
Analyze and Evaluate the Efficiency of the Tree-Based Process Scheduler

Ngo Hai Anh1 a and Ngo Dung Nga2 b

1Institute of Information Technology, Vietnam Academy of Science and Technology, Vietnam
2International School, Vietnam National University, Hanoi, Vietnam

Keywords: CFS, CPU Scheduling, FCFS, FIFO, Priority, Red-Black Tree, Round Robin, SJF.

Abstract: In today’s computer systems, whether the programs execute on a single computer or on distributed systems,
scheduling plays a very important role in allocating system resources to processes. Our study analyzes some
common scheduling principles and focuses on evaluating the scheduling solution that is widely used in Linux–
based operating systems as a fair scheduling method, which was based on red–black tree data structure. Our
simulations was also conducted on a number of different sets of processes, to reflect real-world usage scenar-
ios.

1 INTRODUCTION

A process is a running program, or program in ex-
ecution. If the computer programs are not executed,
the main resource it consumes is only the amount of
memory, mainly the hard disk drive. But according
to the development of the computer hardware man-
ufacturing industry, the cost–per–unit of hard drive
is cheaper compared to other types of memory de-
vices such as registers, caches, or RAM (Toy and Zee,
1986). With modern computer systems, at the same
time there can be from a few dozen to hundreds of
processes running on individual machines as well as
thousands to tens of thousands of processes running
on distributed systems. An operating system (OS) is
software that acts as a resource manager, allocating
hardware resources appropriately to processes. When
a process is created, it receives the hardware resources
that the operating system allocates to it, including
CPU time, physical addresses on RAM, files on the
hard disk or input/output (I/O) devices (Bajaj1 et al.,
2015). In the operating system, scheduler will per-
form scheduling to efficiently allocate CPU time to
processes, in other words will switch CPU between
processes (Tanenbaum and Bos, 2015). Therefore, it
can be said that CPU scheduling is the basis for the
operation of multi-programming operating systems.
In this paper, we will analyze some popular schedul-
ing algorithms in the 2 section, then introduce a solu-
tion using advanced data structures for scheduling in

a https://orcid.org/0000-0001-8982-0088
b https://orcid.org/0000-0003-2774-3130

section 3. The next section 4 will simulate and evalu-
ate the proposed solution. And the last part will be the
conclusion in section 5.

2 ANALYSIS OF SEVERAL
SCHEDULING METHODS

The simplest scheduling method is based on the prin-
ciple that process which first–come will be first–
served (means CPU time will be given first), called
the First-Come-First-Served (FCFS) algorithm, this
method uses a First-In First-Out (FIFO) data struc-
ture. Every time a process is created, it will be moved
to the queue and will have to wait for all the processes
already in the queue to finish executing (Adekunle
et al., 2014).

The different processes have different running
times, so scheduling by priority can also be applied.
Each process will be assigned a priority by the operat-
ing system, usually an integer number, and according
to the principle that the smaller number, the higher the
priority, and vice versa (Singh et al., 2014). A simple
variant of this priority-based method is the Shortest
Job First (SJF) algorithm, in which method, the pro-
cess with the shortest execution time will be allocated
CPU time by scheduler to run first, and so on for the
remaining processes with increasing execution time.

The two scheduling algorithms FIFO and Prior-
ity make sense in theory, but when implemented and
executed in the operating system, there can be prob-
lems, because processes have parameters very differ-

330
Anh, N. and Nga, N.
Analyze and Evaluate the Efficiency of the Tree-Based Process Scheduler.
DOI: 10.5220/0011924300003612
In Proceedings of the 3rd International Symposium on Automation, Information and Computing (ISAIC 2022), pages 330-335
ISBN: 978-989-758-622-4; ISSN: 2975-9463
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



ent: the time it is generated and passed to the sched-
uler to request the CPU – called arrival time, the time
it has to wait to be allocated the CPU – called wait-
ing time, and turnaround time is the time the process
is actually using the CPU to process its tasks. And
in fact, when users run computer programs, it is im-
possible to know in advance when the process will
pause, stop (close) because that completely depends
on user behavior. Therefore a scheduling method of
rotation type (called Round Robin–RR) can be ap-
plied. The idea of this approach is that each process
will be given a fixed amount of time by the operat-
ing system q called quantum. Ideally, q is enough or
more than enough for the process to finish its task,
otherwise the process is forced to stop using the CPU
after the q interval and wait for the next CPU run, and
the next running turns are allocated CPU time up to q
(time unit) (Rajput and Gupta, 2012; Shyam and Nan-
dal, 2014).

If there are n processes in the queue waiting for
their turn to execute, the RR algorithm will not care
about queue order or priority like the FCFS/FIFO
or Priority algorithms as above, it will distribute to
each process 1/n of CPU time and each distribution
does not exceed the q quota. No process has to wait
more than q(n−1) (CPU time). In fact, operating sys-
tems often choose the value of q in the range 1–10
(ms) (Tanenbaum and Bos, 2015).

To see the difference between the above algo-
rithms, let us consider an example as follows: sup-
pose there are five processes P1,P2,P3,P4, and P5 are
open and pending (granted CPU time) respectively.
Assume the time required for processes to complete
their tasks is 10, 6, 2, 4, and 8 (ms) respectively;
The priority for each process is 3, 5, 2, 1, and 4
respectively (the higher the priority, the higher the
priority). We will evaluate the criterion turnaround
time–which is the average actual running time (CPU
usage) of the five processes mentioned above. With
the FCFS algorithm, the scheduler will run in the or-
der P1 → P2 → P3 → P4 → P5. P1 runs for 10ms, P2
runs for 16ms (because it has to wait for P1 to fin-
ish), just like that we can calculate P3 which takes
18ms, P4 took 22ms and P5 took 30ms. The average
turnaround time for all five processes to complete is
19.2ms. With the Priority algorithm, the running or-
der is P2 → P5 → P1 → P3 → P4. P2 runs for 6ms,
P5 runs for 14ms (because we have to wait for P2
to finish), just like that we can calculate P1 which
takes 18ms, P3 took 22ms and P4 took 30ms. The av-
erage turnaround time with this algorithm is 18ms.
With the RR algorithm, the running order of the pro-
cesses doesn’t matter, each Pi will in turn take up 1/5
of the CPU time, and so on until the first process ter-

minates (which is P).3), then each remaining process
is given 1/4 CPU in turn, and so on until the end, the
total turnaround time (running time) of these five pro-
cesses is (10+ 18+ 24+ 28+ 30) = 110ms, average
is 22ms.

Thus, it can be seen that the RR algorithm has a
longer running time than the two FCFS/FIFO and Pri-
ority algorithms, but this algorithm has the advantage
of evenly distributing the CPU usage limit for the pro-
cesses, which is quite important. This is important be-
cause in practice the schedulers in the operating sys-
tem will not know in advance when the user will open
the program, how long the open program will run,
or when the user will stop the running program. In
essence, the data structure used by RR is still in the
form of FIFO and still has processes that reserve the
right to run first (in the above example P1), but can
only run within the CPU allocation limit (above is 1/5
when all five processes have not finished running, and
increments from 1/4–1 each time one, two, three and
four processes terminate) (Noon et al., 2011).

3 ANALYSIS OF SCHEDULING
IMPROVED SOLUTIONS
BASED ON TREE DATA
STRUCTURES

With the analysis of some scheduling algorithms as
mentioned above, we see that these algorithms still
depends on the fixed priority value or equally divided
resources among the processes, so when installed in
the operating systems, it is possible to use uses binary
tree data structures and some improved data structures
from binary trees, such as Heap (Gabriel et al., 2016).
These algorithms based on binary tree data structures
have been proven to have a complexity of O(1) or
O(N) (Aas, ).

With built-in in the Linux kernel since version 2.4,
the O(N) scheduler uses the O(N) algorithm, where
the execution time is a function of the number of pro-
cesses, here is N. Or more accurately, the time of the
algorithm is a linear function of N, i.e. as N increases,
the time increases linearly. Scheduler O(N) can termi-
nate if N is continuously increasing. This scheduling
method is simple but will have poor performance on
systems running multiple CPUs (multiprocessors) or
multiple cores.

The O(1) scheduler, running in constant time as
the name suggests, has been integrated into the Linux
kernel since version 2.4, no matter how many pro-
cesses are running in the system, this scheduler can
guaranteed to finish in a fixed time. This makes O(1)

Analyze and Evaluate the Efficiency of the Tree-Based Process Scheduler

331



scale better than O(N) relative to the number of pro-
cesses, thus solving the performance problems of
O(N).

In general, the O(1) scheduler uses a priority-
based scheduling policy. The scheduler chooses the
most appropriate process to run based on their pri-
ority. The O(1) scheduler is the multi-queues sched-
uler. The main structure of the O(1) scheduler is two
runqueue queues, one active and one expired. The
Linux kernel can access these two queues via pointers
on each CPU, which can be swapped with a swapping
pointer.

On modern computing systems such as personal
computers, mobile devices,. . . applications that are of-
ten highly interactive or run in real time, an important
property that needs to be ensured is fairness, fairness
to processes means that when scheduled by the oper-
ating system, they must have a fair share in process-
ing time. Therefore, the queue structure also needs
to be changed to ensure compliance with a Com-
pletely Fair Scheduler (Jones, 2022). red–black tree–
rbt (Bayer, 1972; Guibas and Sedgewick, 1978) is a
self-balancing binary search tree. Each node of a red-
black tree has a property “color” that takes either the
value red or black and the following properties:

• A node is either red or black;

• Root and leaf nodes (leaf nodes with NULL value)
are black;

• The children of every red node are black, i.e. every
red node whose parent node is black;

• All paths from any node to leaves have the same
number of black nodes.

Figure 1: The red–black tree used to represent the pro-
cesses (Jones, 2022).

The red–black tree has many useful properties.
First, to search in the red–black tree will take O(logn)
time. Second, it is self–balancing, which means that
no path in a tree is twice as long as any other. So, in
a rbt tree as shown in figure 1, every node represents

a process (or task) in the system, and the node’s key
value represents runtime of this particular task. With
the definition of red-black tree means, the leftmost
node has the smallest key value, which means this task
has the smallest virtual runtime, so this task needs
the most processing. On the other hand, the rightmost
node has the largest key value, which means this task
is the least necessary to be executed. So the scheduler
simply selects the leftmost task for the processor. Af-
ter the leftmost task is processed, it is removed from
the tree. Since this task already has some processing
time, its virtual runtime is increased. And then, if this
task is not completed, it will be inserted back into the
red–black tree with the new virtual runtime. And the
time for this operation is O(logn).

We will calculate the vruntime of the processes
in the figure 1 in the following steps. First need to
calculate LWT (Load Weight Ratio):

LWTi =
LWi

∑
n
i=1 LWi

(1)

In the formula 1 LWi is the Load Weight of each
process, and is calculated by the formula:

LWi =
1024
1.25Pi

(2)

here, Pi is the priority assigned to the processes. In
operating systems like Linux, this integer value Pi
is called nice_value and ranges from {-20, 19}, the
smaller the value, the higher the precedence.

Based on the formulas 1 and 2 we can calculate
the running time vruntime of the processes in the red-
black tree over a period of time p as follows:

vruntimei = LWTi × p (3)

here, the minimum value of p is 20ms in Linux oper-
ating system.

To check the fairness of dividing the p time inter-
val for processes based on the tree structure rbt in the
formula 3, we give the following formula:

f airnessi =
LWTi × p

LWi
(4)

In Table 1 we see the running time vruntime of
different priority processes in the observation period
p = 100ms. The red–black tree–based scheduling al-
gorithm rbt first converts the payload LWi of the pro-
cesses i based on the priority value P initial set by
the operating system, from which the corresponding
load ratio LWTi and then the running time vruntime,
all these runtimes are different, but they all have the
same f airness.

ISAIC 2022 - International Symposium on Automation, Information and Computing

332



Table 1: Fairness by scheduling algorithm based on red-
black tree structure rbt.

P LW LWT vruntime fairness
-20 88818 0.67233 67.23343 0.77515
-15 29104 0.22031 22.03105 0.77515
-10 9537 0.07219 7.21913 0.77515

-5 3125 0.02366 2.36557 0.77515
0 1024 0.00775 0.77515 0.77515
5 336 0.00254 0.25400 0.77515

10 110 0.00083 0.08323 0.77515
15 36 0.00027 0.02727 0.77515
19 15 0.00011 0.01117 0.77515

4 SIMULATION AND RESULTS
ANALYZING

4.1 Comparison of Scheduling Using
Red-Black Trees and Heap Trees

To evaluate the efficiency of the fair scheduling algo-
rithm based on the red–black tree structure rbt. We
compare with the binary tree–based scheduling algo-
rithm Heap as analyzed in Section 3. The compari-
son was made on four scenarios of increasing num-
ber of processes: from 100–for a personal computer or
mobile device; 1000–suitable for a powerful personal
computer; 10000–corresponds to a server providing
basic services such as web or email, and finally 20000
processes–equivalent to a server providing distributed
services, cloud. . . For each scenario, we compare the
following criteria:

1. Algorithm running time (how long the scheduler
takes to finish processing)

2. Average waiting time of processes, this is the time
each process Pi waits until it receives CPU time.

3. Average turnaround time of processes, this is the
time that Pi processes occupy the CPU, i.e. are be-
ing processed

4. Throughput (is the number of processes that can
run in a unit of time)

With the above criteria, the better algorithm will have
less time and more throughput. Tables 2, 3, 4 and 5
aggregates the results of the four suggested scenarios.

Table 2: 100–process scenario.

Criteria Heap tree Red-Black tree
Running time 10 062 200 3 026 900
Waiting time 3 723 380 1 119 670
Turnaround time 3 826 558 1 150 697
Throughput 9.94 33.04

Table 3: 1000–process scenario.

Criteria Heap tree Red-Black tree
Running time 86 487 000 76 853 300
Waiting time 42 679 490 37 954 810
Turnaround time 42 765 926 38 031 670
Throughput 11.56 13.01

Table 4: 10000–process scenario.

Criteria Heap tree Red-Black tree
Running time 193 085 900 76 853 300
Waiting time 98 245 584 58 437 288
Turnaround time 98 264 862 58 448 754
Throughput 51.79 86.86

Table 5: 20000–process scenario.

Criteria Heap tree Red-Black tree
Running time 343 634 700 278 669 000
Waiting time 169 744 048 137 299 910
Turnaround time 169 761 184 137 313 770
Throughput 58.21 71.77

In the four result tables above, the time values are
in nanoseconds (10−9s) because modern processors
are all in this range, while the throughput is in the
number of tasks the scheduler can handle per millisec-
ond (10−3s) because ms is the right amount of time for
the CPU to divide among the processes. All four pro-
posed simulation scenarios show a much better perfor-
mance of the fair scheduling algorithm based on the
red–black tree than the priority scheduling algorithm
based on the Heap binary tree.

Looking at the results we also see that in the sce-
nario 3 with the number of processes about 1000,
equivalent to a good personal computer, there is a
slight difference in the performance of both schedul-
ing types. As for systems with few or many processes
(in scenarios 2, 4 and 5), the difference in processing
time as well as processing capacity is much larger, and
the fairness scheduler using the red–black tree proved
to be more advantage, this is very important because
nowadays the trend of using compact personal devices
such as smartphones, or large computing systems ac-
cording to distributed, cloud, edge, fog,. . . computing
models becomes popular, the proportion of personal
computers tends to decrease. That said, scheduling
algorithms suitable for such devices would has very
high practical significance.

Analyze and Evaluate the Efficiency of the Tree-Based Process Scheduler

333



4.2 Comparison of Scheduling
Algorithms Using Red-Black Trees
and FIFO, Round Robin and
Multi-Level

To evaluate the efficiency of the fair scheduling al-
gorithm based on the red–black tree structure rbt
with traditional algorithms such as FCFS, SJF, Round
Robin mentioned in 2 and a algorithm we propose
consisting of many levels that combine these algo-
rithms in a queue called Multi-Level Queue as below:

• Level 1: Round Robin with q= 3, used for priority
0, 1 (high priority)

• Level 2: Round Robin with q= 5, used for priority
levels 2, 3 (low priority)

• Level 3: FCFS, used for lowest priority.

The reason for choosing the combination of the above
algorithms is as follows: we find that with low pri-
ority, the process will be executed on a first–come,
first–served method, with processes with lower prior-
ity. Higher priority needs to avoid CPU occupation, so
Round Robin algorithm will be applied with the quan-
tum q = 5, and for processes with higher priority, it is
necessary to further reduce the quantum q = 3. Such a
combination will ensure more fairness than applying
a single algorithm for CPU allocation to processes.

We compare the performance of the algorithms
according to two criteria, waiting time and turnaround
time applied on the same four scenarios as in sec-
tion 4.1 (100, 1000, 10000 and 20000 randomly gen-
erated processes).

Tables 6, 7, 8 and 9 aggregates the results of the
four proposed scenarios. Time is calculated as the av-
erage of all processes in each scenario.

Table 6: 100-processes scenario.

Algorithm Waiting Turnaround
FCFS 252.93 258.50
Round Robin 325.68 331.25
Multi-Level Queue 251.08 256.65
Red-Black Tree 223.70 229.27

Table 7: 1000-processes scenario.

Algorithm Waiting Turnaround
FCFS 2434.95 2440.29
Round Robin 3165.29 3170.64
Multi-Level Queue 2499.27 2504.62
Red-Black Tree 2150.95 2156.27

Table 8: 10000-processes scenario.

Algorithm Waiting Turnaround
FCFS 24912.09 24917.59
Round Robin 32620.82 32626.32
Multi-Level Queue 25514.42 25519.92
Red-Black Tree 22647.70 22653.20

Table 9: 20000-processes scenario.

Algorithm Waiting Turnaround
FCFS 49842.19 49847.68
Round Robin 65063.31 65068.80
Multi-Level Queue 51268.53 51274.02
Red-Black Tree 45126.44 45131.93

Look at the simulation results in the tables 6, 7, 8
and 9 we see that for as few processes as in the
tables 6, 7 (the actual equivalent of the number
of programs running on a mobile device, or high-
end personal computer) the scheduling methods do
not make a big difference, however scheduling us-
ing a red–black tree still gives the best results, round
robin scheduling for the longest time is understand-
able given the sequential nature of resource alloca-
tion (requirements are met in turn) of Round Robin.
With a large number of processes as shown in the ta-
bles 8 and 9 the difference between the algorithms is
shown clearer, and scheduling using red–black trees
still guarantees the best results.

5 CONCLUSIONS

Process scheduling or in other words determining the
runtime for programs on a computer system is a very
important issue because the nature of computer sys-
tems is to share hardware resources, especially with
division or allocation of time using the CPU, where
execution time is calculated in CPU cycles with nano–
second latency. Priority–based scheduling methods
often assign different priorities to processes, these pri-
orities are usually fixed, the implementation of such
algorithms is often based on a binary tree structure.
With applications that increasingly require very high
interaction with users as well as between devices,
it is necessary to have a scheduler that provides a
fair distribution of resources between processes. Fair
scheduling method using red–black tree data structure
has many advantages in ensuring fairness between
processes. Our research has focused on analyzing this
fair scheduling method, with some parameters consid-
ered on Linux operating system. The analysis results
are evaluated based on the process sets with different
numbers suitable for current computer systems, and

ISAIC 2022 - International Symposium on Automation, Information and Computing

334



all show the advantages of the fair scheduling algo-
rithm using the tree data structure, red–black com-
pared to traditional algorithms that use simpler data
structures such as FIFO, Round Robin, or by prior-
ity. However, if the FIFO or Round Robin algorithms
are properly combined, the performance can still be
roughly equivalent to fair scheduling using a red–
black tree data structure.

ACKNOWLEDGEMENTS

This work was supported by the Vietnam Academy
of Science and Technology (grant number
VAST01.09/22-23).

REFERENCES

Aas, J. Understanding the Linux 2.6.8.1 CPU Scheduler.
Accessed: 2021-08-19.

Adekunle, Y., Ogunwobi, Z., Jerry, A. S., Efuwape, B.,
Ebiesuwa, S., and Ainam, J.-P. (2014). A Comparative
Study of Scheduling Algorithms for Multiprogram-
ming in Real-Time Systems. International Journal of
Innovation and Scientific Research, 12:180–185.

Bajaj1, C., Dogra, A., and Singh, G. (2015). Review And
Analysis Of Task Scheduling Algorithms. Interna-
tional Research Journal of Engineering and Technol-
ogy (IRJET), 02:1449–1452.

Bayer, R. (1972). Symmetric Binary B-Trees: Data
Structure and Maintenance Algorithms. Acta Inf.,
1(4):290–306.

Gabriel, P. H., Albertini, M. K., Castelo, A., and de Mello,
R. F. (2016). Min-heap-based scheduling algorithm:
an approximation algorithm for homogeneous and het-
erogeneous distributed systems. International Jour-
nal of Parallel, Emergent and Distributed Systems,
31(1):64–84.

Guibas, L. J. and Sedgewick, R. (1978). A dichromatic
framework for balanced trees. In 19th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1978),
pages 8–21.

Jones, M. T. (2018 (accessed October 10, 2022)). Inside the
linux 2.6 completely fair scheduler. https://developer.
ibm.com/tutorials/l-completely-fair-scheduler/.

Noon, A., Kalakech, A., and Kadry, S. (2011). A New
Round Robin Based Scheduling Algorithm for Operat-
ing Systems: Dynamic Quantum Using the Mean Av-
erage. International Journal of Computer Science Is-
sues, 8.

Rajput, I. S. and Gupta, D. (2012). A Priority based Round
Robin CPU Scheduling Algorithm for Real Time Sys-
tems. International Journal of Innovations in Engi-
neering and Technology, 01(3):1–11.

Shyam, R. and Nandal, S. K. (2014). Improved Mean Round
Robin with Shortest Job First Scheduling. Interna-

tional Journal of Advanced Research in Computer Sci-
ence and Software Engineering, 04(7):170–179.

Singh, P., Singh, V., and Pandey, A. (2014). Analysis and
Comparison of CPU Scheduling Algorithms. Interna-
tional Journal of Emerging Technology and Advanced
Engineering, 04(1):91–95.

Tanenbaum, A. and Bos, H. (2015). Modern Operating Sys-
tems, 4th Edition. Pearson Higher Education.

Toy, W. N. and Zee, B. (1986). Computer Hardware-
Software Architecture. Prentice Hall Professional
Technical Reference.

Analyze and Evaluate the Efficiency of the Tree-Based Process Scheduler

335


