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Abstract: Our goal is to apply compact representations of preferences (Kaci et Al., 2020) in pilot recommendation 
functions for future commercial aircraft. The support of a decision assistant would be helpful in a variety of 
flight situations, and we focus here on the case of a diversion decision. CRP are based on simple, modular 
and intuitive representation of preferences among a set of candidate solutions. Solutions are represented as 
vectors of qualitative variables. CRPs help to define a logical language for specifying «preference statements". 
Those preference statements are used to sort a set of candidate solutions (or "outcomes"). Each outcome is 
represented as a vector of qualitative or propositional variables. The conceptual simplicity of CRP facilitates 
knowledge elicitation and explanation processes. We developed a variant of an existing framework named 
CP-theories (Wilson, 2011) which fulfils our expressivity and operational constraints. The language and 
algorithms of our framework have been applied to support pilots to make the best decision about flight 
diversions. 

1 INTRODUCTION 

The purpose of this study is to adapt and apply a 
family of approaches known as "compact 
representations of preferences" (abbrev. CRP) (Kaci 
et Al., 2020) to the design of pilot recommendation 
functions for future commercial aircraft. The support 
of a decision assistant would be helpful in a variety of 
flight situations, and we focus here on the case of a 
decision for diversion. 

CRPs are based on simple, modular and intuitive 
representations of preference statements. Reasoning 
on those statements is used to sort a set of candidate 
solutions (or "outcomes"), each of those solutions 
being represented as a vector of qualitative variables. 
CRPs theories define logical languages to specify 
"preference statements". The conceptual simplicity of 
CRP facilitates knowledge elicitation and explanation 
processes. We introduce a variant of an existing 
framework named CP-theories (Wilson, 2011) which 
fulfils our expressivity and operational constraints. 
The paper first reminds the state-of-the-art of CRPs, 
then shows how we adapted the selected pre-existing 
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framework. Finally we detail some diversion 
examples where different sets of preference 
statements are invoked to face different types of 
operational issues. 

2 REPRESENTING AND 
REASONING ABOUT 
PREFERENCES  

Compact representations of preferences (Kaci et Al., 
2020) - abbreviated here as CRP - define logic-based 
formalisms to specify a knowledge base of unitary 
"preference statements", as well as reasoning 
mechanisms for: checking the consistency of the 
knowledge base; determining the dominance relation 
between two options ("outcomes"); ordering a set of 
possible options. Among the different frameworks, 
graphical approaches use oriented graphs where 
nodes represent the variables of the possible 
outcomes, and branches represent priorities or 
dependencies among variables. Conceptual 
foundations of graphical approaches of preferences 
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are detailed in (Shoham, 1997), who draws a parallel 
between probabilities and utilities. In particular he 
notes that utility independence among variables plays 
the same role as events independence in bayesian 
networks: by taking account of dependence 
relationships, one can drastically reduce the effort 
needed to compute and compare utilities of 
alternative choices. Shoham develops this parallel 
between probability and utility under the form of 
"utility networks". Graphical approaches for compact 
representation of preferences are built on the concept 
of variable dependencies, but without requiring the 
definition of a quantitative utility function. For 
example CP-nets (conditional preference networks) 
(Boutilier et Al., 2004), define a preference theory as 
a pair (G, CT) where G is a dependency graph over 
the variables, and CT is a function which assigns a 
conditional preference table to each variable; The 
conditional preference table for variable X defines the 
preferences over possible values of X, for each 
possible value assignment of the parents of X in G, all 
other things being equal.  In CP-nets, the rule that all 
the variables other than the parent variables in the net 
must be equal for the preference statement to trigger 
("ceteris paribus" assumption), is too constraining in 
cases where some variables are always less important 
than others, or when some variables are not relevant 
for a particular use case. For this purpose, (Brafman 
et Al., 2006) enriched the graphical language of CP-
nets as TCP-nets (trade-offs-enhanced CP nets) by 
representing variable priorities. TCP-nets not only 
display dependencies (like CP-nets), but also show 
priority relations. It is then possible in a TCP-net to 
state that under certain circumstances, a variable X is 
much more important than variable Y. In such a case, 
one can ignore Y to evaluate solution dominance. 
Example in diversion scenario: if the safety margin is 
degraded, flight time is a more important criterion 
than cost of maintenance at diversion airport, which 
can then be ignored when comparing two options 
which are different regarding safety margins. 

CP-theories (Wilson, 2011) further generalise 
preferences networks. For a set of variables V, a cp-
theory is a set of statements of form:   
 

u: x>x' [W] (1)
 

Where: u is a value assignment to a subset U ⊂ V, 
x and x' are possible values of a variable X, s.t. X∉U, 
and W ⊆ V-U-{X}. Such a statements says that an 
outcome t u x w is preferred to any outcome t u x' w' 
where: t is a value assignment on V-(U∪{X}∪W) 
("ceteris paribus" variables); u is a specified value 

assignment on U (set of preconditions); w and w' are 
any value assignments on W (indifferent variables). 

Wilson proposes efficient tree-based algorithms 
for evaluating consistency and dominance in cp-
theories. 

The compact representations of preferences have 
also been considered from the viewpoint of logic. 
There, a possible outcome is a possible world, where 
a set of formulas in a primary logical language holds. 
A preference statement in such a logic says that if 
certain formulas hold in world W1, and other 
formulas hold in world W2, then W1 is preferred to 
W2. For example (Bienvenu et Al., 2010) provides a 
general logical theory of preferences ("prototypical 
preference logic") by extending a propositional 
language L with preference statements formed as:  
 

α ⊳ β ‖ F (2)

Where α and β are formulas of L, F is a set of 
formulas of L. It expresses that we prefer an outcome 
O1 over outcome O2 if O1⊨α, O2 ⊨ β, and O1 and 
O2 agree on the formulas in F. The prototypical 
preference logic generalises most of the graphical 
representations and CP-theories. 

In the literature, computing preference relations 
often uses graph algorithms: To decide whether an 
outcome dominates another one, the algorithm tries to 
find a path of elementary preference relations through 
the possible outcomes. For example in CP-nets,  a 
preference relation between two outcomes is obtained 
by generating a "flipping sequence" i.e. a sequence 
outcomes, where two consecutive outcomes differ 
only by one variable. Determining that an outcome is 
preferred over another one consists in finding a 
flipping sequence from the first one to the other one. 
This principle is extended in (Wilson, 2011) whose 
algorithm generates a "cs-tree" (complete search tree) 
where the terminal leaves are the possible outcomes, 
and the intermediate nodes are partially instantiated 
variable assignments.  

3 A VARIANT OF CP-THEORIES 
FOR PILOT DECISION 
ASSISTANCE 

Our approach is inspired from cp-theories (Wilson, 
2011). We had to make a few adaptations to the initial 
theory in order to better fit some requirements of our 
application: 

- Like in classical expert systems, preference 
statements will be elaborated with human 
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pilots. We need to improve the expressivity of 
preference statements in cp-theories to 
facilitate knowledge elicitation.  

- The computation time at system utilisation is 
critical, but we can mitigate this risk through 
off-line pre-processing.  

- The set of preference statements to be used 
depends on the particular operational situation 
treated (use case). 

The following notations are borrowed from 
(Wilson, 2011):  

- Domain(X) is the domain of feature X  
- If U ⊆ F, IU denotes the set of possible value 

assignments to features in U. So an outcome is 
an element of IF 

- If u∈ IU and X∈U, u(X) denotes the value that 
u assigns to X 

- If V ⊆ U, u(V) denotes the projection of u on 
IV 

The driving idea of our approach is to represent a 
preference statement as a vector of relations: A 
criterion on feature X is defined by a binary relation 
R on Domain(X)  (e.g. X="flight time", R=shorter). 
A criterion defines a binary relation on outcomes: it 
includes all the pairs of outcomes whose X features 
are related by R. The following notation is introduced 
for criteria:  
 

CRIT(X,R) =  
{(o1, o2) s.t. o1, o2∈ IF,   
(o1(X), o2(X)) ∈ R} 

(3)

 
The preference relation for a particular use case is 

defined by a set of preference statements. A 
preference statement is a binary relation on F, defined 
as the intersection of criterions, one criterion for each 
feature: 
 

P =  CRIT(X1, R1) ∩…∩ CRIT(Xn,Rn) (4)

With F={X1… Xn} and each Ri denotes a relation 
on Domain (Xi) ✕ Domain(Xi). 

To ensure that preference statements are acyclic, 
it must be imposed that one at least of the criteria is 
irreflexive. To follow the spirit of CP-theories at 
statement elicitation, the default relation for a given 
variable is equality ("ceteris paribus assumption"). 

From the pilot perspective, decision assistant 
functions have to support the pilot in diverse 
diversion situations ("use cases"). Our preference 
knowledge base is naturally structured accordingly, 

i.e. it can be represented as a mapping which 
associates a pair {Fu, Qu} to each use case u, where 
Fu is the list of features relevant for u, and Qu is the 
set of statements to be applied in case u. 

To reduce computation times in operation, the 
decision assistant uses a pre-processed knowledge 
base of preference statements. This knowledge base 
is computed offline, from the initial set of explicit 
statements augmented by its transitive closure. 

More formally, the pre-processing step works as 
follows: 

Let R1 and R2 be binary relations on the same 
domain D, R1•R2 is the product relation defined as 
(Bouyssou, 2005):  
 

{(x1,x3) s.t. x1,x3 ∈ D,   ∃x2∈ D s.t.(x1,x2)∈R1 ∧ (x2,x3) ∈R2} 
(5)

 
Because preference relations are transitive, a new 

preference statement can be obtained by the product 
of two preference statements. The new relation P1•P2 
is also a preference statement in our framework 
because it can be rewritten into  the standard form, 
thanks to the following property. With 
P1=∩i=1..nCRIT(Xi, R1i) and P2=∩i=1..nCRIT(Xi, R2i): 
 

 P1•P2 = ∩i=1..nCRIT(Xi, R1i•R2i) (6)

The product preference statement is obtained by 
the conjunction of product relations at the level of 
each feature. Then it becomes possible to derive all 
the relevant preference statements by transitivity, 
based on the products of binary preferences. 

The computing process requires that product 
operations have been defined to combine the binary 
relations for each feature. This supposes that binary 
relations on each feature can be combined to derive 
new valid relations. This property obtains easily for 
qualitative features as soon as any binary relation can 
be represented by a boolean matrix, and the product 
of relations corresponds to the product of their 
matrices (Bouyssou, 2005). For quantitative features, 
we have to restrict the relations used in preference 
statements to the disjunctions of basic =, <, > 
relations.  

4 EXAMPLE APPLICATION ON 
DIVERSION ASSISTANCE  

Reasoning about pilot preferences is only one module 
in an information processing chain whose objective is 
to push informed decision proposals towards the 
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pilot. CRP are used here to formalise and to reason 
about pilot explainable rules to select a diversion 
airport among several candidate solutions. For 
example, if a passenger is sick, the following 
statements will apply: "a safe diversion flight is 
always preferred to a flight whose safety level is 
degraded". "Among two equally safe diversion 
flights, I will prefer an airport with medical services, 
provided the flight time is not much longer than to the 
other one", "among two reachable airports, if none of 
them have medical services, I will prefer the shortest 
time to get to the nearest hospital". 

The functional architecture works as follows: 
When a diversion is required, a short list of 

candidate airports for diversion is selected (typically, 
the few closest airports, including the ones which 
have been identified as possible diversion airports at 
flight preparation). 

Flight plans are calculated for the airports of the 
short list to evaluate quantitative variables (time, 
distance,...), and diverse descent strategies. 

The features needed to reason about the different 
solutions for the particular use case are calculated 
(e.g. quantitative to qualitative conversion, when 
relevant). 

The solutions are ranked by using the logical 
framework described above. 

Justified recommendations are sent back to the 
pilot, who can accept the first proposal or another one 
in the list, or ask for explanations, or ask to consider 
additional solutions. 

In many real situations, a few more interaction 
loops will be needed (question answering, what if 
questions, requirements for more airports…), which 
do not change the principle of this functional 
architecture.  

The Decision-Making analysis should be as close 
as possible to natural reasoning of pilots in operation. 
For example if a passenger is sick, the aim of the 
diversion decision is to land as fast as possible to an 
airfield where the passenger will be quickly attended 
by medical services. The pilot must first ensure flight 
safety, a safe diversion solution will always be 
preferred to an option where safety margins are 
significantly degraded, whatever the other features. 
Among the solutions where safety is ensured, the pilot 
will prefer airports with adequate facilities to take 
care of the sick passenger. Among the safe diversions 
to airports where the passenger can be attended, the 
diversion flights with minimum travel time will be 
preferred. The example also shows how the facilities 
about passenger handling can be taken into account. 

In the case of engine fire, flight time has to 
become the dominant criterion as soon as the safety 

margins are degraded. Different descent strategies 
might also impact the final choice, which results in 
proposing the less bad solution from a compromise 
between degraded solutions.  
In case of closure of the destination airport, beyond 
safety, the decision assistant has to take into account 
a different set of features, including more commercial 
and economic aspects. The preference statements to 
be invoked here consider the availability of ground 
support teams, the availability of services and 
commodities for passengers, and the impact on airline 
flight schedules.  

5 DISCUSSION 

We proposed a framework to model and reason about 
preferences which is derived from cp-theories 
(Wilson, 2011). In our approach, preference 
statements are handled as conjuncts of feature level 
criteria. This approach is suitable for the development 
of a pre-processing step of the knowledge base to 
improve on-line processing times. The new 
framework had to fulfil specific requirements for our 
application. In particular the language for statements 
is more expressive:  it does not require to focus on a 
single feature for each statement; disjunctions are 
allowed in feature level criteria; preference 
statements are not limited to qualitative (or 
propositional) criteria; they admit limited usage of 
quantitative comparison. It can be demonstrated that 
our language for preference statements is more 
expressive than preference statements in cp-theories 
(cp-theories can be reformulated in our language). 

How do CRP compare with classical numerical 
approaches to multi-criteria decision making? Those 
methods usually fall into two categories: the compare 
and aggregate approaches, and the aggregate and 
compare approaches (Gonzales, Perny 2020). Our 
approach could be classified as a compare and 
aggregate one: each preference statement operates a 
comparison at feature level; then the result is 
aggregated to decide if the statement triggers or not. 
Nevertheless, our approach differs from 
multi6criteria decision techniques on several aspects: 
each preference statement is an independent module: 
it uses its own rules to compare the features, and it 
considers only the few features which are relevant 
(the remaining features are assumed to be equal or 
indifferent). This modularity cumulated with the 
property that the language used is mostly qualitative, 
facilitates the elicitation of preferences by human 
experts. Quantitative multi-criteria approaches 
nevertheless have a strong competitive advantage: 
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they are suitable for automated learning of numerical 
functions for comparison and aggregation. But our 
problem is not well fitted for automated learning 
because of the diversity of use cases (each with its 
own list of relevant criteria), the scarcity of accurate 
and documented diversion data, and the dependency 
of decisions to airline policy and aircraft types. 
Moreover, the decisions proposed must be justified to 
the pilot. In summary, the framework presented in 
this abstract is operationally well adapted because it 
privileges knowledge elicitation with expert pilots, 
performance at run time, and explanation of the 
ranking of the solution proposed.  

In the following steps, we will finalise the use 
cases and their preference statements with test pilots; 
we are also working on improving the explanation 
processes and developing the capability to customise 
the knowledge base, including by taking into account 
pilot's feedback during the interactions with the 
assistant.  
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