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Abstract: Singing voice detection is a fundamental task in music information retrieval, which benefits other tasks such 
as singing voice separation. We propose a new algorithm based on a deeper convolution neural network, fed 
with the logarithmic and mel-scaled spectrogram, to exact and integrate the features of the different layers of 
the network and to discriminate the singing voice finally. We demonstrate that this deeper network can 
produce good performances and be designed efficiently to some extent. The experiments are based on the 
public datasets: Jamendo, Mir1k, RWC pop, and their combined dataset. We also studied what depth of the 
network is suitable for this task. The experiments show that the optimal depth on the four public datasets is 
152.

1 INTRODUCTION 

Singing Voice Detection (SVD) discriminates 
whether an audio segment contains a singer’s voice. 
It is a frame-level task in the field of music 
information retrieval (MIR), which is also 
fundamental and crucial for various other tasks 
(Krause et al., 2021), such as singing voice separation 
(Lin et al., 2021), singer identification (Hsieh et al., 
2020) and lyrics alignment (Gupta et al., 2019). 

Generally, the task is mainly associated with two 
key steps: feature extraction and classification. From 
early works to current methods, as an essential step, 
researchers concentrated on developing features. 
Earlier features were directly inspired by Voice 
Detection (VD), a speech recognition task. These 
features include such as Linear Prediction 
Coefficients (LPC), Perceptual LPC (PLPC), Zero-
Crossing Rate (ZCR), Spectral Flux (SF), Harmonic 
Coefficient (HC), and Mel-Frequency Cepstral 
Coefficients (MFCCs). More recent ones have been 
designed to capture particular musical characteristics, 
such as Fluctogram, Spectral Flatness, and Spectral 
Contraction (SC) (Lehner et al., 2018). For the 
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classification, several classifiers have been employed 
from the earlier ones, such as Hidden Markov Models 
(HMM), Gaussian Mixture Models (GMM), Support 
Vector Machines, and Random Forest, to the modern 
Deep Neural Networks, such as Convolution Neural 
Networks (CNN) (Huang et al., 2018; Lehner et al., 
2018; Schlüter, 2016; Schlüter & Grill, 2015; Zhao et 
al., 2022a; Zhao et al., 2022b; Zhao et al., 2022c), and 
Recurrent Neural Networks (RNN) (Leglaive et al., 
2015). 

If we can find a suitable feature to discriminate 
voice segments from audio, it would be 
straightforward to resolve the problem. However, it 
has been challenging to design such a feature so far. 
Since some instruments are made following the 
frequency characteristics of the human voice, it 
would be challenging to distinguish them from voice 
using the audios containing these kinds of 
instruments. Even state-of-the-art methods still need 
help to detect voice while concatenating many 
advanced features (Lehner et al., 2018). Fortunately, 
we can compensate for this difficulty using 
sophisticated classifiers, Random Forests, and DNN-
based algorithms. For example, CNN (Huang et al., 
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2018; Lehner et al., 2018; Schlüter, 2016; Schlüter & 
Grill, 2015; Voigtlaender et al., 2019) and RNN (Lee 
et al., 2018; Leglaive et al., 2015) are reported to 
obtain better performances than the traditional 
classifiers. 

DNN-based algorithms can learn different levels 
of features (Zeiler & Fergus, 2014) by the different 
layers of neurons from the input. In (Schlüter, 2016; 
Schlüter & Grill, 2015), the input feature of a CNN 
with four layers was the Logarithmic and Mel-scaled 
Spectrogram (LMS), without any other sophisticated 
features. In (Leglaive et al., 2015), the author claimed 
to learn higher-level features using Bi-directional 
Long Short-Term Memory units (Bi-LSTM) and kept 
only the LMS input feature. However, they employed 
pre-processing with the Harmonic-Percussive Source 
Separation (HPSS) (Nobutaka et al., 2008) algorithm. 
Since the shallower CNN (SCNN) can learn higher-
level features, can the Deeper CNN (DCNN) learn 
more to obtain better performance? 

In this paper, we propose a novel algorithm based 
on DCNN with only LMS as the feature, whose depth 
usually is larger than ten and can even reach hundreds 
of layers. Instead of designing a delicate feature 
extractor, we expected the deeper network could 
automatically find and integrate the different level 
features. Experiments on publicly available datasets 
show that the DCNN outperformed the SCNN and 
RNN and even surpassed state-of-the-art algorithms 
using concatenated advanced features. 

2 RELATED WORKS 

In the earlier works of SVD, most features came from 
speech recognition due to a lack of enough music 
information research. As far as we know, the first 
work related to SVD is (Berenzweig & Ellis, 2001), 
in which speech features, including LPC and its 
variants, were employed to locate singing voice 
segments from the instrumental accompaniment. 
Other speech features such as Spectral Power, Short 
Time Energy, ZCR, and MFCC were also used in 
some literature (Rocamora & Herrera, 2007). 

Although the characteristics of the singing voice 
are similar to the speech voice to some extent, there 
are some significant differences between 
distinguishing the singing voice from 
accompaniments and the spoken voice from 
background noise (Rocamora & Herrera, 2007). The 
elaborated features have been focused on to 
discriminate singing voices from accompaniments. 
The SF and HC were once taken into account, but 
they could have been better features for 

discriminating against singing voices because 
accompaniments usually had the same characteristic. 
In recent years, the Fluctogram, Spectral Flatness, 
and SC (Lehner et al., 2018) demonstrated well-
designed features for SVD. A good performance 
comparison for different features in earlier works was 
conducted (Rocamora & Herrera, 2007). It showed 
that MFCCs plus their first-order differences 
outperformed the other features in which SVM was 
the standard classifier. 

Regarding the development of classifiers, the 
typical speech classifiers, HMM (Berenzweig & 
Ellis, 2001) and GMM were proposed for SVD in the 
earlier works. Recently, some classifiers were 
reported to be more suited to the SVD task. 
Particularly we mention some works based on DNN. 
Due to their excellent learning capabilities, DNNs 
have significantly improved various tasks, such as 
image classification, speech recognition, and natural 
language processing. When applied to SVD, they 
have succeeded as well. For example, one method 
based on a CNN with four layers (Schlüter & Grill, 
2015), and another based on a Bi-LSTM (Leglaive et 
al., 2015), have shown much better capabilities than 
previous approaches (Lehner et al., 2018). They have 
become state-of-the-art methods for SVD. 

For different classifiers comparison, the same 
paper (Rocamora & Herrera, 2007) mentioned above 
also evaluated MFCC as the standard feature, and the 
results showed that SVM surpassed all the other 
classifiers. More recently (Lee et al., 2018), a good 
review of SVD research, including DNN-based 
algorithms, was presented. 

3 PROPOSED METHOD 

As mentioned above, SCNN had an excellent 
performance on SVD. Can the DCNN learn the better 
feature to improve the performance? Can we increase 
the number of layers so that SCNN turns out to be 
effective DCNN? The first question is just on which 
this paper focuses, while for the second question, the 
answer is NO due to the well-known problems, the 
vanishing and exploding gradient, which lead to 
CNN’s learning capabilities stopping to increase with 
the number of layers increasing. As for RNN, for 
example, LSTM has already extended its depth by the 
time dimension. Also, it can increase its depth by 
adding layers, as the paper (Leglaive et al., 2015) did. 
However, we would pay higher computation costs to 
train a deeper RNN with the whole connection layers. 

Inspired by the fact that the Squeeze-and-
Excitation network (SENet) was immensely 
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successful on the recent image classification task (Hu 
et al., 2018), we propose a novel SVD algorithm 
using a SENet-based DCNN, looking at the LMS 
feature as the concatenated images. 

3.1 Squeeze-and-Excitation Residual 
Neural Network 

In order to increase the depth of CNN, some workers 
have successfully done, from VGG (Simonyan & 
Zisserman, 2014), Inception series (Szegedy et al., 
2015), to Residual Neural Network (Resnet) (He et 
al., 2016). Especially Resnet, with identity-based skip 
connections (see the arc in Figure 1), significantly 
solved the vanishing and exploding gradient problem. 

 
Figure 1: Resnet and SE-ResNet Block Structure. 

While the SENet can be integrated into Resnet so 
that we can get deeper SE-ResNet for our task. The 
SENet ranked as the best performance in the ILSVRC 
2017 image classification competition (Hu, Shen et 
al. 2018). Besides investigating the spatial structure 
of CNN, the SENet strengthened its learning 
capabilities by using the relation among channels. Se-
Block is the core structure of the SENet. See the 
dashed rectangle in Figure 1. The first step squeezes 
the global spatial information into a channel 
descriptor using global pooling. In the second step, a 
gating mechanism is carried out on the descriptor 
aiming at the limitation and generalization of the 
model, which comprises three units, a full connection 
layer for reducing the dimension, a ReLU, and a full 
connection layer for increasing the dimension. A 

sigmoid function is employed in the third step to 
extract the channel-wised dependencies. Finally, this 
dependency information is rescaled to the input 
channels. 

In CNN, channels represent the feature maps, i.e., 
the different levels of learned features. With more 
layers, more features should be learned from the 
network. The integrated features would be more 
beneficial because some features would take effect 
under some circumstances, and others would do 
under other circumstances. Intuitively, can the 
network learn the different importance of features to 
take effect automatically when it is helpful for the 
SVD? 

As discussed, the SENet could answer this 
question by modelling the channel relation. That is 
why we employed SE-ResNet in this paper. 

To conclude, we would like to employ Resnet 
with various depths to extract the different levels of 
features and then use Se-Block to choose the suitable 
features to discriminate between the voice and the 
non-voice segment. 

3.2 Input Feature 

As discussed, we computed only the kind of essential 
feature, LMS, as the input. Ordinarily, the original 
music signal was resampled at 22050Hz, and then we 
calculated the spectrogram. After applying the Mel 
scale to the spectrogram, we made the amplitude 
logarithmic. We cut off the frequency band from 27.5 
Hz to 8kHz. The frame length was 1024, and the hop 
size was 315, i.e., 14.3ms. We segmented the LMS 
feature into the 80 ൈ 80 images and then fed them 
into the SE-ResNet, with the hop size 5. So, the total 
hop size was 71.5ms, and every image length was 
1144ms. 

3.3 SE-ResNet with Various Depth 

To find the suitable depth for the task, we designed 
the SE-ResNet with the depths 14, 18, 34, 50, 
101,152, and 200, of which the majorities were by the 
typical depths of Resets (He, Zhang et al. 2016), 
except the first and last one. The networks with 
depths 18 and 34 were piled up with the basic block, 
while the bottleneck block was for depths 50, 101, 
and 152 (He, Zhang et al. 2016). The SE-Blocks were 
embedded into the primary or bottleneck block to 
recalibrate the channel-wised weight. As examples, 
we demonstrate three different layers of network 
structure in Table 1.  

Since the input size is 80 ൈ 80, the output image 
sizes are 40, 20, 10, 5, and 3, respectively. The lines 
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“FC” represent SE-Blocks, where the reduction 
parameter was 16. The block scale parameters of the 
34-layer, 101-layer, and 152-layer network are [3, 4, 
6, 3], [3, 4, 23, 3], and [3, 8, 36, 3]. We added depths 
14 and 200 in case the best performance would exist 
on them. For the 14-layer network, we just modified 
the 18-layer network by deleting the last layer. For the 
200-layer network, the block scale parameter is [3, 
12, 48, 3]. 

Table 1: SE-ResNet structure examples. 

 

3.4 Training Configuration 

We implemented the network on the PyTorch 
framework with the help of the Homura package. We 
employed the step-wise learning rate scheduler with 
step size 10. The cross-entropy was used as the loss 
function, and Adam was the optimizer with the 
weight decay 1 ൈ 10ିସ . We also had the early 
stopping mechanism, and the patience was set to 5. 
We usually could reach the early stopping around ten 
epochs from the experiments, although we set the 
maximum epoch as 100. 

4 EXPERIMENTS AND RESULTS 

This section presents experiments and results based 
on SE-ResNet, showing better performance on public 
datasets. 

4.1 Datasets 

We chose three publicly available datasets for 
experiments. The first dataset is the Jamendo corpus 
(JMD), which contains 93 songs with 371 minutes of 
total length. The second is the RWC pop, which 
contains 100 songs with 407 minutes of total length. 
The third is the Mir1k. Relatively minor, it contains 
133 minutes of total length and 1000 song clips with 
durations ranging from 4 to 13 seconds.  

We kept the original division of train, validation, 
and test datasets for JMD (Leglaive et al., 2015; Lee 
et al., 2018; Lehner et al., 2018) unchanged, i.e., 61 
songs for train, 16 for validation, and 16 for the test. 
We divided the RWC dataset by which the songs 
ending with the numbers 0-4 were picked up as the 
training dataset, 5 and 6 as the validation dataset, and 
7-9 as the test dataset. We separated the Mir1k 
datasets by which the songs starting with a-g were 
chosen as the parts for the training dataset, h-k 
(including K) as the validation dataset, and l-z as the 
test dataset.  

Finally, we combined all three datasets into a 
whole dataset by integrating the corresponding 
training, validation, and test datasets. Hence, we got 
a new dataset called the JRM dataset. 

4.2 Comparison of Results 

In this paper, we compare the performances based on 
the pure models without data augmentation and other 
processing, such as HPSS (Lee et al., 2018). Since the 
state-of-the-art performances are conducted by 
SCNN and RNN (Lee et al., 2018; Lehner et al., 
2018), we designed the experiments to compare our 
algorithm and theirs. To some extent, it is fair to 
demonstrate the capabilities of the networks in this 
way. 

Table 2: Network Performances on datasets. The Avg 
denotes the average accuracy on RWC, Mir1k, and JMD. 
The bold accuracies are the best of SE-ResNets (SERN is 
the abbreviation in the table) on the same datasets.  

  RWC Mir1k JMD Avg JRM 
SCNN 0.879 0.876 0.868 0.874 0.873

Bi-LSTM 0.875 0.865 0.875 0.872 0.878
SERN-14 0.899 0.880 0.890 0.890 0.890
SERN-18 0.895 0.882 0.877 0.885 0.890
SERN-34 0.891 0.881 0.897 0.890 0.891
SERN-50 0.912 0.869 0.877 0.886 0.899
SERN-101 0.910 0.870 0.846 0.875 0.897
SERN-152 0.901 0.880 0.885 0.888 0.901
SERN-200 0.900 0.873 0.881 0.884 0.887
LSTM Gain 0.025 0.015 0.01 0.016 0.022
SCNN Gain 0.022 0.004 0.017 0.014 0.027

 
In (Lee et al., 2018), as a third-party evaluation, 

SCNN and Bi-LSTMs-based methods were 
developed for revisiting. For SCNN, it only fed the 
LMS feature, just the same as our approach. 
Therefore, we directly used their results on Jamendo. 
To obtain the results of SCNN on the databases RWC, 
Mir1k, and JRM, we just run the train and test 
programs on the respective datasets. For Bi-LSTMs, 
we have tried two versions. One was done without 
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HPSS, and the other with HPSS as the original 
version did. However, the performances without 
HPSS were always worse than their counterparts from 
experiments. For example, the accuracy was only 
0.8003 on JRM. Hence, we did not put it on the table. 
On the other hand, we run our algorithm 
implementation on the datasets with various depths to 
get the performances. We show all the results in terms 
of accuracy in Table 2. 

From the results, if we used the SE-ResNet with a 
depth of 152, the improvement for SCNN and Bi-
LSTM would be on the “SCNN Gain” and “LSTM 
Gain” lines, respectively. On the more 
comprehensive dataset JRM, which is more 
convincing, the accuracies are improved by 2.73% 
and 2.29%, respectively. The best performance on 
JMD is better than the state-of-the-art method, in 
which the five different features were concatenated to 
feed to the RNN. 

4.3 Results of SE-ResNet with Different 
Depths 

Due to the amount and diversity of the data for 
different datasets, the different depths would lead to 
different performances. We show the results in terms 
of accuracy on the four mentioned datasets with the 
different depths of SE-ResNet in Figure 2. 

 
Figure 2: Accuracy with different depths of SE-ResNet. 

The performance on the combined dataset JRM 
reaches the highest accuracy of 0.9012 at the depth 
152, whereas the others reach the peaks at the mid-
depths (50, 18, 34) on (RWC, Mir1k, Jamendo). It 
proves that if there is enough data, the deeper SE-
ResNet would be more potential to get better 
performance. Otherwise, the best performance could 
end with relatively shallower networks. The deeper 
networks tend to be overfitting on the small datasets, 
so they cannot obtain the best performance. 

It is also worthwhile to note that the performance 
on JRM is better than the Avg line. It means the 
combination of the three fundamental datasets can 

strengthen the overall learning capability of the 
network. 

4.4 Computation Cost 

The network determines the number of parameters 
(NoP). Although the Bi-LSTM has the minimum 
NoP, it consumes the maximum CC. At the same 
time, the computation cost (CC) depends on many 
factors, such as the network scale, the network 
converging mechanism, and the implementation 
method. We ran the programs on the TITAN XP with 
12G memory and evaluated CC by minutes per 
training, including validation epoch on dataset JRM. 

Table 3: NoP and CC of the networks on JRM. SERN is 
the abbreviation for SE-ResNet in the table. 

Network NoP (M) CC (min) 
SCNN 1.4 7 

Bi-LSTM 0.1 97 
SERN-14 2.8 8 
SERN-18 11 10 
SERN-34 21 14 
SERN-50 26 18 
SERN-101 47 24 
SERN-152 65 29 
SERN-200 118 41 

5 CONCLUSIONS 

In this study, we proposed a novel SVD algorithm 
based on SE-ResNet, which can be very deep. 
Furthermore, we investigated the effect of the 
different depths of SE-ResNet on the datasets. If we 
had a more comprehensive and significant data 
dataset, the deeper the network, the better the 
performance. The experimental results demonstrated 
that we obtained better results than published 
systems. 
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