
Optimization of the Master/Slave Model in Supercomputing Global
Storage Systems

Xiaobin He1 a, Wei Xiao1 b, Qi Chen2 c, Xin Liu1 d and Zuoning Chen3 e

1National Research Center of Parallel Computer Engineering & Technology,
Xueyuan Road, Haidian District, Beijing, China

2School of Computer Science and Technology, Tsinghua University, Beijing, China
3Chinese Academy of Engineering, Beijing, China

Keywords: Supercomputing, High Concurrency IO, Global Storage, Master/Slave Model, Bandwidth.

Abstract: The global storage system is an important infrastructure for supercomputing systems, providing a globally
consistent view of data for large-scale compute nodes. The Master/Slave model is used extensively in the
software implementation of global storage to enhance the server-side capability of handling IO requests. In
recent years, as network performance and IO concurrency of compute nodes have increased, the problem of
high performance loss of the Master/Slave model in high concurrency scenarios has come to the fore. Taking
LWFS, the data forwarding software of the Sunway supercomputers, as an example, this paper proposes two
performance optimization methods: optimizing the request receiving capability of the Master based on a multi-
threaded parallel processing approach, and reducing the lock overhead of multiple Slave synchronization based
on a no-wait request queue mechanism. Tests in the Sunway E-class prototype validation system show that the
peak bandwidth of 1M block sequential read/write and 4K block random read/write are increased by 16% and
90% respectively after the optimization methods are overlaid, and the peak bandwidth of 4K block random
read/write is increased by 80% and 48% respectively, which shows that the optimized Master/Slave model has
a significant increase in read/write bandwidth under high concurrency scenarios and can better adapt to the
application IO requirements under high concurrency scenarios.

1 INTRODUCTION

Global storage system is one of the most important
supporting system of supercomputing system (here-
inafter referred to as supercomputing), which pro-
vides globally consistent shared data view for large-
scale supercomputing nodes, and ensures data read-
ing and writing for supercomputing applications. In
recent years, with the continuous expansion of super-
computing scale, the performance of data transmis-
sion network has increased significantly, and super-
computing applications have put forward higher re-
quirements for the performance of global storage sys-
tem. However, compared with the rapid growth of

a https://orcid.org/0000-0001-6785-1561
b https://orcid.org/0000-0002-3047-5520
c https://orcid.org/0000-0003-2256-1143
d https://orcid.org/0000-0002-7870-6535
e https://orcid.org/0000-0003-2256-1143

computing scale and the network performance, the
performance and scale of the storage system is rel-
atively stable. How to reduce the IO competition
caused by multi process of applications in high con-
currency scenarios based on limited storage node re-
sources and improve the overall efficiency of the sys-
tem has become a problem that must be faced by
the designer of modern global storage systems(Yildiz
et al., 2016).

The design of modern supercomputing global
storage system is complex, which is often divided
into metadata storage services, data storage services,
etc. It provides global storage space and data view
through distributed data access protocols. However,
no matter how complex the global storage system de-
sign is, it can be abstracted into a simple C/S archi-
tecture. C represents clients, often running on com-
puting nodes, user service nodes, etc. And S rep-
resents server, which connects with clients through
high-speed storage networks to support efficient data

416
He, X., Xiao, W., Chen, Q., Liu, X. and Chen, Z.
Optimization of the Master/Slave Model in Supercomputing Global Storage Systems.
DOI: 10.5220/0011949700003612
In Proceedings of the 3rd International Symposium on Automation, Information and Computing (ISAIC 2022), pages 416-421
ISBN: 978-989-758-622-4; ISSN: 2975-9463
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

access services for clients. In supercomputing, the
number of clients of the global storage system is of-
ten much larger than that of the server. In order to
ensure the efficiency, the server uses the Master/Slave
model to improve the ability of processing parallel
data access requests. The Master/Slave model is a
commonly used network message packet processing
model(Leung and Zhao, 2008). Generally, the mas-
ter thread is responsible for receiving data access re-
quests through the network and distributing them to
a fixed number of slave threads for execution. This
mechanism is simple to implement and stable in op-
eration, and is widely used in the field of network data
packet processing.

In the construction of global storage system, the
Master/Slave model is also widely used due to the
wide range of highly concurrent data transmission.
However, in recent years, with the increasing scale of
supercomputing and the improvement of supercom-
puting network performance, the performance over-
head of the traditional Master/Slave model is increas-
ing, which has been unable to meet the needs of global
storage. There are two main reasons. First, the mas-
ter’s single thread implementation has been unable to
meet the efficient request reception needs of high-
speed networks, causing the bottleneck of data ac-
cess request reception. Secondly, the cost of multi
slaves lock synchronization operation in high con-
currency scenarios is increasingly significant, and the
fixed slave cannot flexibly solve the load imbalance
problem of multi threads , resulting in the reduced ef-
ficiency of large-scale synchronous IO in supercom-
puting high concurrency scenarios.

This paper proposes two optimization methods
to address the problems of the Master/Slave model
used for GFS. Firstly, the multi-threaded master tech-
nique is used to solve the performance bottleneck of
a single master receiving data access requests, and
secondly the wait-free queue mechanism is used to
reduce the synchronous locking overhead of mul-
tiple slave threads. This paper takes evaluations
on the Sunway E-class Prototype Verification Sys-
tem(SEPVS)(Jiangang Gao, 2021). The evaluation
results show that the proposed method can signifi-
cantly improve the performance of the Master/Slave
model of global storage system under high concur-
rency scenarios.

2 BACKGROUND

At present, in order to support the global data access
requirements of supercomputing’s large-scale com-
puting nodes, the global storage system for super-

computing is generally built using the hierarchical
storage architecture(Chen et al., 2020) composed of
the global file system(GFS) layer and the forwarding
layer. The GFS layer is responsible for building a
globally shared high-capacity and high-performance
storage space, which is composed of metadata storage
node cluster, data storage node cluster, and storage
service node cluster. The metadata storage node clus-
ter and data storage node cluster provide distributed
metadata and data storage services for the storage ser-
vice node cluster respectively. High speed network is
used to connected the above nodes, providing meta-
data and data service communication based on effi-
cient Remote Direct Memory Access(RDMA) proto-
col(Chen and Lu, 2019). The data forwarding layer
consists of a storage service node cluster and a com-
puting node. The storage service node provides a
data forwarding service for the computing node to
access data, and the nodes are allocated according
to the grouping of computing nodes(Ji et al., 2019).
Generally, one computing node group corresponds to
several storage service nodes. Due to the huge scale
of supercomputing system, the number of computing
nodes is often much larger than the storage service
nodes, which leads to the storage service nodes need
to bear huge load pressure(Bez et al., 2021). Taking
SEPVS as an example, it contains 1024 computing
nodes, and only 18 storage service nodes provide IO
services for these computing nodes. For supercom-
puting applications that pursue the ultimate perfor-
mance of data access, this ratio poses a great chal-
lenge to the efficient processing of data access re-
quests in high concurrency scenarios at the software
level. The storage system of SEPVS is built with the
Lustre file system as GFS(Rao et al., 2018), and Light
Weight File System (LWFS) as data forwarding file
system(Chen et al., 2020). The LWFS resides on top
of the GFS client and provides data access request for-
warding services for multiple computing nodes as a
shared service. Both Lustre and LWFS use the Mas-
ter/Slave model to support high concurrent access to
large scale compute nodes.

The workflow of Master/Slave in GFS is shown in
Figure 1. Generally master is a single thread, receives
network packets by multiplexed IO mechanism, and
stores the data access requests parsed from the pack-
ets into the request queue. The current mainstream
multiplexed IO mechanism mainly includes epoll,
poll, select(Duan et al., 2004), and epoll is widely
used because of its performance advantages(Gammo
et al., 2004). The request queue is generally a FIFO
queue, which is accessed synchronously by the mas-
ter and slave through locks. Slave is generally a group
of threads running independently, which fetches re-

Optimization of the Master/Slave Model in Supercomputing Global Storage Systems

417

quests from the request queue and then executes the
requested operations in parallel. After the operation
is executed, the result is sent to the client via the net-
work transmission component. In a traditional HPC
system, the CPU computation rate is much higher
than the network rate, so the master can complete the
task of receiving network messages in a single thread.
Due to the high latency of storage operations, multiple
slave processes are running in parallel to ensure that
the maximum performance of the underlying storage
resources is efficiently utilized. In the era of E-class

Client
（Computing node）

Client
（Computing node）

Client
（Computing node）

Data transport over RDMA
（High performance network）

Server
（Storage node）

epoll, poll, select

Master

Request queue
(FIFO) req1 req1 req2 reqx······ ······

Slave Slave

Get requst from the head
of queue with lock

Slave

Insert requst to the tail of
queue with lock

Figure 1: Workflow of Master/Slave Models in Global Stor-
age.

supercomputing, network performance has improved
rapidly, and the single port rate of high-speed net-
work has exceeded 200Gbps(Yamazaki et al., 2017).
As a result, the single-process master is often not ca-
pable of receiving concurrent requests from multiple
clients. At the same time, the scale of supercomput-
ing in the E-class era has not only led to an increase
in data access concurrency, but also to a large varia-
tion in data requests from high-performance comput-
ing applications. These factors together make it dif-
ficult to adapt the traditional Master/Slave model to
the future demands of shared storage in the E-class
era. Taking the LWFS deployed in SEPVS as an ex-
ample, the bandwidth loss of 1MB block read/write
bandwidth of LWFS compared with the direct access
to GFS reaches 44% and 29% respectively when 24
compute nodes are concurrently accessed, which is
mainly due to the single-threaded processing bottle-
neck of the master. When the concurrency rises fur-
ther to 32 compute nodes, the loss of LWFS read/write
bandwidth rises further, mainly due to the greater
overhead of the slave shared request queue’s lock at
high concurrency. Similar phenomenon is observed
for the random access performance of 4KB block size.
The above tests show that the performance overhead
is high in high-concurrency scenarios, resulting in a
huge waste of storage resources, which cannot meet

the needs of future supercomputing high-speed net-
work environments and high-concurrency storage ac-
cess scenarios in the E-class era.

3 METHODOLOGY DESIGN

In order to solve the problem of excessive bandwidth
loss in the supercomputing global storage of the Mas-
ter/Slave mechanism in the E-level era, this paper de-
signs two optimization methods. One is the multi
thread optimization of the master, which can realize
the parallelization of the core process of network mes-
sage receiving, and improve the concurrent receiv-
ing ability of the global storage for client data ac-
cess requests. The second is the wait-free queue op-
timization of slave. This technology uses the wait-
free queue to construct the request queue for multi-
ple slaves, reduce the lock overhead of request queue
management, and reduce the performance loss in high
concurrency.

3.1 Master Optimization

Traditional single threaded master calls epoll wait to
wait for the IO event from network. If multiple
threads are used to call epoll wait to get IO event of
a network interface, when a thread gets a event from
the network, the corresponding IO event handler does
not finish processing the event. At this time, the mon-
itored file descriptor generates a new IO event, which
may be acquired by another thread, causing another
thread to compete for access to the file descriptor. To
ensure data consistency, the file descriptor needs to
use a lock protection mechanism, which will greatly
reduce the processing efficiency.

To this end, we uses epoll’s EPOLLONESHOT
mechanism to solve the problem of multi thread com-
petitive access, as shown in Figure 2. For a file de-
scriptor registered with EPOLLONESHOT, the op-
erating system can trigger at most one EPOLLIN,
EPOLLOUT, or EPOLLERR event registered on it,
and only once. In this way, when a thread process
an event on a file descriptor, other threads have no
chance to operate on the file descriptor. This mecha-
nism ensures that a file descriptor is processed by only
one thread at any time, ensuring data consistency, it
avoids multi thread competitive access. At the same
time, once the file descriptor registered with EPOL-
LONESHOT is processed by a thread, the thread im-
mediately resets the EPOLLONESHOT event of the
file descriptor to ensure that subsequent events of
the file descriptor can be retrieved and processed by
the thread. The EPOLLONESHOT implementation

ISAIC 2022 - International Symposium on Automation, Information and Computing

418

mechanism reduces the burden of consistency man-
agement on multiple masters, while ensuring data
consistency.

Network interface

Make requst and send to slave

epoll_wait epoll_wait epoll_waitepoll_waitepoll_wait epoll_wait

I/O event I/O event I/O event

epoll_wait

EPOLLONESHOT EPOLLONESHOT

Figure 2: Workflow of multi thread master.

3.2 Slave Optimization

In the implementation of multi threaded parallel mas-
ter, the receiving rate of network requests is acceler-
ated, and the cost of lock of multiple slave threads will
become more prominent. Therefore, this paper uses
the wait-free queue provided by the userspace rcu li-
brary to solve this problem(Arbel and Attiya, 2014).
The wait-free queue supports the request insert oper-
ation without lock protect, while the operation of ob-
taining requests from the queue requires a mutex so
that multiple slave threads can obtain requests from
the queue at the same time. However, this mutex only
requires the collaboration between slaves, which can
minimize the possibility of competition, as shown in
Figure 3.

In addition, to further reduce competition, the
number of slave threads can be dynamically ad-
justed according to the policy management service to
adapt to different application workloads. To realize
the dynamic scaling of slave threads, slave threads
are composed of a management thread and multiple
worker threads. All management operations of the re-
quest processing queue, such as creating more worker
threads, waking up sleep worker threads, are com-
pleted by a separate management thread, which en-
ables it to manage all threads scaling related informa-
tion and thread lists without locking. In the specific
implementation, the request processing queue man-
agement task is based on the signal to avoid multiple
system calls per request, thus improving the system
service efficiency.

 Requests from master

Slave thread pool

Wait-free queue
(Based on userspace-rcu)

Slave
thread 1

Slave
thread 2

Slave
thread 3

Slave
thread N

Leader Member Member Member

Adding request
into queue without
lock competition

Fetching request
from queue with

low lock
competition

Figure 3: Workflow of wait-free queue slave.

4 EVALUATION

4.1 Environment and Methodology

The SEPVS is deployed at the National Supercom-
puting Centre in Jinan, China, and uses a many-core
processor named SW26010Pro. Each processor con-
tains 6 core groups and can support 6-way I/O concur-
rent processes, and the nodes are interconnected using
the Sunway high performance network named SWnet.
The storage system conforms to the supercomputing
storage system architecture, where the data forward-
ing node is configured with a dual-way server CPU,
256GB of memory, each node has a 200Gbps SWnet
network interface. The data forwarding system was
constructed using LWFS, and the Master/Slave opti-
mization method proposed in this paper was used to
improve the performance of LWFS.

In this paper we compare the performance of
the original LWFS before optimization, LWFS after
multi-threaded master optimization, and LWFS with
both multi-threaded master optimization and no-wait
queue slave optimization stacked on top of each other
in a high concurrency scenario. The benchmark we
used is IOR(IOR,), and the compute node sizes set
to 1, 4, 8, 16, 24, 32 and 64, where each compute
node starts 4 concurrent processes. According to the
data block size distribution commonly used in super-
computing applications, a sequential read/write band-
width of 1M block size and a random read/write band-
width of 4K block size were selected to represent two
scenarios, large block sequential and small block ran-
dom for comparative analysis, respectively.

Optimization of the Master/Slave Model in Supercomputing Global Storage Systems

419

4.2 Evaluation Results and Analysis

The evaluation results of the 1MB block sequen-
tial write are shown in Figure 4. At a concurrent
scale of 16 compute nodes, the optimized LWFS read
and write bandwidths of the multi-threaded master
and the wait-free queue slave (stacked on top of the
multi-threaded master) are all higher than the origi-
nal LWFS. And as the concurrency processes num-
ber continues to increase, the performance of the
multi-threaded master optimized LWFS gradually de-
creases, in contrast to the wait-free queue slave op-
timized LWFS where the performance gradually in-
creases and reaches peak performance with 32 com-
pute nodes accessed concurrently. In terms of peak
write bandwidth, the multi-threaded master achieves
an 85% improvement in peak performance compared
to the original LWFS, and the stacked with wait-free
queue slave optimization achieves a further 2% im-
provement compared to the multi-threaded optimized
master. The two optimizations add up to a 90% im-
provement in peak performance compared to the orig-
inal LWFS. For the six different node sizes in our
evaluation, the multi-threaded optimized master im-
proved by an average of 53% compared to the original
LWFS, the stacked wait-free queue optimized slave
improved by an average of 10%.

B
an

dw
id

th
(G

B
bp

s)

0

2

4

6

8

Computer node #
1 4 8 16 24 32

GFS
LWFS
multi-threaded Master
wait-free-queue Slave

Figure 4: Results of 1MB Block Sequential Write Aggre-
gate Bandwidth Test.

The evaluation results of the 1MB block sequen-
tial read are shown in Figure 5. The variation pat-
tern of the sequential read bandwidth is similar to that
of the 1MB sequential write bandwidth. The stack
of the two optimizations not only improves perfor-
mance, but also provides more stable performance in
high concurrency scenarios. The peak read aggre-
gation bandwidth of the multi-thread master is 14%
higher than the original LWFS, and after stacked with
wait-free queue optimization it achieves a further 2%
improvement compared to the multi-threaded opti-
mized master. The average increase of the multi-

threaded master under different node sizes is only 6%.
The main reason is that the master is not a perfor-
mance bottleneck in the small-scale concurrent sce-
nario, and the multi-threaded master introduces over-
head in the epoll part when receiving network pack-
ets, which leads to a certain performance overhead.
After adding the wait-free queue slave optimization,
the average increase is 8%.

B
an

dw
id

th
(G

B
bp

s)
0

2

4

6

8

Computer node #
1 4 8 16 24 32

GFS
LWFS
multi-threaded Master
wait-free-queue Slave

Figure 5: Results of 1MB Block Sequential Read Aggregate
Bandwidth Test.

The evaluation results of the 4KB block random
write are shown in Figure 6. The results show that
as the number of compute nodes increased, the orig-
inal LWFS, the multi-threaded master, the stacked
multi-threaded master and the wait-free queue slave
all achieved performance increases, with the peak per-
formance of the multi-threaded master improving by
21% and the peak performance of the stacked wait-
free queue slave further improving by 21%. The
peak performance of the two optimization methods is
48% higher than that of the original LWFS. The aver-
age performance improvement is 9% for the multi-
threaded master, and 12% for the wait-free queue
slave at different node sizes.

B
an

dw
id

th
(M

B
bp

s)

0

50

100

150

200

250

Computer node #
1 4 8 16 24 32

GFS
LWFS
multi-threaded Master
wait-free-queue Slave

Figure 6: Results of 4KB Block Random Write Aggregate
Bandwidth Test.

The results of the 4KB block random read are
shown in Figure 7. The peak performance of the

ISAIC 2022 - International Symposium on Automation, Information and Computing

420

multi-threaded master is improved by 35% and fur-
ther improved by 33% with the addition of the wait-
free queue slave. The peak performance of the two
optimizations is improved by 80% compared to the
original LWFS. The average performance improve-
ment is 13% for the multi-threaded master and 19%
for the wait-free queue slave.

B
an

dw
id

th
(M

B
bp

s)

0

50

100

150

200

250

Computer node #
1 4 8 16 24 32

GFS
LWFS
multi-threaded Master
wait-free-queue Slave

Figure 7: Results of 4KB Block Random Read Aggregate
Bandwidth Test.

The above results show that the Master/Slave
model of LWFS after the stack of the two optimiza-
tion methods is more stable and efficient in terms
of large block sequential write performance in high
concurrency scenarios, and there is almost no perfor-
mance loss in peak aggregation bandwidth compared
to GFS in high concurrency scenarios, achieving a
lossless global storage performance output.

5 CONCLUSIONS

The The Master/Slave model is a common parallel
mechanism for global storage in supercomputing, but
the limitations of this mechanism are becoming more
and more prominent in today’s increasing network
performance and concurrency of supercomputing ap-
plications. In this paper, we propose two performance
optimization methods to address this issue: multi-
threaded optimization for master and wait-free queue
optimization for slave. Evaluations of the two opti-
mization methods in the Sunway E-class Prototype
Verification System show that the peak bandwidth of
1M block sequential read/write is improved by 16%
and 90% respectively, and the peak bandwidth of 4K
block random read/write is improved by 80% and
48% respectively. The performance of global stor-
age is more stable under concurrent scenarios after
the two optimization methods are stacked. The eval-
uation results prove that the optimization mechanism
proposed in this paper can effectively solve the prob-
lem of excessive performance overhead of the tradi-

tional Master/Slave model, and can better adapt to the
I/O requirements of applications under high concur-
rency scenarios.

REFERENCES

Arbel, M. and Attiya, H. (2014). Concurrent updates with
rcu: Search tree as an example. Proceedings of the
Annual ACM Symposium on Principles of Distributed
Computing.

Bez, J. L., Miranda, A., Nou, R., Boito, F. Z., Cortes, T.,
and Navaux, P. (2021). Arbitration policies for on-
demand user-level i/o forwarding on hpc platforms.
In International Parallel and Distributed Processing
Symposium.

Chen, Q., Chen, K., Chen, Z.-N., Xue, W., Ji, X., and Yang,
B. (2020). Lessons learned from optimizing the sun-
way storage system for higher application i/o perfor-
mance. Journal of Computer Science and Technology,
35:47–60.

Chen, Y. and Lu, Y. (2019). Scalable rdma rpc on reliable
connection with efficient resource sharing. pages 1–
14.

Duan, H. C., Xian-Liang, L. U., and Song, J. (2004). Analy-
sis and design of communication server based on epoll
and sped. Computer Applications.

Gammo, L., Brecht, T., Shukla, A., and Pariag, D. (2004).
Comparing and evaluating epoll, select, and poll event
mechanisms. Proceedings of the 6th Annual Ottawa
Linux Symposium.

IOR. HPC IO benchmark repository. https://github.com/
hpc/ior.

Ji, X., Yang, B., Zhang, T., Ma, X., Zhu, X., Wang,
X., El-Sayed, N., Zhai, J., Liu, W., and Xue, W.
(2019). Automatic, Application-Aware I/O forward-
ing resource allocation. In 17th USENIX Conference
on File and Storage Technologies (FAST 19), pages
265–279, Boston, MA. USENIX Association.

Jiangang Gao, Hongsheng Lu, W. H. e. a. (2021). The inter-
connection network and message machinasim of sun-
way exascale prototype system. Chinese Journal of
Computers, 44:222–234.

Leung, J. and Zhao, H. (2008). Scheduling problems in
master-slave model. Annals OR, 159:215–231.

Rao, N., Imam, N., Hanley, J., and Oral, S. (2018). Wide-
area lustre file system using lnet routers. pages 1–6.

Yamazaki, H., Nagatani, M., Hamaoka, F., Kanazawa,
S., Nosaka, H., Hashimoto, T., and Miyamoto, Y.
(2017). Discrete multi-tone transmission at net data
rate of 250 gbps using digital-preprocessed analog-
multiplexed dac with halved clock frequency and sup-
pressed image. Journal of Lightwave Technology,
PP:1–1.

Yildiz, O., Dorier, M., Ibrahim, S., Ross, R., and Antoniu,
G. (2016). On the root causes of cross-application i/o
interference in hpc storage systems. pages 750–759.

Optimization of the Master/Slave Model in Supercomputing Global Storage Systems

421

