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Abstract: In mining, detecting overload conditions is an opportunity to perform SAG mill to optimal operating condi-
tions. With this in mind, several authors have prove using machine learning mechanisms to detect overloads.
Our proposal establishes and tests a series of techniques to detect and forecast these events. Finally, we will
look for an explanation of what the model considers for classification improving the phenomenon knowledge.
Inspired by previous work and how operators classify overloads by analyzing behavior graphs of the most
relevant variables, we proposed a framework that includes selection, encoding, and filtering improvement to
finally discover the importance of the characteristics observed by our model using explanation techniques.
Thus, using a group of novelty techniques, our advances exceed the results presented by other authors and by
ourselves in previous publications, opening the door to a model based on attention in the future.

1 INTRODUCTION

In the mining context, comminution is the process that
reduces the ore size. In the case of most Chilean min-
ing, to obtain smaller particles for the next step in the
copper extraction (flotation).

Usually, this process includes crushing and grind-
ing equipment in a circuit composed of several stages.

SAG mill (semi-autogenous grinding) can process
large amounts of ore in the so-called primary grind-
ing stage. Usually, this process includes crushing and
grinding equipment in a circuit composed of several
steps. The efficient use of SAG mills means an in-
crease in ore production.

A 1% increase in SAG mill treatment supposes
a profit increase of up to US$160 MM per year and
between 200 and 400 tons of CO2 emissions saving
under the same electricity consumption (Wakefield
et al., 2018; Pontt et al., 2012; Northey et al., 2013).

However, achieving these efficiency levels has the
risk of overload, a condition that limits the opera-
tion. Divers authors have tried to identify through
several techniques such as the theoretical analysis
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of variables (Strohmayr and Valery, 2001; Powell
et al., 2009), use of predictive control ((Forbes and
Gough, 2003)), making simulation models (Varas
et al., 2019), through linear programming (César and
Daniel, 2009) or using machine learning techniques
(Ko and Shang, 2011; McClure and Gopaluni, 2015;
Hermosilla et al., 2021).

In our research, we have established a mechanism
that allows the classification and early detection (fore-
cast) of overloads as a multivariate binary classifica-
tion model.

Inspired by the work performed in the generation
of encodings based on distance matrices (Bardinas
et al., 2018) and the analysis that expert metallur-
gists to determine the occurrence of overloads, we
have proposed a deep convolutional neural network
that uses the feature relationship using a multivariate
approach of Gram’s matrix as an encoder.

In other words, we proposed the generation of ma-
trices with angular differences of the feature pair ar-
rays as input for our model. Those matrices are penal-
ized with a temporary degradation filter that penalizes
the oldest data, trying to establish a mechanism for
differentiating the temporal data used in each encoded
time window, which has yielded promising results.

Finally, we uncover, through explanation mecha-
nisms, the combinations of variables/time that most
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affect the prediction of overloads.
The following chapters explain the overload phe-

nomenon and how we have approached a solution.
Section 2 explains the overload phenomenon and its
importance in the comminution process. Section 3
will delve into our proposal and how we address it
through a set of proposed methods. Section 4 shows
our results. Section 5 shows our conclusions and fu-
ture work.

2 OVERLOAD DETECTION AND
RELATED WORK

Maximizing ore treatment is one of the main goals of
a SAG mill operation. Though, this objective depends
on several factors that can influence the occurrence of
an overload event.

Factors such as the distribution of solids, hardness,
excessive load volume, particle size distribution, the
number of steel balls, and wear, among others, can
generate an overload condition.

2.1 Overload Types

In a SAG mill can found three kinds of overloads can
occur (Fig. 1).

In all cases of overload, mill loses the cataract
4 property generating a vicious circle that leads to
the ineffectiveness of the equipment. The volumetric
overload occurs when the SAG mill is overfed. Ore’s
hardness, size, or composition can produce this con-
dition.

When excess water attenuates the fall’s effect, it
is declared an overload by slurry pooling, affecting
the ore’s size reduction, producing accumulation and
next, a volumetric overload. When the pulp covers
the lifters, a freewheeling overload is declared. The
pulp on the lifters avoids the ore rising, inhibiting the
cascade.

Also, composition, distribution, and load fill can
influence an overload occurrence. We can search this
behavior by observing the power consumed but only
at the beginning of an overload (Apelt et al., 2001),
without enough foreseeing.

The distinct factors and the complex relations of
the features underlying the overload make obtaining a
physical forecast overload system hard. However, es-
tablishing a model based on data that learn this com-
plex relationship is possible. Thus, our research fo-
cused on obtaining an overload forecast model based

4Ore rises to the top of the mill, breaking on the impact
zone.

Figure 1: SAG mill overloads.

on a time-series classification with a multivariate ap-
proach.

2.2 Related Work

According to our research, two approaches exist at
least to address the SAG mills’ overloads and under-
stand the problems associated with their operation.

One seeks to generate an adequate operation from
the control point of view, and the other focuses on
seeking the occurrence of overloads.

Among these investigations, ((Salazar et al.,
2014)) establish a control and prediction mechanism
for the behavior of the mill using a method called
Multiple Input/Multiple Output Predictive Control
Model (MIMO MPC).

The authors prove the relationship between the op-
erating variables based on load tonnage.

His work also allowed the establishment of simu-
lated operating conditions of an overload state, keep-
ing the controlled variables without relevant variation.

On the other hand, (Wang et al., 2020) allowed to
establish overload-free operating conditions through
the control of the speed of the mill, generating an op-
timal operating space describing the relationship be-
tween speed, ore quantity, and particle size.

However, one of the nearest research to our line of
study is published by (McClure and Gopaluni, 2015),
which experiments with techniques like KPCS, SVM,
and LLE to classify overloads (not predict them).
Likewise, our previously published research ad-
vanced toward constructing an overload prediction
framework using deep networks.

Now, we have improved results by better under-
standing the underlying phenomenon and the inclu-
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sion of elements, such as the degradation or penalty
filter.

In the previous work, we intuited could be ex-
plained the network in some way.

In this proposal, we have included a way to ex-
plain the network and analyze the results, allowing
contrasting the model’s decisions with experts’ opin-
ions.

3 OVERLOAD FORECASTING
PROPOSED METHOD

As we have pointed out, we propose approaching our
overload prediction problem through a multivariate
binary classification model based on deep convolu-
tional neural networks.

So, we have to overcome several difficulties, such
as adequately selecting operation variables, generat-
ing a representative encode, or attending a highly un-
balanced scenario (less than 2% of the labeled data
corresponds to overloads).

Furthermore, we will add a filter that has given us
promising results penalizing past data and the applica-
tion of an interpretation method called Grad-CAM++
(Chattopadhay et al., 2018) to determine and check
the dependency of the selected relationships with our
target.

3.1 Base Definition

Let y = [y1, . . . , t ′]T with T ∈ [1, . . . ,T ′] as the set
of values binaries that describe the overload condi-
tion every time t t (yt = 1 as an overload at time
t). We will assume the matrix T ′ ×N as the matrix
X = [x1| . . . |xT ′ ]T that expresses the collection of vec-
tors xt formed by the N available and selected fea-
tures. That is, x( j)

t denotes the value of the j − th
characteristic at time t.

Expressed our approach as a multivariate time-
series problem that symbolizes a stochastic process,
we define our goal as overload forecasting yt+k, thus,
in k steps ahead of the current observation t. Given
that the associated distribution of the underlying pro-
cess is unknown, we assume our model will learn the
relationship of values observed previously to forecast
the overload occurrences. Then, we modeled the val-
ues’ fit as p(yt+k|xt , ...,xt−w−1) in w steps to the past.

3.2 Feature Selection by Pairs

We propose to train a deep convolution neural net-
work to learn the relationship of the available features

through a structure that includes pairing the variables
with the highest relationship with the overload.

Inspired by the classification of overloads
achieved by metallurgical experts, we intend to select
those pairs that provide the most information regard-
ing our target.

We solved this using Conditional Mutual Informa-
tion (CMI) (Liang et al., 2019) to get a reduced num-
ber of pairwise relations, looking for pairs related to
adding the maximum information possible about our
target. We express CMI as follows:

I(x(i),x( j)|y) = Ey[Dkl(P(x(i),x( j)|y)||P(x(i)|y)
⊗P(x( j)|y))],

(1)

where I(x(i),x( j)|y) is the value expected respect to y,
of the relative entropy or Kullback-Leibler divergence
Dkl from conditional joint distribution P(x(i),x( j)|y) to
the product ⊗ of conditional marginals P(x(i)|y) and
P(x( j)|y).

Accordilyng, let define zr = (z(1)r ,z(2)r ) as a matrix
with features pairs x(i) and x( j) selected from rth bet-
ter CMI values (1).

Let zr = (z(1)r ,z(2)r ) as a matrix with features pairs
x(i) and x( j) selected from rth better CMI values (1).

Let Z̃ as an array with three dimensions w×w×
R, with window length w and the number of selected
pairs R, each composed by z̃(i)tr .

3.3 Encoder by Matrices Inspired in
Gram

Problems such as univariate time series have recently
been solved using gram matrices (Wang et al., 2022);
however, we will use it as a multivariate approach ap-
plying some changes. After selecting R pairs on top of
CMI ranking time series X using the technique min-
max scaler, we transform each pair z1, . . . ,zR to the
space [−1,1] as follow:

z̃(i)tr =
z(i)tr −min(z(i)r )

max(z(i)r )−min(z(i)r )
, i = 1,2, t = 1,

. . . ,T, r = 1, . . . ,R,

(2)

where minimum value min(z(i)r ) and maximum value
max(z(i)r ) of the ith selected feature.

Then, we transform z̃(i)tr to polar coordinates throw
the cosine of the angle of the values, and obtaining the
radius ρ using the timestamp tst , given by:
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Figure 2: Image generated with GADF approach with R
pairs/channels.

θ
(i)
rt = arccos(z̃(i)tr ), −1 ≤ z̃(i)tr ≤ 1, (3)

ρt =
tst

max(ts)
, tst ∈ ts,

where the value of the timestamp is represented by tst ,
and the maximum value of all timestamps is wrote as
max(ts).

The next step in our process is to apply a Gramian
approach to the angle differences of each pair to ob-
tain a three-dimensional array G with w×w×R di-
mensions. Here, gr(i, j) represents each pixel in posi-
tion (i, j) of rth Gram’s matrix of G, as follows:

gr(i, j) = cos(θ(1)ri +θ
(2)
r j ), i, j = 0, . . . ,w−1,(4)

where θ
(1)
ri and θ

(2)
r j represents the transformed pair se-

lected previously. We can understand G as the render-
ing of an image with R channels, where each image
represents the angular variation of the top-R CMI’s
ranking selected pairs (Figure 2).

3.4 Penalization over Time
Sub-Matrices

As we can guess, overloads are a phenomenon that
increases as we get closer to the moment of their ap-
pearance. Also, after making our models, we verified,
using an explanation method (4.2), that in the cases
in which overloads occur, our model considered the
instants prior to the evaluated time to be more critical
(Figure 3). Based on these antecedents, we define a
filter that allows us to penalize those previous values
in each channel of the encoder.

Let f = [0, . . . ,w− 1] define the filter F = f+ f T

2w ,
which will generate a filter of dimension w×w with

Figure 3: Importance by selected pairs over overload clas-
sification. Blue and red colors represent low and high im-
portance, respectively.

Figure 4: Filter applied in each channel.

values in R in the interval [0,1] which we will ap-
ply to each of the channels R of the generated images
G (Figure 4). As we will see in chapter 4, this sim-
ple method allowed us to improve our model signifi-
cantly.

3.5 Convolutional Neural Network

The set of images G are taken by a deep convolutional
neural network (Fig. 5), made up of convolutional
layers with n1 filters of k1 × k1 size and 2× 2 max-
pooling, followed by a batch normalization layer.

We added once more time the same set of convo-
lutional, max-pooling and batch normalization layers
(with the same hyperparameters). All the convolu-
tional layers have ReLU as an activation function and
zero padding.

Finally, the last layer is fully connected with a flat-
ter layer, followed by n3 nodes with Dropout dense
layer, to end with one single neuron as output for bi-
nary classification using a sigmoidal activation func-
tion. Due to the highly imbalanced scenario found,

Figure 5: Convolutional Neural Network Architecture.
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we use focal binary crossentropy as a cost function
setting with class weights parameters.

4 EXPERIMENTS AND RESULTS

Obtaining a forecast with ten minutes of anticipation
is our primary goal. Considering a 30 seconds resolu-
tion, we set k = 20 in our target yt +k. Also, we define
w = 60 as the offset into the past, ergo 30 minutes.

We have a dataset with around 700k labeled
records strongly imbalanced (1.46% imbalanced ra-
tio), corresponding to nearly twelve months of data.

We selected 48 of 72 features linearly indepen-
dent. With these 48 features we start our process
of selecting the K = 10 top pairs corresponding to
{( f in,gru),(pot,dm ),(ton,dm ),( f in, int),(gru, int),
(pre,vel),(pot,vel),(pot, pre),(pre,dm ),(int, pre)}5.

After selecting our top feauture pairs, we build the
G matrices using our Gram’s matrices approach. Due
to time-missing values, this process reduced the num-
ber of matrices to around 685k, reducing our imbal-
anced ratio to 1.38%.

We setted the network hyperparameters with n1 =
256, n2 = 128, n3 = 512 nodes for each layer using the
grid search method. Using the same way we setted
(k1 × k1) = (k2 × k2) = (3× 3) for the kernels size.
We setted the optimizer as Adam with learning rate
(lr = 0.001).

To train we use a cross-validation technique pro-
posed by (Bergmeir and Benı́tez, 2012) for time se-
ries.

4.1 Evaluation Methods

Table 1 shows the average sensitivity, specificity, and
F1 score with the respective standard deviation to the
model based on LLE+LDA as suggested by (McClure
and Gopaluni, 2015), we have also included the re-
sults of our previously proposed model (Hermosilla
et al., 2021), and the results of this proposal, without
filter (⋆) and with penalization filter. As can be seen,
the proposed model with the applied filter exceeded
the previous results significantly.

4.2 GradCAM++ CNN Explanation

The authors (Chattopadhay et al., 2018) proposed a
generalized method called Grad-CAM++ that is for-
mulated by explicitly modeling the contribution of

5fin: fine granulometry, gru: coarse granulometry, dm :
milliseconds from the last maintenance, int: intermediate
granulometry, pre: pressure, vel: velocity, ton: total ton-
nage.

Figure 6: Example of cluster generated with a explanation
model based on GradCam++.

each pixel in the feature maps of a CNN to the fi-
nal output. With this, it is possible to look at the el-
ements to which the network pays attention in each
case. To do this, they reformulate the structure of the
wk

c weight for c class in k layer of the network:

wk
c = ∑

i
∑

j
α

kc
i j .relu

(
∂Y c

∂Ak
i j

)
, (5)

where relu is the Rectified Linear Unit activation
function, αkc

i j are the weights of the gradients for a
particular pixel i, j, and Y c are the values of the partic-
ular class to analyze. wk

c will capture the importance
of the activation map Ak.

Using this method, we characterized the overloads
to understand feature pairs directly influencing the
target. Have been clustered the results to achieve
an analysis of the leading classification groups of the
model.

In Figure 6, we can see an example of how the
model considers the pairs of channels 5, 6, 8, and 9
most relevant in the periods close to the overload oc-
currence.

Precisely channels 5 ({pre},{vel}) and 6 ({pot},
{vel}) are relationships, which experts use to clas-
sify overloads. However, channels 8 and 9, with pairs
(pre,dm ),(int, pre), seem particularly relevant to the
model and offer an opportunity to use new relations to
the study of overload genesis.

An interesting observation is that even having pe-
nalized the times far from the moment t, in all cases,
the model highlights those instants as essential for the
classification, which makes us suppose that the infor-
mation contained in the first moments of the charac-
teristics matrix G is essential for forecasting.
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Table 1: Average and standard deviation over S test sets.

Model Sensitivity Specificity F1
LLE+LDA 0.555(±0.425) 0.453(±0.321) 0.440(±0.298)
Previous proposed model 0.643(±0.227) 0.894(±0.106) 0.609(±0.084)
Proposed model⋆ 0.653(±0.124) 0.889(±0.178) 0.742(±0.098)
Proposed model 0.871(±0.134) 0.838(±0.102) 0.859(±0.113)

5 CONCLUSIONS AND FUTURE
WORKS

In this work, we propose improving the methods to
arrive at an overload forecasting model in a complex,
multivariate, and highly unbalanced problem using a
Gram matrix-based encoding.

We take advantage of the benefits of the CNNs to
generate a model that allows us to know the relation-
ships of these matrices with the overload.

The experimental results show that we have over-
come the approach in previous works and state of the
art.

Using an explanation method called Grad-
CAM++, we established some interesting study sets
for expert review, for example, the relationship be-
tween pressure and timing of equipment maintenance
and fine grain size and pressure to explain some over-
loads.

Also, this behavior could allow us to increase the
forecast distance. In the future, we will integrate the
care information in the same network to generate a
model specialized mainly in those elements that most
influence the occurrence of overloads.
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