution neural network, Lin et al. 
(Lin et al., 2018) and Yang et al. (Yang et al., 2018) 
predicted the bike demands per hour.  

3 DATA AND METHODS 

3.1 Data 

The Citi Bike is designed for quick trip, and it is a 
fun and affordable way. From the Citi Bike official 
website (https//www.citibikenyc.com), download the 
user's riding trajectory data of October 3, 2017. The 
format of the initial data in the Citi Bike system is 
shown in Figure 1. Each column represents a com-
plete riding trajectory, including the riding duration, 

The Time-Varying of Topological Characteristics: Analysis Based on the Temporal Network on Public Bikes

423



 

 

the start time and start location, and the end time and 
location. The time information is accurate to sec-
onds, and the location information contains the lon-
gitude and latitude of the station. In addition, user 
types include subscriber and non-subscriber. The 
subscriber records gender characteristic, and gender 
tags include 1 (male) and 2 (female). While the non-
subscriber does not record gender characteristic and 
tag 0 is used to indicate.  

 For instance, the second column of Figure 1 
shows a riding trajectory of a male subscriber. At 
00:00:00 on October 1, 2017, he rented a public bike 
with ID 30951 at station "9 Ave & W 45 St". After 
riding for 457 seconds, he returned to the station "11 
Ave & W 41 St". Delete trajectories with too short 
riding durations, considering the abnormal ridings 
caused by vehicle failure or other reasons. Delete the 
trajectories with riding duration less than one mi-
nute. Delete trajectories with too long riding dura-
tions, considering the abnormal ridings caused by 
vehicle theft, user forgetting or other reasons. Delete 
the trajectories with riding duration longer than six 
hours. After data preprocessing, 69066 valid data of 
the riding trajectories are retained.  

 
Figure 1: Examples for the data of user's riding trajectories 
in Citi Bike. 

3.2 Methods 

Based on user's riding data, the flow information of 
users among stations and the time information of us-
er's riding are excavated. The flow information will 
be used to build the weight of the edge. The time in-
formation of user's riding will be the basis for con-
structing the time layer. Taking the riding time as 
the hierarchical label, the flow-weighted temporal 
network and the 24-layer multilayer network are 
constructed respectively. 

The network modelling method is illustrated by 
taking the data of four riding trajectories as an ex-
ample. Assume that there are four riding trajectories, 
as shown in Figure 2(a). There are two riding trajec-
tories from station A to station B. One riding trajec-

tory from station A to station C, and the other one 
from station B to station C. The bike station is re-
garded as the node of the network. An edge will be 
linked between the nodes if the riding behaviour oc-
curs between the stations. The direction of the edge 
is from the start station to the end station. The traffic 
flow between the stations is taken as the weight of 
the edge. A flow-weighted directed network is con-
structed. According to the time information of riding 
behaviour, the temporal network is established, as 
shown in Figure 2(b).  
(a)  

(b)  

Figure 2: The modelling diagram of temporal network. 

When t = 6, there are two riding trajectories gen-
erated from station A to station B and to station C. 
Thus, the network at t = 6 is composed of three 
nodes A, B and C. While, at time t = 7, there is only 
one riding trajectory generated from station B to sta-
tion C, thus the network at t = 7 consists of node B 
and node C. Compared with the static network, 
nodes in the temporal network change dynamically 
with time. In addition, edges between nodes in the 
temporal network are not persistent. For example, 
there is no edge between nodes B and C at t = 6, but 
directed edges exist between nodes B and C when t 
= 7. The temporal network enables understanding of 
network changes over time.  

Through the above modelling method, each time 
layer network can be obtained, and we can study 
changes of the network over time. In addition, all 
time layers are coupled into a network without con-
sidering the inter-layer links. That is, the adjacency 
matrix of each layer is coupled in a hyper-adjacency 
matrix. Suppose that the adjacency matrix of each 
layer network is A(t), t = 0,1,...,23. A(t) is an nt-order 
square matrix. Where nt represents the number of 
nodes per time layer network. They are different 
from layer to layer. Without considering the inter-
layer links, the hyper-adjacency matrix is defined as 
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Hyper-adjacency matrix A is an nt -order square 
matrix. It corresponds to a 24-layer multilayer net-
work.  

4 NETWORKS  

4.1 Temporal Networks 

The temporal network dynamically displays the 
changes in the system twenty-four hours a day. Ac-
cording to the above method, the temporal network 
is established, as shown in Figure 3. Obviously, the 
network is time-varying. At t = 3, the network is 
sparse. However, at t = 8 and t = 17, the network is 
obviously dense, and the naked eye can no longer 
count the number of nodes and edges. In addition, 
the hub nodes (red colour) have also changed with 
time. Through the visualization of these 24 net-
works, we can intuitively find that the network is 
denser during the day and sparse at night. The dy-
namic change of the network with time is related to 
the law of human behaviour. During rush hours on 
and off work, a large number of riding behaviours 
occur, which change the topology of the network.  

In temporal network, the number of nodes and 
the number of edges are time-varying. The time se-
ries of changes is shown in Figure 4. On the left and 
right sides of the ordinate, the number of nodes and 
the number of edges are identified respectively. The 
number of edges shows bimodal feature. The first 
peak appeared at 8 o'clock and the second peak ap-
peared at 17 o'clock, which indicate that a large 
number of riding trajectories occurred during these 
two periods. This is related to the law of human be-
haviour. More users use public bikes during rush 
hours. During the period from t = 6 to t = 20, the 
number of nodes in the network is stable. In the sys-
tem, there are about 600 stations with bike rental. 
When t = 3, the number of nodes and the number of 
edges are the least. At this time, there are only less 
than one hundred stations with bike rental.  

 

 

 

 

 

 

 

 
Figure 3: The temporal network. 

In a network, the number of connected edges is 
called the degree of the node; in a weighted network, 
the sum of the edges weights is called the strength of 
the nodes. In our flow-weighted temporal network, 
the degree ki of node i indicates that there are riding 
trajectories between the station i and other ki stations, 
and the strength si  represents the total traffic flow be-
tween station i and other ki stations. The time-series 
changes of the topological characteristic parameters 
of the temporal network are shown in Figure 5. The 
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average degree <k>, the average strength <s>, and 
the clustering coefficient C show obvious bimodal 
characteristics. The two peaks appeared at 8 a.m. and 
17 p.m. respectively. This is consistent with the bi-
modal feature of the number of edges in the temporal 
network. When studying the time-varying nature of 
temporal network, we find that some topological pa-
rameters are strongly correlated.  

 
Figure 4: The number of nodes and edges of the temporal 
network. 

 
Figure 5: The topological characteristics of temporal net-
works: average degree, average strength, average smallest 
path length and average clustering coefficient. 

In fact, by analyzing correlations of topological 
parameter time series, it can be found that: the num-
ber of edges, average degree, average strength and 
clustering coefficient show strong positive correla-
tion (as shown in Figure 6); when the number of 
nodes is stable (from t = 6 to t = 20), the average 
shortest path length shows a strong negative correla-
tion with other topological parameters (as shown in 
Figure 6(b)). When the number of nodes is fixed, the 
average degree of the network will be larger if there 
are more connected edges. More edges will bring 
more total edge weights, so the average strength will 
be greater. The existence of more edges will make it 
easier to form triangles, and then the average cluster-
ing coefficient will be larger. In addition, more edges 
increase the accessibility of the network, which re-
sults in a smaller average shortest path length. It can 
be found that the average shortest path length of the 
network is smaller at 8 a.m. and 17 p.m. Therefore, 

from 6:00 to 20:00, the number of nodes is stable, 
and the number of edges, the average degree, the av-
erage strength and the clustering coefficient show a 
highly similar time-series trends. While the average 
shortest path length exhibits the opposite trends.  

 
Figure 6: Diagram for the correlation matrix of topological 
parameters. The analysis object of (a) is the whole time 
series of five topological parameters; and (b) is for frag-
ments of time series, from t = 6 to t = 20.  

4.2 The 24-Layer Multilayer Network 

 
Figure 7: The degree distribution p(k), the strength distri-
bution p(s) and the strength-difference distribution p(sin-

out) of the 24-layer multilayer network.  

The time-varying characteristics of network topolo-
gy are found through the temporal network. On the 
other hand, according to Equation (1), all the time 
layers are coupled, and the 24-layer multilayer net-
work is used to analyze the Citi Bike system as a 
whole. The network has 11988 nodes and 60786 
edges. The degree distribution and the strength dis-
tribution are all power law distribution, as shown in 
Figure 7(a) and Figure 7(b). Eighty percent of nodes 
have a degree value less than 15. Only one thou-
sandth of the nodes has a degree value greater than 
100. Bike ridings among rental stations distribute 
heterogeneously. Furthermore, ninety percent of 
nodes have a strength value less than 30. Nodes with 
strength value greater than 100 account for three 
thousandth. At bike rental stations, the hourly bike 
flow distributes heterogeneously.  

Strength-difference of a node is equal to the in-
strength minus the out-strength, which can measure 
the net flow of information at the node. In the 24-
layer multilayer network, the strength-difference si

in-

out of node i represents the net bike flow at the rental 
station i. When si

in-out ≈ 0, the inflow and outflow of 
bikes are in balance and the site is called a balanced 
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station. When si
in-out >0, the inflow is large and the 

outflow is small. For this type of site, we need to 
consider the transfer out of bikes when scheduling. 
When si

in-out <0, the inflow is small and the outflow 
is large. Such site needs to transfer in bikes to meet 
larger rental demands of bikes. The strength-
difference distribution p(sin-out) of the 24-layer multi-
layer network obeys Gaussian distribution, as shown 
in Figure 7(c). The mean of the distribution is 0.045 
and the standard deviation is equal to 2. In general, 
at most sites, the number of rental bikes and the 
number of returned bikes can maintain a balance. 

5 CONCLUSIONS 

Transport system is a typical complex system. We 
study the structure of networks evolving with time. 
In the temporal network, the number of edges, the 
average degree, the average strength, and the cluster-
ing coefficient present obvious bimodal characteris-
tics. The two peaks appeared at 8 a.m. and 17 p.m., 
which is consistent with rush hours on and off work. 
The time-dependent nature of the network reflects 
the nature of system, and these time-dependent na-
ture are manifestations of human behaviour. In the 
24-layer multilayer network, the degree distribution 
is power law, the strength distribution is power law, 
and the strength-difference distribution obeys Gauss-
ian. In the system, bike ridings among stations dis-
tribute heterogeneously and the hourly flow of the 
station distributes heterogeneously. In most stations, 
the number of rental bikes and returned bikes main-
tain balance. Furthermore, in temporal network, we 
found strong correlations of topology parameters. 
The research provides evidence for empirical re-
searches on temporal network, multilayer network 
and transport network.  
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